00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00027 #define UNCHECKED_BITSTREAM_READER 1
00028 
00029 #include "libavutil/audioconvert.h"
00030 #include "avcodec.h"
00031 #include "get_bits.h"
00032 #include "mathops.h"
00033 #include "mpegaudiodsp.h"
00034 
00035 
00036 
00037 
00038 
00039 
00040 #include "mpegaudio.h"
00041 #include "mpegaudiodecheader.h"
00042 
00043 #define BACKSTEP_SIZE 512
00044 #define EXTRABYTES 24
00045 
00046 
00047 typedef struct GranuleDef {
00048     uint8_t scfsi;
00049     int part2_3_length;
00050     int big_values;
00051     int global_gain;
00052     int scalefac_compress;
00053     uint8_t block_type;
00054     uint8_t switch_point;
00055     int table_select[3];
00056     int subblock_gain[3];
00057     uint8_t scalefac_scale;
00058     uint8_t count1table_select;
00059     int region_size[3]; 
00060     int preflag;
00061     int short_start, long_end; 
00062     uint8_t scale_factors[40];
00063     DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; 
00064 } GranuleDef;
00065 
00066 typedef struct MPADecodeContext {
00067     MPA_DECODE_HEADER
00068     uint8_t last_buf[2 * BACKSTEP_SIZE + EXTRABYTES];
00069     int last_buf_size;
00070     
00071     uint32_t free_format_next_header;
00072     GetBitContext gb;
00073     GetBitContext in_gb;
00074     DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
00075     int synth_buf_offset[MPA_MAX_CHANNELS];
00076     DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
00077     INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; 
00078     GranuleDef granules[2][2]; 
00079     int adu_mode; 
00080     int dither_state;
00081     int err_recognition;
00082     AVCodecContext* avctx;
00083     MPADSPContext mpadsp;
00084     AVFrame frame;
00085 } MPADecodeContext;
00086 
00087 #if CONFIG_FLOAT
00088 #   define SHR(a,b)       ((a)*(1.0f/(1<<(b))))
00089 #   define FIXR_OLD(a)    ((int)((a) * FRAC_ONE + 0.5))
00090 #   define FIXR(x)        ((float)(x))
00091 #   define FIXHR(x)       ((float)(x))
00092 #   define MULH3(x, y, s) ((s)*(y)*(x))
00093 #   define MULLx(x, y, s) ((y)*(x))
00094 #   define RENAME(a) a ## _float
00095 #   define OUT_FMT AV_SAMPLE_FMT_FLT
00096 #else
00097 #   define SHR(a,b)       ((a)>>(b))
00098 
00099 #   define FIXR_OLD(a)    ((int)((a) * FRAC_ONE + 0.5))
00100 #   define FIXR(a)        ((int)((a) * FRAC_ONE + 0.5))
00101 #   define FIXHR(a)       ((int)((a) * (1LL<<32) + 0.5))
00102 #   define MULH3(x, y, s) MULH((s)*(x), y)
00103 #   define MULLx(x, y, s) MULL(x,y,s)
00104 #   define RENAME(a)      a ## _fixed
00105 #   define OUT_FMT AV_SAMPLE_FMT_S16
00106 #endif
00107 
00108 
00109 
00110 #define HEADER_SIZE 4
00111 
00112 #include "mpegaudiodata.h"
00113 #include "mpegaudiodectab.h"
00114 
00115 
00116 static VLC huff_vlc[16];
00117 static VLC_TYPE huff_vlc_tables[
00118     0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
00119   142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
00120   ][2];
00121 static const int huff_vlc_tables_sizes[16] = {
00122     0,  128,  128,  128,  130,  128,  154,  166,
00123   142,  204,  190,  170,  542,  460,  662,  414
00124 };
00125 static VLC huff_quad_vlc[2];
00126 static VLC_TYPE  huff_quad_vlc_tables[128+16][2];
00127 static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
00128 
00129 static uint16_t band_index_long[9][23];
00130 #include "mpegaudio_tablegen.h"
00131 
00132 static INTFLOAT is_table[2][16];
00133 static INTFLOAT is_table_lsf[2][2][16];
00134 static INTFLOAT csa_table[8][4];
00138 DECLARE_ALIGNED(16, static INTFLOAT, mdct_win)[8][40];
00139 
00140 static int16_t division_tab3[1<<6 ];
00141 static int16_t division_tab5[1<<8 ];
00142 static int16_t division_tab9[1<<11];
00143 
00144 static int16_t * const division_tabs[4] = {
00145     division_tab3, division_tab5, NULL, division_tab9
00146 };
00147 
00148 
00149 static uint16_t scale_factor_modshift[64];
00150 
00151 static int32_t scale_factor_mult[15][3];
00152 
00153 
00154 #define SCALE_GEN(v) \
00155 { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
00156 
00157 static const int32_t scale_factor_mult2[3][3] = {
00158     SCALE_GEN(4.0 / 3.0), 
00159     SCALE_GEN(4.0 / 5.0), 
00160     SCALE_GEN(4.0 / 9.0), 
00161 };
00162 
00167 static void ff_region_offset2size(GranuleDef *g)
00168 {
00169     int i, k, j = 0;
00170     g->region_size[2] = 576 / 2;
00171     for (i = 0; i < 3; i++) {
00172         k = FFMIN(g->region_size[i], g->big_values);
00173         g->region_size[i] = k - j;
00174         j = k;
00175     }
00176 }
00177 
00178 static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g)
00179 {
00180     if (g->block_type == 2)
00181         g->region_size[0] = (36 / 2);
00182     else {
00183         if (s->sample_rate_index <= 2)
00184             g->region_size[0] = (36 / 2);
00185         else if (s->sample_rate_index != 8)
00186             g->region_size[0] = (54 / 2);
00187         else
00188             g->region_size[0] = (108 / 2);
00189     }
00190     g->region_size[1] = (576 / 2);
00191 }
00192 
00193 static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2)
00194 {
00195     int l;
00196     g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
00197     
00198     l = FFMIN(ra1 + ra2 + 2, 22);
00199     g->region_size[1] = band_index_long[s->sample_rate_index][      l] >> 1;
00200 }
00201 
00202 static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
00203 {
00204     if (g->block_type == 2) {
00205         if (g->switch_point) {
00206             
00207 
00208 
00209             if (s->sample_rate_index <= 2)
00210                 g->long_end = 8;
00211             else if (s->sample_rate_index != 8)
00212                 g->long_end = 6;
00213             else
00214                 g->long_end = 4; 
00215 
00216             g->short_start = 2 + (s->sample_rate_index != 8);
00217         } else {
00218             g->long_end    = 0;
00219             g->short_start = 0;
00220         }
00221     } else {
00222         g->short_start = 13;
00223         g->long_end    = 22;
00224     }
00225 }
00226 
00227 
00228 
00229 static inline int l1_unscale(int n, int mant, int scale_factor)
00230 {
00231     int shift, mod;
00232     int64_t val;
00233 
00234     shift   = scale_factor_modshift[scale_factor];
00235     mod     = shift & 3;
00236     shift >>= 2;
00237     val     = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
00238     shift  += n;
00239     
00240     return (int)((val + (1LL << (shift - 1))) >> shift);
00241 }
00242 
00243 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
00244 {
00245     int shift, mod, val;
00246 
00247     shift   = scale_factor_modshift[scale_factor];
00248     mod     = shift & 3;
00249     shift >>= 2;
00250 
00251     val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
00252     
00253     if (shift > 0)
00254         val = (val + (1 << (shift - 1))) >> shift;
00255     return val;
00256 }
00257 
00258 
00259 static inline int l3_unscale(int value, int exponent)
00260 {
00261     unsigned int m;
00262     int e;
00263 
00264     e  = table_4_3_exp  [4 * value + (exponent & 3)];
00265     m  = table_4_3_value[4 * value + (exponent & 3)];
00266     e -= exponent >> 2;
00267     assert(e >= 1);
00268     if (e > 31)
00269         return 0;
00270     m = (m + (1 << (e - 1))) >> e;
00271 
00272     return m;
00273 }
00274 
00275 static av_cold void decode_init_static(void)
00276 {
00277     int i, j, k;
00278     int offset;
00279 
00280     
00281     for (i = 0; i < 64; i++) {
00282         int shift, mod;
00283         
00284         shift = i / 3;
00285         mod   = i % 3;
00286         scale_factor_modshift[i] = mod | (shift << 2);
00287     }
00288 
00289     
00290     for (i = 0; i < 15; i++) {
00291         int n, norm;
00292         n = i + 2;
00293         norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
00294         scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0          * 2.0), FRAC_BITS);
00295         scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
