00001
00022 #include "libavutil/lls.h"
00023
00024 #define LPC_USE_DOUBLE
00025 #include "lpc.h"
00026
00027
00031 static void lpc_apply_welch_window_c(const int32_t *data, int len,
00032 double *w_data)
00033 {
00034 int i, n2;
00035 double w;
00036 double c;
00037
00038 assert(!(len&1));
00039
00040
00041 n2 = (len >> 1);
00042 c = 2.0 / (len - 1.0);
00043
00044 w_data+=n2;
00045 data+=n2;
00046 for(i=0; i<n2; i++) {
00047 w = c - n2 + i;
00048 w = 1.0 - (w * w);
00049 w_data[-i-1] = data[-i-1] * w;
00050 w_data[+i ] = data[+i ] * w;
00051 }
00052 }
00053
00058 static void lpc_compute_autocorr_c(const double *data, int len, int lag,
00059 double *autoc)
00060 {
00061 int i, j;
00062
00063 for(j=0; j<lag; j+=2){
00064 double sum0 = 1.0, sum1 = 1.0;
00065 for(i=j; i<len; i++){
00066 sum0 += data[i] * data[i-j];
00067 sum1 += data[i] * data[i-j-1];
00068 }
00069 autoc[j ] = sum0;
00070 autoc[j+1] = sum1;
00071 }
00072
00073 if(j==lag){
00074 double sum = 1.0;
00075 for(i=j-1; i<len; i+=2){
00076 sum += data[i ] * data[i-j ]
00077 + data[i+1] * data[i-j+1];
00078 }
00079 autoc[j] = sum;
00080 }
00081 }
00082
00086 static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
00087 int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
00088 {
00089 int i;
00090 double cmax, error;
00091 int32_t qmax;
00092 int sh;
00093
00094
00095 qmax = (1 << (precision - 1)) - 1;
00096
00097
00098 cmax = 0.0;
00099 for(i=0; i<order; i++) {
00100 cmax= FFMAX(cmax, fabs(lpc_in[i]));
00101 }
00102
00103
00104 if(cmax * (1 << max_shift) < 1.0) {
00105 *shift = zero_shift;
00106 memset(lpc_out, 0, sizeof(int32_t) * order);
00107 return;
00108 }
00109
00110
00111 sh = max_shift;
00112 while((cmax * (1 << sh) > qmax) && (sh > 0)) {
00113 sh--;
00114 }
00115
00116
00117
00118 if(sh == 0 && cmax > qmax) {
00119 double scale = ((double)qmax) / cmax;
00120 for(i=0; i<order; i++) {
00121 lpc_in[i] *= scale;
00122 }
00123 }
00124
00125
00126 error=0;
00127 for(i=0; i<order; i++) {
00128 error -= lpc_in[i] * (1 << sh);
00129 lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
00130 error -= lpc_out[i];
00131 }
00132 *shift = sh;
00133 }
00134
00135 static int estimate_best_order(double *ref, int min_order, int max_order)
00136 {
00137 int i, est;
00138
00139 est = min_order;
00140 for(i=max_order-1; i>=min_order-1; i--) {
00141 if(ref[i] > 0.10) {
00142 est = i+1;
00143 break;
00144 }
00145 }
00146 return est;
00147 }
00148
00155 int ff_lpc_calc_coefs(LPCContext *s,
00156 const int32_t *samples, int blocksize, int min_order,
00157 int max_order, int precision,
00158 int32_t coefs[][MAX_LPC_ORDER], int *shift,
00159 enum FFLPCType lpc_type, int lpc_passes,
00160 int omethod, int max_shift, int zero_shift)
00161 {
00162 double autoc[MAX_LPC_ORDER+1];
00163 double ref[MAX_LPC_ORDER];
00164 double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
00165 int i, j, pass;
00166 int opt_order;
00167
00168 assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
00169 lpc_type > FF_LPC_TYPE_FIXED);
00170
00171
00172 if (blocksize != s->blocksize || max_order != s->max_order ||
00173 lpc_type != s->lpc_type) {
00174 ff_lpc_end(s);
00175 ff_lpc_init(s, blocksize, max_order, lpc_type);
00176 }
00177
00178 if (lpc_type == FF_LPC_TYPE_LEVINSON) {
00179 double *windowed_samples = s->windowed_samples + max_order;
00180
00181 s->lpc_apply_welch_window(samples, blocksize, windowed_samples);
00182
00183 s->lpc_compute_autocorr(windowed_samples, blocksize, max_order, autoc);
00184
00185 compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
00186
00187 for(i=0; i<max_order; i++)
00188 ref[i] = fabs(lpc[i][i]);
00189 } else if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
00190 LLSModel m[2];
00191 double var[MAX_LPC_ORDER+1], av_uninit(weight);
00192
00193 for(pass=0; pass<lpc_passes; pass++){
00194 av_init_lls(&m[pass&1], max_order);
00195
00196 weight=0;
00197 for(i=max_order; i<blocksize; i++){
00198 for(j=0; j<=max_order; j++)
00199 var[j]= samples[i-j];
00200
00201 if(pass){
00202 double eval, inv, rinv;
00203 eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
00204 eval= (512>>pass) + fabs(eval - var[0]);
00205 inv = 1/eval;
00206 rinv = sqrt(inv);
00207 for(j=0; j<=max_order; j++)
00208 var[j] *= rinv;
00209 weight += inv;
00210 }else
00211 weight++;
00212
00213 av_update_lls(&m[pass&1], var, 1.0);
00214 }
00215 av_solve_lls(&m[pass&1], 0.001, 0);
00216 }
00217
00218 for(i=0; i<max_order; i++){
00219 for(j=0; j<max_order; j++)
00220 lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
00221 ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
00222 }
00223 for(i=max_order-1; i>0; i--)
00224 ref[i] = ref[i-1] - ref[i];
00225 }
00226 opt_order = max_order;
00227
00228 if(omethod == ORDER_METHOD_EST) {
00229 opt_order = estimate_best_order(ref, min_order, max_order);
00230 i = opt_order-1;
00231 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
00232 } else {
00233 for(i=min_order-1; i<max_order; i++) {
00234 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
00235 }
00236 }
00237
00238 return opt_order;
00239 }
00240
00241 av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
00242 enum FFLPCType lpc_type)
00243 {
00244 s->blocksize = blocksize;
00245 s->max_order = max_order;
00246 s->lpc_type = lpc_type;
00247
00248 if (lpc_type == FF_LPC_TYPE_LEVINSON) {
00249 s->windowed_samples = av_mallocz((blocksize + max_order + 2) *
00250 sizeof(*s->windowed_samples));
00251 if (!s->windowed_samples)
00252 return AVERROR(ENOMEM);
00253 } else {
00254 s->windowed_samples = NULL;
00255 }
00256
00257 s->lpc_apply_welch_window = lpc_apply_welch_window_c;
00258 s->lpc_compute_autocorr = lpc_compute_autocorr_c;
00259
00260 if (HAVE_MMX)
00261 ff_lpc_init_x86(s);
00262
00263 return 0;
00264 }
00265
00266 av_cold void ff_lpc_end(LPCContext *s)
00267 {
00268 av_freep(&s->windowed_samples);
00269 }