00296         scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
00297         av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
00298                 scale_factor_mult[i][0],
00299                 scale_factor_mult[i][1],
00300                 scale_factor_mult[i][2]);
00301     }
00302 
00303     RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
00304 
00305     
00306     offset = 0;
00307     for (i = 1; i < 16; i++) {
00308         const HuffTable *h = &mpa_huff_tables[i];
00309         int xsize, x, y;
00310         uint8_t  tmp_bits [512];
00311         uint16_t tmp_codes[512];
00312 
00313         memset(tmp_bits , 0, sizeof(tmp_bits ));
00314         memset(tmp_codes, 0, sizeof(tmp_codes));
00315 
00316         xsize = h->xsize;
00317 
00318         j = 0;
00319         for (x = 0; x < xsize; x++) {
00320             for (y = 0; y < xsize; y++) {
00321                 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j  ];
00322                 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
00323             }
00324         }
00325 
00326         
00327         huff_vlc[i].table = huff_vlc_tables+offset;
00328         huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
00329         init_vlc(&huff_vlc[i], 7, 512,
00330                  tmp_bits, 1, 1, tmp_codes, 2, 2,
00331                  INIT_VLC_USE_NEW_STATIC);
00332         offset += huff_vlc_tables_sizes[i];
00333     }
00334     assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
00335 
00336     offset = 0;
00337     for (i = 0; i < 2; i++) {
00338         huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
00339         huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
00340         init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
00341                  mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
00342                  INIT_VLC_USE_NEW_STATIC);
00343         offset += huff_quad_vlc_tables_sizes[i];
00344     }
00345     assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
00346 
00347     for (i = 0; i < 9; i++) {
00348         k = 0;
00349         for (j = 0; j < 22; j++) {
00350             band_index_long[i][j] = k;
00351             k += band_size_long[i][j];
00352         }
00353         band_index_long[i][22] = k;
00354     }
00355 
00356     
00357 
00358     mpegaudio_tableinit();
00359 
00360     for (i = 0; i < 4; i++) {
00361         if (ff_mpa_quant_bits[i] < 0) {
00362             for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
00363                 int val1, val2, val3, steps;
00364                 int val = j;
00365                 steps   = ff_mpa_quant_steps[i];
00366                 val1    = val % steps;
00367                 val    /= steps;
00368                 val2    = val % steps;
00369                 val3    = val / steps;
00370                 division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
00371             }
00372         }
00373     }
00374 
00375 
00376     for (i = 0; i < 7; i++) {
00377         float f;
00378         INTFLOAT v;
00379         if (i != 6) {
00380             f = tan((double)i * M_PI / 12.0);
00381             v = FIXR(f / (1.0 + f));
00382         } else {
00383             v = FIXR(1.0);
00384         }
00385         is_table[0][    i] = v;
00386         is_table[1][6 - i] = v;
00387     }
00388     
00389     for (i = 7; i < 16; i++)
00390         is_table[0][i] = is_table[1][i] = 0.0;
00391 
00392     for (i = 0; i < 16; i++) {
00393         double f;
00394         int e, k;
00395 
00396         for (j = 0; j < 2; j++) {
00397             e = -(j + 1) * ((i + 1) >> 1);
00398             f = pow(2.0, e / 4.0);
00399             k = i & 1;
00400             is_table_lsf[j][k ^ 1][i] = FIXR(f);
00401             is_table_lsf[j][k    ][i] = FIXR(1.0);
00402             av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
00403                     i, j, (float) is_table_lsf[j][0][i],
00404                     (float) is_table_lsf[j][1][i]);
00405         }
00406     }
00407 
00408     for (i = 0; i < 8; i++) {
00409         float ci, cs, ca;
00410         ci = ci_table[i];
00411         cs = 1.0 / sqrt(1.0 + ci * ci);
00412         ca = cs * ci;
00413 #if !CONFIG_FLOAT
00414         csa_table[i][0] = FIXHR(cs/4);
00415         csa_table[i][1] = FIXHR(ca/4);
00416         csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
00417         csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
00418 #else
00419         csa_table[i][0] = cs;
00420         csa_table[i][1] = ca;
00421         csa_table[i][2] = ca + cs;
00422         csa_table[i][3] = ca - cs;
00423 #endif
00424     }
00425 
00426     
00427     for (i = 0; i < 36; i++) {
00428         for (j = 0; j < 4; j++) {
00429             double d;
00430 
00431             if (j == 2 && i % 3 != 1)
00432                 continue;
00433 
00434             d = sin(M_PI * (i + 0.5) / 36.0);
00435             if (j == 1) {
00436                 if      (i >= 30) d = 0;
00437                 else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0);
00438                 else if (i >= 18) d = 1;
00439             } else if (j == 3) {
00440                 if      (i <   6) d = 0;
00441                 else if (i <  12) d = sin(M_PI * (i -  6 + 0.5) / 12.0);
00442                 else if (i <  18) d = 1;
00443             }
00444             
00445             d *= 0.5 / cos(M_PI * (2 * i + 19) / 72);
00446 
00447             if (j == 2)
00448                 mdct_win[j][i/3] = FIXHR((d / (1<<5)));
00449             else {
00450                 int idx = i < 18 ? i : i + 2;
00451                 mdct_win[j][idx] = FIXHR((d / (1<<5)));
00452             }
00453         }
00454     }
00455 
00456     
00457 
00458     for (j = 0; j < 4; j++) {
00459         for (i = 0; i < 40; i += 2) {
00460             mdct_win[j + 4][i    ] =  mdct_win[j][i    ];
00461             mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
00462         }
00463     }
00464 }
00465 
00466 static av_cold int decode_init(AVCodecContext * avctx)
00467 {
00468     static int initialized_tables = 0;
00469     MPADecodeContext *s = avctx->priv_data;
00470 
00471     if (!initialized_tables) {
00472         decode_init_static();
00473         initialized_tables = 1;
00474     }
00475 
00476     s->avctx = avctx;
00477 
00478     ff_mpadsp_init(&s->mpadsp);
00479 
00480     avctx->sample_fmt= OUT_FMT;
00481     s->err_recognition = avctx->err_recognition;
00482 
00483     if (avctx->codec_id == CODEC_ID_MP3ADU)
00484         s->adu_mode = 1;
00485 
00486     avcodec_get_frame_defaults(&s->frame);
00487     avctx->coded_frame = &s->frame;
00488 
00489     return 0;
00490 }
00491 
00492 #define C3 FIXHR(0.86602540378443864676/2)
00493 #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
00494 #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
00495 #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
00496 
00497 
00498 
00499 static void imdct12(INTFLOAT *out, INTFLOAT *in)
00500 {
00501     INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
00502 
00503     in0  = in[0*3];
00504     in1  = in[1*3] + in[0*3];
00505     in2  = in[2*3] + in[1*3];
00506     in3  = in[3*3] + in[2*3];
00507     in4  = in[4*3] + in[3*3];
00508     in5  = in[5*3] + in[4*3];
00509     in5 += in3;
00510     in3 += in1;
00511 
00512     in2  = MULH3(in2, C3, 2);
00513     in3  = MULH3(in3, C3, 4);
00514 
00515     t1   = in0 - in4;
00516     t2   = MULH3(in1 - in5, C4, 2);
00517 
00518     out[ 7] =
00519     out[10] = t1 + t2;
00520     out[ 1] =
00521     out[ 4] = t1 - t2;
00522 
00523     in0    += SHR(in4, 1);
00524     in4     = in0 + in2;
00525     in5    += 2*in1;
00526     in1     = MULH3(in5 + in3, C5, 1);
00527     out[ 8] =
00528     out[ 9] = in4 + in1;
00529     out[ 2] =
00530     out[ 3] = in4 - in1;
00531 
00532     in0    -= in2;
00533     in5     = MULH3(in5 - in3, C6, 2);
00534     out[ 0] =
00535     out[ 5] = in0 - in5;
00536     out[ 6] =
00537     out[11] = in0 + in5;
00538 }
00539 
00540 
00541 static int mp_decode_layer1(MPADecodeContext *s)
00542 {
00543     int bound, i, v, n, ch, j, mant;
00544     uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
00545     uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
00546 
00547     if (s->mode == MPA_JSTEREO)
00548         bound = (s->mode_ext + 1) * 4;
00549     else
00550         bound = SBLIMIT;
00551 
00552     
00553     for (i = 0; i < bound; i++) {
00554         for (ch = 0; ch < s->nb_channels; ch++) {
00555             allocation[ch][i] = get_bits(&s->gb, 4);
00556         }
00557     }
00558     for (i = bound; i < SBLIMIT; i++)
00559         allocation[0][i] = get_bits(&s->gb, 4);
00560 
00561     
00562     for (i = 0; i < bound; i++) {
00563         for (ch = 0; ch < s->nb_channels; ch++) {
00564             if (allocation[ch][i])
00565                 scale_factors[ch][i] = get_bits(&s->gb, 6);
00566         }
00567     }
00568     for (i = bound; i < SBLIMIT; i++) {
00569         if (allocation[0][i]) {
00570             scale_factors[0][i] = get_bits(&s->gb, 6);
00571             scale_factors[1][i] = get_bits(&s->gb, 6);
00572         }
00573     }
00574 
00575     
00576     for (j = 0; j < 12; j++) {
00577         for (i = 0; i < bound; i++) {
00578             for (ch = 0; ch < s->nb_channels; ch++) {
00579                 n = allocation[ch][i];
00580                 if (n) {
00581                     mant = get_bits(&s->gb, n + 1);
00582                     v = l1_unscale(n, mant, scale_factors[ch][i]);
00583                 } else {
00584                     v = 0;
00585                 }
00586                 s->sb_samples[ch][j][i] = v;
00587             }
00588         }
00589         for (i = bound; i < SBLIMIT; i++) {
00590             n = allocation[0][i];
00591             if (n) {
00592                 mant = get_bits(&s->gb, n + 1);
00593                 v = l1_unscale(n, mant, scale_factors[0][i]);
00594                 s->sb_samples[0][j][i] = v;
00595                 v = l1_unscale(n, mant, scale_factors[1][i]);
00596                 s->sb_samples[1][j][i] = v;
00597             } else {
00598                 s->sb_samples[0][j][i] = 0;
00599                 s->sb_samples[1][j][i] = 0;
00600             }
00601         }
00602     }
00603     return 12;
00604 }
00605 
00606 static int mp_decode_layer2(MPADecodeContext *s)
00607 {
00608     int sblimit; 
00609     const unsigned char *alloc_table;
00610     int table, bit_alloc_bits, i, j, ch, bound, v;
00611     unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
00612     unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
00613     unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
00614     int scale, qindex, bits, steps, k, l, m, b;
00615 
00616     
00617     table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
00618                                    s->sample_rate, s->lsf);
00619     sblimit     = ff_mpa_sblimit_table[table];
00620     alloc_table = ff_mpa_alloc_tables[table];
00621 
00622     if (s->mode == MPA_JSTEREO)
00623         bound = (s->mode_ext + 1) * 4;
00624     else
00625         bound = sblimit;
00626 
00627     av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
00628 
00629     
00630     if (bound > sblimit)
00631         bound = sblimit;
00632 
00633     
00634     j = 0;
00635     for (i = 0; i < bound; i++) {
00636         bit_alloc_bits = alloc_table[j];
00637         for (ch = 0; ch < s->nb_channels; ch++)
00638             bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
00639         j += 1 << bit_alloc_bits;
00640     }
00641     for (i = bound; i < sblimit; i++) {
00642         bit_alloc_bits = alloc_table[j];
00643         v = get_bits(&s->gb, bit_alloc_bits);
00644         bit_alloc[0][i] = v;
00645         bit_alloc[1][i] = v;
00646         j += 1 << bit_alloc_bits;
00647     }
00648 
00649     
00650     for (i = 0; i < sblimit; i++) {
00651         for (ch = 0; ch < s->nb_channels; ch++) {
00652             if (bit_alloc[ch][i])
00653                 scale_code[ch][i] = get_bits(&s->gb, 2);
00654         }
00655     }
00656 
00657     
00658     for (i = 0; i < sblimit; i++) {
00659         for (ch = 0; ch < s->nb_channels; ch++) {
00660             if (bit_alloc[ch][i]) {
00661                 sf = scale_factors[ch][i];
00662                 switch (scale_code[ch][i]) {
00663                 default:
00664                 case 0:
00665                     sf[0] = get_bits(&s->gb, 6);
00666                     sf[1] = get_bits(&s->gb, 6);
00667                     sf[2] = get_bits(&s->gb, 6);
00668                     break;
00669                 case 2:
00670                     sf[0] = get_bits(&s->gb, 6);
00671                     sf[1] = sf[0];
00672                     sf[2] = sf[0];
00673                     break;
00674                 case 1:
00675                     sf[0] = get_bits(&s->gb, 6);
00676                     sf[2] = get_bits(&s->gb, 6);
00677                     sf[1] = sf[0];
00678                     break;
00679                 case 3:
00680                     sf[0] = get_bits(&s->gb, 6);
00681                     sf[2] = get_bits(&s->gb, 6);
00682                     sf[1] = sf[2];
00683                     break;
00684                 }
00685             }
00686         }
00687     }
00688 
00689     
00690     for (k = 0; k < 3; k++) {
00691         for (l = 0; l < 12; l += 3) {
00692             j = 0;
00693             for (i = 0; i < bound; i++) {
00694                 bit_alloc_bits = alloc_table[j];
00695                 for (ch = 0; ch < s->nb_channels; ch++) {
00696                     b = bit_alloc[ch][i];
00697                     if (b) {
00698                         scale = scale_factors[ch][i][k];
00699                         qindex = alloc_table[j+b];
00700                         bits = ff_mpa_quant_bits[qindex];
00701                         if (bits < 0) {
00702                             int v2;
00703                             
00704                             v = get_bits(&s->gb, -bits);
00705                             v2 = division_tabs[qindex][v];
00706                             steps  = ff_mpa_quant_steps[qindex];
00707 
00708                             s->sb_samples[ch][k * 12 + l + 0][i] =
00709                                 l2_unscale_group(steps,  v2       & 15, scale);
00710                             s->sb_samples[ch][k * 12 + l + 1][i] =
00711                                 l2_unscale_group(steps, (v2 >> 4) & 15, scale);
00712                             s->sb_samples[ch][k * 12 + l + 2][i] =
00713                                 l2_unscale_group(steps,  v2 >> 8      , scale);
00714                         } else {
00715                             for (m = 0; m < 3; m++) {
00716                                 v = get_bits(&s->gb, bits);
00717                                 v = l1_unscale(bits - 1, v, scale);
00718                                 s->sb_samples[ch][k * 12 + l + m][i] = v;
00719                             }
00720                         }
00721                     } else {
00722                         s->sb_samples[ch][k * 12 + l + 0][i] = 0;
00723                         s->sb_samples[ch][k * 12 + l + 1][i] = 0;
00724                         s->sb_samples[ch][k * 12 + l + 2][i] = 0;
00725                     }
00726                 }
00727                 
00728                 j += 1 << bit_alloc_bits;
00729             }
00730             
00731             for (i = bound; i < sblimit; i++) {
00732                 bit_alloc_bits = alloc_table[j];
00733                 b = bit_alloc[0][i];
00734                 if (b) {
00735                     int mant, scale0, scale1;
00736                     scale0 = scale_factors[0][i][k];
00737                     scale1 = scale_factors[1][i][k];
00738                     qindex = alloc_table[j+b];
00739                     bits = ff_mpa_quant_bits[qindex];
00740                     if (bits < 0) {
00741                         
00742                         v = get_bits(&s->gb, -bits);
00743                         steps = ff_mpa_quant_steps[qindex];
00744                         mant = v % steps;
00745                         v = v / steps;
00746                         s->sb_samples[0][k * 12 + l + 0][i] =
00747                             l2_unscale_group(steps, mant, scale0);
00748                         s->sb_samples[1][k * 12 + l + 0][i] =
00749                             l2_unscale_group(steps, mant, scale1);
00750                         mant = v % steps;
00751                         v = v / steps;
00752                         s->sb_samples[0][k * 12 + l + 1][i] =
00753                             l2_unscale_group(steps, mant, scale0);
00754                         s->sb_samples[1][k * 12 + l + 1][i] =
00755                             l2_unscale_group(steps, mant, scale1);
00756                         s->sb_samples[0][k * 12 + l + 2][i] =
00757                             l2_unscale_group(steps, v, scale0);
00758                         s->sb_samples[1][k * 12 + l + 2][i] =
00759                             l2_unscale_group(steps, v, scale1);
00760                     } else {
00761                         for (m = 0; m < 3; m++) {
00762                             mant = get_bits(&s->gb, bits);
00763                             s->sb_samples[0][k * 12 + l + m][i] =
00764                                 l1_unscale(bits - 1, mant, scale0);
00765                             s->sb_samples[1][k * 12 + l + m][i] =
00766                                 l1_unscale(bits - 1, mant, scale1);
00767                         }
00768                     }
00769                 } else {
00770                     s->sb_samples[0][k * 12 + l + 0][i] = 0;
00771                     s->sb_samples[0][k * 12 + l + 1][i] = 0;
00772                     s->sb_samples[0][k * 12 + l + 2][i] = 0;
00773                     s->sb_samples[1][k * 12 + l + 0][i] = 0;
00774                     s->sb_samples[1][k * 12 + l + 1][i] = 0;
00775                     s->sb_samples[1][k * 12 + l + 2][i] = 0;
00776                 }
00777                 
00778                 j += 1 << bit_alloc_bits;
00779             }
00780             
00781             for (i = sblimit; i < SBLIMIT; i++) {
00782                 for (ch = 0; ch < s->nb_channels; ch++) {
00783                     s->sb_samples[ch][k * 12 + l + 0][i] = 0;
00784                     s->sb_samples[ch][k * 12 + l + 1][i] = 0;
00785                     s->sb_samples[ch][k * 12 + l + 2][i] = 0;
00786                 }
00787             }
00788         }
00789     }
00790     return 3 * 12;
00791 }
00792 
00793 #define SPLIT(dst,sf,n)             \
00794     if (n == 3) {                   \
00795         int m = (sf * 171) >> 9;    \
00796         dst   = sf - 3 * m;         \
00797         sf    = m;                  \
00798     } else if (n == 4) {            \
00799         dst  = sf & 3;              \
00800         sf >>= 2;                   \
00801     } else if (n == 5) {            \
00802         int m = (sf * 205) >> 10;   \
00803         dst   = sf - 5 * m;         \
00804         sf    = m;                  \
00805     } else if (n == 6) {            \
00806         int m = (sf * 171) >> 10;   \
00807         dst   = sf - 6 * m;         \
00808         sf    = m;                  \
00809     } else {                        \
00810         dst = 0;                    \
00811     }
00812 
00813 static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
00814                                            int n3)
00815 {
00816     SPLIT(slen[3], sf, n3)
00817     SPLIT(slen[2], sf, n2)
00818     SPLIT(slen[1], sf, n1)
00819     slen[0] = sf;
00820 }
00821 
00822 static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
00823                                          int16_t *exponents)
00824 {
00825     const uint8_t *bstab, *pretab;
00826     int len, i, j, k, l, v0, shift, gain, gains[3];
00827     int16_t *exp_ptr;
00828 
00829     exp_ptr = exponents;
00830     gain    = g->global_gain - 210;
00831     shift   = g->scalefac_scale + 1;
00832 
00833     bstab  = band_size_long[s->sample_rate_index];
00834     pretab = mpa_pretab[g->preflag];
00835     for (i = 0; i < g->long_end; i++) {
00836         v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
00837         len = bstab[i];
00838         for (j = len; j > 0; j--)
00839             *exp_ptr++ = v0;
00840     }
00841 
00842     if (g->short_start < 13) {
00843         bstab    = band_size_short[s->sample_rate_index];
00844         gains[0] = gain - (g->subblock_gain[0] << 3);
00845         gains[1] = gain - (g->subblock_gain[1] << 3);
00846         gains[2] = gain - (g->subblock_gain[2] << 3);
00847         k        = g->long_end;
00848         for (i = g->short_start; i < 13; i++) {
00849             len = bstab[i];
00850             for (l = 0; l < 3; l++) {
00851                 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
00852                 for (j = len; j > 0; j--)
00853                     *exp_ptr++ = v0;
00854             }
00855         }
00856     }
00857 }
00858 
00859 
00860 static inline int get_bitsz(GetBitContext *s, int n)
00861 {
00862     return n ? get_bits(s, n) : 0;
00863 }
00864 
00865 
00866 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
00867                           int *end_pos2)
00868 {
00869     if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
00870         s->gb           = s->in_gb;
00871         s->in_gb.buffer = NULL;
00872         assert((get_bits_count(&s->gb) & 7) == 0);
00873         skip_bits_long(&s->gb, *pos - *end_pos);
00874         *end_pos2 =
00875         *end_pos  = *end_pos2 + get_bits_count(&s->gb) - *pos;
00876         *pos      = get_bits_count(&s->gb);
00877     }
00878 }
00879 
00880 
00881 
00882 
00883 
00884 
00885 
00886 #if CONFIG_FLOAT
00887 #define READ_FLIP_SIGN(dst,src)                     \
00888     v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31);  \
00889     AV_WN32A(dst, v);
00890 #else
00891 #define READ_FLIP_SIGN(dst,src)     \
00892     v      = -get_bits1(&s->gb);    \
00893     *(dst) = (*(src) ^ v) - v;
00894 #endif
00895 
00896 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
00897                           int16_t *exponents, int end_pos2)
00898 {
00899     int s_index;
00900     int i;
00901     int last_pos, bits_left;
00902     VLC *vlc;
00903     int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
00904 
00905     
00906     s_index = 0;
00907     for (i = 0; i < 3; i++) {
00908         int j, k, l, linbits;
00909         j = g->region_size[i];
00910         if (j == 0)
00911             continue;
00912         
00913         k       = g->table_select[i];
00914         l       = mpa_huff_data[k][0];
00915         linbits = mpa_huff_data[k][1];
00916         vlc     = &huff_vlc[l];
00917 
00918         if (!l) {
00919             memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
00920             s_index += 2 * j;
00921             continue;
00922         }
00923 
00924         
00925         for (; j > 0; j--) {
00926             int exponent, x, y;
00927             int v;
00928             int pos = get_bits_count(&s->gb);
00929 
00930             if (pos >= end_pos){
00931 
00932                 switch_buffer(s, &pos, &end_pos, &end_pos2);
00933 
00934                 if (pos >= end_pos)
00935                     break;
00936             }
00937             y = get_vlc2(&s->gb, vlc->table, 7, 3);
00938 
00939             if (!y) {
00940                 g->sb_hybrid[s_index  ] =
00941                 g->sb_hybrid[s_index+1] = 0;
00942                 s_index += 2;
00943                 continue;
00944             }
00945 
00946             exponent= exponents[s_index];
00947 
00948             av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
00949                     i, g->region_size[i] - j, x, y, exponent);
00950             if (y & 16) {
00951                 x = y >> 5;
00952                 y = y & 0x0f;
00953                 if (x < 15) {
00954                     READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
00955                 } else {
00956                     x += get_bitsz(&s->gb, linbits);
00957                     v  = l3_unscale(x, exponent);
00958                     if (get_bits1(&s->gb))
00959                         v = -v;
00960                     g->sb_hybrid[s_index] = v;
00961                 }
00962                 if (y < 15) {
00963                     READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
00964                 } else {
00965                     y += get_bitsz(&s->gb, linbits);
00966                     v  = l3_unscale(y, exponent);
00967                     if (get_bits1(&s->gb))
00968                         v = -v;
00969                     g->sb_hybrid[s_index+1] = v;
00970                 }
00971             } else {
00972                 x = y >> 5;
00973                 y = y & 0x0f;
00974                 x += y;
00975                 if (x < 15) {
00976                     READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
00977                 } else {
00978                     x += get_bitsz(&s->gb, linbits);
00979                     v  = l3_unscale(x, exponent);
00980                     if (get_bits1(&s->gb))
00981                         v = -v;
00982                     g->sb_hybrid[s_index+!!y] = v;
00983                 }
00984                 g->sb_hybrid[s_index + !y] = 0;
00985             }
00986             s_index += 2;
00987         }
00988     }
00989 
00990     
00991     vlc = &huff_quad_vlc[g->count1table_select];
00992     last_pos = 0;
00993     while (s_index <= 572) {
00994         int pos, code;
00995         pos = get_bits_count(&s->gb);
00996         if (pos >= end_pos) {
00997             if (pos > end_pos2 && last_pos) {
00998                 
00999 
01000                 s_index -= 4;
01001                 skip_bits_long(&s->gb, last_pos - pos);
01002                 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
01003                 if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
01004                     s_index=0;
01005                 break;
01006             }
01007 
01008             switch_buffer(s, &pos, &end_pos, &end_pos2);
01009 
01010             if (pos >= end_pos)
01011                 break;
01012         }
01013         last_pos = pos;
01014 
01015         code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
01016         av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
01017         g->sb_hybrid[s_index+0] =
01018         g->sb_hybrid[s_index+1] =
01019         g->sb_hybrid[s_index+2] =
01020         g->sb_hybrid[s_index+3] = 0;
01021         while (code) {
01022             static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
01023             int v;
01024             int pos = s_index + idxtab[code];
01025             code   ^= 8 >> idxtab[code];
01026             READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
01027         }
01028         s_index += 4;
01029     }
01030     
01031     bits_left = end_pos2 - get_bits_count(&s->gb);
01032 
01033     if (bits_left < 0 && (s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))) {
01034         av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
01035         s_index=0;
01036     } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BITSTREAM|AV_EF_AGGRESSIVE))) {
01037         av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
01038         s_index = 0;
01039     }
01040     memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
01041     skip_bits_long(&s->gb, bits_left);
01042 
01043     i = get_bits_count(&s->gb);
01044     switch_buffer(s, &i, &end_pos, &end_pos2);
01045 
01046     return 0;
01047 }
01048 
01049 
01050 
01051 
01052 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
01053 {
01054     int i, j, len;
01055     INTFLOAT *ptr, *dst, *ptr1;
01056     INTFLOAT tmp[576];
01057 
01058     if (g->block_type != 2)
01059         return;
01060 
01061     if (g->switch_point) {
01062         if (s->sample_rate_index != 8)
01063             ptr = g->sb_hybrid + 36;
01064         else
01065             ptr = g->sb_hybrid + 48;
01066     } else {
01067         ptr = g->sb_hybrid;
01068     }
01069 
01070     for (i = g->short_start; i < 13; i++) {
01071         len  = band_size_short[s->sample_rate_index][i];
01072         ptr1 = ptr;
01073         dst  = tmp;
01074         for (j = len; j > 0; j--) {
01075             *dst++ = ptr[0*len];
01076             *dst++ = ptr[1*len];
01077             *dst++ = ptr[2*len];
01078             ptr++;
01079         }
01080         ptr += 2 * len;
01081         memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
01082     }
01083 }
01084 
01085 #define ISQRT2 FIXR(0.70710678118654752440)
01086 
01087 static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
01088 {
01089     int i, j, k, l;
01090     int sf_max, sf, len, non_zero_found;
01091     INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
01092     int non_zero_found_short[3];
01093 
01094     
01095     if (s->mode_ext & MODE_EXT_I_STEREO) {
01096         if (!s->lsf) {
01097             is_tab = is_table;
01098             sf_max = 7;
01099         } else {
01100             is_tab = is_table_lsf[g1->scalefac_compress & 1];
01101             sf_max = 16;
01102         }
01103 
01104         tab0 = g0->sb_hybrid + 576;
01105         tab1 = g1->sb_hybrid + 576;
01106 
01107         non_zero_found_short[0] = 0;
01108         non_zero_found_short[1] = 0;
01109         non_zero_found_short[2] = 0;
01110         k = (13 - g1->short_start) * 3 + g1->long_end - 3;
01111         for (i = 12; i >= g1->short_start; i--) {
01112             
01113             if (i != 11)
01114                 k -= 3;
01115             len = band_size_short[s->sample_rate_index][i];
01116             for (l = 2; l >= 0; l--) {
01117                 tab0 -= len;
01118                 tab1 -= len;
01119                 if (!non_zero_found_short[l]) {
01120                     
01121                     for (j = 0; j < len; j++) {
01122                         if (tab1[j] != 0) {
01123                             non_zero_found_short[l] = 1;
01124                             goto found1;
01125                         }
01126                     }
01127                     sf = g1->scale_factors[k + l];
01128                     if (sf >= sf_max)
01129                         goto found1;
01130 
01131                     v1 = is_tab[0][sf];
01132                     v2 = is_tab[1][sf];
01133                     for (j = 0; j < len; j++) {
01134                         tmp0    = tab0[j];
01135                         tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
01136                         tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
01137                     }
01138                 } else {
01139 found1:
01140                     if (s->mode_ext & MODE_EXT_MS_STEREO) {
01141                         
01142 
01143                         for (j = 0; j < len; j++) {
01144                             tmp0    = tab0[j];
01145                             tmp1    = tab1[j];
01146                             tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
01147                             tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
01148                         }
01149                     }
01150                 }
01151             }
01152         }
01153 
01154         non_zero_found = non_zero_found_short[0] |
01155                          non_zero_found_short[1] |
01156                          non_zero_found_short[2];
01157 
01158         for (i = g1->long_end - 1;i >= 0;i--) {
01159             len   = band_size_long[s->sample_rate_index][i];
01160             tab0 -= len;
01161             tab1 -= len;
01162             
01163             if (!non_zero_found) {
01164                 for (j = 0; j < len; j++) {
01165                     if (tab1[j] != 0) {
01166                         non_zero_found = 1;
01167                         goto found2;
01168                     }
01169                 }
01170                 
01171                 k  = (i == 21) ? 20 : i;
01172                 sf = g1->scale_factors[k];
01173                 if (sf >= sf_max)
01174                     goto found2;
01175                 v1 = is_tab[0][sf];
01176                 v2 = is_tab[1][sf];
01177                 for (j = 0; j < len; j++) {
01178                     tmp0    = tab0[j];
01179                     tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
01180                     tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
01181                 }
01182             } else {
01183 found2:
01184                 if (s->mode_ext & MODE_EXT_MS_STEREO) {
01185                     
01186 
01187                     for (j = 0; j < len; j++) {
01188                         tmp0    = tab0[j];
01189                         tmp1    = tab1[j];
01190                         tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
01191                         tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
01192                     }
01193                 }
01194             }
01195         }
01196     } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
01197         
01198         
01199 
01200         tab0 = g0->sb_hybrid;
01201         tab1 = g1->sb_hybrid;
01202         for (i = 0; i < 576; i++) {
01203             tmp0    = tab0[i];
01204             tmp1    = tab1[i];
01205             tab0[i] = tmp0 + tmp1;
01206             tab1[i] = tmp0 - tmp1;
01207         }
01208     }
01209 }
01210 
01211 #if CONFIG_FLOAT
01212 #define AA(j) do {                                                      \
01213         float tmp0 = ptr[-1-j];                                         \
01214         float tmp1 = ptr[   j];                                         \
01215         ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1];    \
01216         ptr[   j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0];    \
01217     } while (0)
01218 #else
01219 #define AA(j) do {                                              \
01220         int tmp0 = ptr[-1-j];                                   \
01221         int tmp1 = ptr[   j];                                   \
01222         int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]);          \
01223         ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2]));   \
01224         ptr[   j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3]));   \
01225     } while (0)
01226 #endif
01227 
01228 static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
01229 {
01230     INTFLOAT *ptr;
01231     int n, i;
01232 
01233     
01234     if (g->block_type == 2) {
01235         if (!g->switch_point)
01236             return;
01237         
01238         n = 1;
01239     } else {
01240         n = SBLIMIT - 1;
01241     }
01242 
01243     ptr = g->sb_hybrid + 18;
01244     for (i = n; i > 0; i--) {
01245         AA(0);
01246         AA(1);
01247         AA(2);
01248         AA(3);
01249         AA(4);
01250         AA(5);
01251         AA(6);
01252         AA(7);
01253 
01254         ptr += 18;
01255     }
01256 }
01257 
01258 static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
01259                           INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
01260 {
01261     INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
01262     INTFLOAT out2[12];
01263     int i, j, mdct_long_end, sblimit;
01264 
01265     
01266     ptr  = g->sb_hybrid + 576;
01267     ptr1 = g->sb_hybrid + 2 * 18;
01268     while (ptr >= ptr1) {
01269         int32_t *p;
01270         ptr -= 6;
01271         p    = (int32_t*)ptr;
01272         if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
01273             break;
01274     }
01275     sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
01276 
01277     if (g->block_type == 2) {
01278         
01279         if (g->switch_point)
01280             mdct_long_end = 2;
01281         else
01282             mdct_long_end = 0;
01283     } else {
01284         mdct_long_end = sblimit;
01285     }
01286 
01287     buf = mdct_buf;
01288     ptr = g->sb_hybrid;
01289     for (j = 0; j < mdct_long_end; j++) {
01290         int win_idx = (g->switch_point && j < 2) ? 0 : g->block_type;
01291         
01292         out_ptr = sb_samples + j;
01293         
01294         win = mdct_win[win_idx + (4 & -(j & 1))];
01295         s->mpadsp.RENAME(imdct36)(out_ptr, buf, ptr, win);
01296         out_ptr += 18 * SBLIMIT;
01297         ptr     += 18;
01298         buf     += 18;
01299     }
01300     for (j = mdct_long_end; j < sblimit; j++) {
01301         
01302         win     = mdct_win[2 + (4  & -(j & 1))];
01303         out_ptr = sb_samples + j;
01304 
01305         for (i = 0; i < 6; i++) {
01306             *out_ptr = buf[i];
01307             out_ptr += SBLIMIT;
01308         }
01309         imdct12(out2, ptr + 0);
01310         for (i = 0; i < 6; i++) {
01311             *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[i + 6*1];
01312             buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1);
01313             out_ptr += SBLIMIT;
01314         }
01315         imdct12(out2, ptr + 1);
01316         for (i = 0; i < 6; i++) {
01317             *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[i + 6*2];
01318             buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1);
01319             out_ptr += SBLIMIT;
01320         }
01321         imdct12(out2, ptr + 2);
01322         for (i = 0; i < 6; i++) {
01323             buf[i + 6*0] = MULH3(out2[i    ], win[i    ], 1) + buf[i + 6*0];
01324             buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1);
01325             buf[i + 6*2] = 0;
01326         }
01327         ptr += 18;
01328         buf += 18;
01329     }
01330     
01331     for (j = sblimit; j < SBLIMIT; j++) {
01332         
01333         out_ptr = sb_samples + j;
01334         for (i = 0; i < 18; i++) {
01335             *out_ptr = buf[i];
01336             buf[i]   = 0;
01337             out_ptr += SBLIMIT;
01338         }
01339         buf += 18;
01340     }
01341 }
01342 
01343 
01344 static int mp_decode_layer3(MPADecodeContext *s)
01345 {
01346     int nb_granules, main_data_begin;
01347     int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
01348     GranuleDef *g;
01349     int16_t exponents[576]; 
01350 
01351     
01352     if (s->lsf) {
01353         main_data_begin = get_bits(&s->gb, 8);
01354         skip_bits(&s->gb, s->nb_channels);
01355         nb_granules = 1;
01356     } else {
01357         main_data_begin = get_bits(&s->gb, 9);
01358         if (s->nb_channels == 2)
01359             skip_bits(&s->gb, 3);
01360         else
01361             skip_bits(&s->gb, 5);
01362         nb_granules = 2;
01363         for (ch = 0; ch < s->nb_channels; ch++) {
01364             s->granules[ch][0].scfsi = 0;
01365             s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
01366         }
01367     }
01368 
01369     for (gr = 0; gr < nb_granules; gr++) {
01370         for (ch = 0; ch < s->nb_channels; ch++) {
01371             av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
01372             g = &s->granules[ch][gr];
01373             g->part2_3_length = get_bits(&s->gb, 12);
01374             g->big_values     = get_bits(&s->gb,  9);
01375             if (g->big_values > 288) {
01376                 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
01377                 return AVERROR_INVALIDDATA;
01378             }
01379 
01380             g->global_gain = get_bits(&s->gb, 8);
01381             
01382 
01383             if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
01384                 MODE_EXT_MS_STEREO)
01385                 g->global_gain -= 2;
01386             if (s->lsf)
01387                 g->scalefac_compress = get_bits(&s->gb, 9);
01388             else
01389                 g->scalefac_compress = get_bits(&s->gb, 4);
01390             blocksplit_flag = get_bits1(&s->gb);
01391             if (blocksplit_flag) {
01392                 g->block_type = get_bits(&s->gb, 2);
01393                 if (g->block_type == 0) {
01394                     av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
01395                     return AVERROR_INVALIDDATA;
01396                 }
01397                 g->switch_point = get_bits1(&s->gb);
01398                 for (i = 0; i < 2; i++)
01399                     g->table_select[i] = get_bits(&s->gb, 5);
01400                 for (i = 0; i < 3; i++)
01401                     g->subblock_gain[i] = get_bits(&s->gb, 3);
01402                 ff_init_short_region(s, g);
01403             } else {
01404                 int region_address1, region_address2;
01405                 g->block_type = 0;
01406                 g->switch_point = 0;
01407                 for (i = 0; i < 3; i++)
01408                     g->table_select[i] = get_bits(&s->gb, 5);
01409                 
01410                 region_address1 = get_bits(&s->gb, 4);
01411                 region_address2 = get_bits(&s->gb, 3);
01412                 av_dlog(s->avctx, "region1=%d region2=%d\n",
01413                         region_address1, region_address2);
01414                 ff_init_long_region(s, g, region_address1, region_address2);
01415             }
01416             ff_region_offset2size(g);
01417             ff_compute_band_indexes(s, g);
01418 
01419             g->preflag = 0;
01420             if (!s->lsf)
01421                 g->preflag = get_bits1(&s->gb);
01422             g->scalefac_scale     = get_bits1(&s->gb);
01423             g->count1table_select = get_bits1(&s->gb);
01424             av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
01425                     g->block_type, g->switch_point);
01426         }
01427     }
01428 
01429     if (!s->adu_mode) {
01430         const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
01431         assert((get_bits_count(&s->gb) & 7) == 0);
01432         
01433         av_dlog(s->avctx, "seekback: %d\n", main_data_begin);
01434     
01435 
01436         memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
01437         s->in_gb = s->gb;
01438         init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
01439         skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
01440     }
01441 
01442     for (gr = 0; gr < nb_granules; gr++) {
01443         for (ch = 0; ch < s->nb_channels; ch++) {
01444             g = &s->granules[ch][gr];
01445             if (get_bits_count(&s->gb) < 0) {
01446                 av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
01447                        main_data_begin, s->last_buf_size, gr);
01448                 skip_bits_long(&s->gb, g->part2_3_length);
01449                 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
01450                 if (get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer) {
01451                     skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
01452                     s->gb           = s->in_gb;
01453                     s->in_gb.buffer = NULL;
01454                 }
01455                 continue;
01456             }
01457 
01458             bits_pos = get_bits_count(&s->gb);
01459 
01460             if (!s->lsf) {
01461                 uint8_t *sc;
01462                 int slen, slen1, slen2;
01463 
01464                 
01465                 slen1 = slen_table[0][g->scalefac_compress];
01466                 slen2 = slen_table[1][g->scalefac_compress];
01467                 av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
01468                 if (g->block_type == 2) {
01469                     n = g->switch_point ? 17 : 18;
01470                     j = 0;
01471                     if (slen1) {
01472                         for (i = 0; i < n; i++)
01473                             g->scale_factors[j++] = get_bits(&s->gb, slen1);
01474                     } else {
01475                         for (i = 0; i < n; i++)
01476                             g->scale_factors[j++] = 0;
01477                     }
01478                     if (slen2) {
01479                         for (i = 0; i < 18; i++)
01480                             g->scale_factors[j++] = get_bits(&s->gb, slen2);
01481                         for (i = 0; i < 3; i++)
01482                             g->scale_factors[j++] = 0;
01483                     } else {
01484                         for (i = 0; i < 21; i++)
01485                             g->scale_factors[j++] = 0;
01486                     }
01487                 } else {
01488                     sc = s->granules[ch][0].scale_factors;
01489                     j = 0;
01490                     for (k = 0; k < 4; k++) {
01491                         n = k == 0 ? 6 : 5;
01492                         if ((g->scfsi & (0x8 >> k)) == 0) {
01493                             slen = (k < 2) ? slen1 : slen2;
01494                             if (slen) {
01495                                 for (i = 0; i < n; i++)
01496                                     g->scale_factors[j++] = get_bits(&s->gb, slen);
01497                             } else {
01498                                 for (i = 0; i < n; i++)
01499                                     g->scale_factors[j++] = 0;
01500                             }
01501                         } else {
01502                             
01503                             for (i = 0; i < n; i++) {
01504                                 g->scale_factors[j] = sc[j];
01505                                 j++;
01506                             }
01507                         }
01508                     }
01509                     g->scale_factors[j++] = 0;
01510                 }
01511             } else {
01512                 int tindex, tindex2, slen[4], sl, sf;
01513 
01514                 
01515                 if (g->block_type == 2)
01516                     tindex = g->switch_point ? 2 : 1;
01517                 else
01518                     tindex = 0;
01519 
01520                 sf = g->scalefac_compress;
01521                 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
01522                     
01523                     sf >>= 1;
01524                     if (sf < 180) {
01525                         lsf_sf_expand(slen, sf, 6, 6, 0);
01526                         tindex2 = 3;
01527                     } else if (sf < 244) {
01528                         lsf_sf_expand(slen, sf - 180, 4, 4, 0);
01529                         tindex2 = 4;
01530                     } else {
01531                         lsf_sf_expand(slen, sf - 244, 3, 0, 0);
01532                         tindex2 = 5;
01533                     }
01534                 } else {
01535                     
01536                     if (sf < 400) {
01537                         lsf_sf_expand(slen, sf, 5, 4, 4);
01538                         tindex2 = 0;
01539                     } else if (sf < 500) {
01540                         lsf_sf_expand(slen, sf - 400, 5, 4, 0);
01541                         tindex2 = 1;
01542                     } else {
01543                         lsf_sf_expand(slen, sf - 500, 3, 0, 0);
01544                         tindex2 = 2;
01545                         g->preflag = 1;
01546                     }
01547                 }
01548 
01549                 j = 0;
01550                 for (k = 0; k < 4; k++) {
01551                     n  = lsf_nsf_table[tindex2][tindex][k];
01552                     sl = slen[k];
01553                     if (sl) {
01554                         for (i = 0; i < n; i++)
01555                             g->scale_factors[j++] = get_bits(&s->gb, sl);
01556                     } else {
01557                         for (i = 0; i < n; i++)
01558                             g->scale_factors[j++] = 0;
01559                     }
01560                 }
01561                 
01562                 for (; j < 40; j++)
01563                     g->scale_factors[j] = 0;
01564             }
01565 
01566             exponents_from_scale_factors(s, g, exponents);
01567 
01568             
01569             huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
01570         } 
01571 
01572         if (s->nb_channels == 2)
01573             compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
01574 
01575         for (ch = 0; ch < s->nb_channels; ch++) {
01576             g = &s->granules[ch][gr];
01577 
01578             reorder_block(s, g);
01579             compute_antialias(s, g);
01580             compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
01581         }
01582     } 
01583     if (get_bits_count(&s->gb) < 0)
01584         skip_bits_long(&s->gb, -get_bits_count(&s->gb));
01585     return nb_granules * 18;
01586 }
01587 
01588 static int mp_decode_frame(MPADecodeContext *s, OUT_INT *samples,
01589                            const uint8_t *buf, int buf_size)
01590 {
01591     int i, nb_frames, ch, ret;
01592     OUT_INT *samples_ptr;
01593 
01594     init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
01595 
01596     
01597     if (s->error_protection)
01598         skip_bits(&s->gb, 16);
01599 
01600     switch(s->layer) {
01601     case 1:
01602         s->avctx->frame_size = 384;
01603         nb_frames = mp_decode_layer1(s);
01604         break;
01605     case 2:
01606         s->avctx->frame_size = 1152;
01607         nb_frames = mp_decode_layer2(s);
01608         break;
01609     case 3:
01610         s->avctx->frame_size = s->lsf ? 576 : 1152;
01611     default:
01612         nb_frames = mp_decode_layer3(s);
01613 
01614         s->last_buf_size=0;
01615         if (s->in_gb.buffer) {
01616             align_get_bits(&s->gb);
01617             i = get_bits_left(&s->gb)>>3;
01618             if (i >= 0 && i <= BACKSTEP_SIZE) {
01619                 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
01620                 s->last_buf_size=i;
01621             } else
01622                 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
01623             s->gb           = s->in_gb;
01624             s->in_gb.buffer = NULL;
01625         }
01626 
01627         align_get_bits(&s->gb);
01628         assert((get_bits_count(&s->gb) & 7) == 0);
01629         i = get_bits_left(&s->gb) >> 3;
01630 
01631         if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
01632             if (i < 0)
01633                 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
01634             i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
01635         }
01636         assert(i <= buf_size - HEADER_SIZE && i >= 0);
01637         memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
01638         s->last_buf_size += i;
01639     }
01640 
01641     
01642     if (!samples) {
01643         s->frame.nb_samples = s->avctx->frame_size;
01644         if ((ret = s->avctx->get_buffer(s->avctx, &s->frame)) < 0) {
01645             av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01646             return ret;
01647         }
01648         samples = (OUT_INT *)s->frame.data[0];
01649     }
01650 
01651     
01652     for (ch = 0; ch < s->nb_channels; ch++) {
01653         samples_ptr = samples + ch;
01654         for (i = 0; i < nb_frames; i++) {
01655             RENAME(ff_mpa_synth_filter)(
01656                          &s->mpadsp,
01657                          s->synth_buf[ch], &(s->synth_buf_offset[ch]),
01658                          RENAME(ff_mpa_synth_window), &s->dither_state,
01659                          samples_ptr, s->nb_channels,
01660                          s->sb_samples[ch][i]);
01661             samples_ptr += 32 * s->nb_channels;
01662         }
01663     }
01664 
01665     return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
01666 }
01667 
01668 static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
01669                         AVPacket *avpkt)
01670 {
01671     const uint8_t *buf  = avpkt->data;
01672     int buf_size        = avpkt->size;
01673     MPADecodeContext *s = avctx->priv_data;
01674     uint32_t header;
01675     int out_size;
01676 
01677     if (buf_size < HEADER_SIZE)
01678         return AVERROR_INVALIDDATA;
01679 
01680     header = AV_RB32(buf);
01681     if (ff_mpa_check_header(header) < 0) {
01682         av_log(avctx, AV_LOG_ERROR, "Header missing\n");
01683         return AVERROR_INVALIDDATA;
01684     }
01685 
01686     if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
01687         
01688         s->frame_size = -1;
01689         return AVERROR_INVALIDDATA;
01690     }
01691     
01692     avctx->channels       = s->nb_channels;
01693     avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
01694     if (!avctx->bit_rate)
01695         avctx->bit_rate = s->bit_rate;
01696     avctx->sub_id = s->layer;
01697 
01698     if (s->frame_size <= 0 || s->frame_size > buf_size) {
01699         av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
01700         return AVERROR_INVALIDDATA;
01701     }else if(s->frame_size < buf_size){
01702         av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
01703         buf_size= s->frame_size;
01704     }
01705 
01706     out_size = mp_decode_frame(s, NULL, buf, buf_size);
01707     if (out_size >= 0) {
01708         *got_frame_ptr   = 1;
01709         *(AVFrame *)data = s->frame;
01710         avctx->sample_rate = s->sample_rate;
01711         
01712     } else {
01713         av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
01714         
01715 
01716 
01717 
01718         *got_frame_ptr = 0;
01719         if (buf_size == avpkt->size)
01720             return out_size;
01721     }
01722     s->frame_size = 0;
01723     return buf_size;
01724 }
01725 
01726 static void flush(AVCodecContext *avctx)
01727 {
01728     MPADecodeContext *s = avctx->priv_data;
01729     memset(s->synth_buf, 0, sizeof(s->synth_buf));
01730     s->last_buf_size = 0;
01731 }
01732 
01733 #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
01734 static int decode_frame_adu(AVCodecContext *avctx, void *data,
01735                             int *got_frame_ptr, AVPacket *avpkt)
01736 {
01737     const uint8_t *buf  = avpkt->data;
01738     int buf_size        = avpkt->size;
01739     MPADecodeContext *s = avctx->priv_data;
01740     uint32_t header;
01741     int len, out_size;
01742 
01743     len = buf_size;
01744 
01745     
01746     if (buf_size < HEADER_SIZE) {
01747         av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
01748         return AVERROR_INVALIDDATA;
01749     }
01750 
01751 
01752     if (len > MPA_MAX_CODED_FRAME_SIZE)
01753         len = MPA_MAX_CODED_FRAME_SIZE;
01754 
01755     
01756     header = AV_RB32(buf) | 0xffe00000;
01757 
01758     if (ff_mpa_check_header(header) < 0) { 
01759         av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
01760         return AVERROR_INVALIDDATA;
01761     }
01762 
01763     avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
01764     
01765     avctx->sample_rate = s->sample_rate;
01766     avctx->channels    = s->nb_channels;
01767     if (!avctx->bit_rate)
01768         avctx->bit_rate = s->bit_rate;
01769     avctx->sub_id = s->layer;
01770 
01771     s->frame_size = len;
01772 
01773 #if FF_API_PARSE_FRAME
01774     if (avctx->parse_only)
01775         out_size = buf_size;
01776     else
01777 #endif
01778     out_size = mp_decode_frame(s, NULL, buf, buf_size);
01779 
01780     *got_frame_ptr   = 1;
01781     *(AVFrame *)data = s->frame;
01782 
01783     return buf_size;
01784 }
01785 #endif 
01786 
01787 #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
01788 
01792 typedef struct MP3On4DecodeContext {
01793     AVFrame *frame;
01794     int frames;                     
01795     int syncword;                   
01796     const uint8_t *coff;            
01797     MPADecodeContext *mp3decctx[5]; 
01798     OUT_INT *decoded_buf;           
01799 } MP3On4DecodeContext;
01800 
01801 #include "mpeg4audio.h"
01802 
01803 
01804 
01805 
01806 static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
01807 
01808 
01809 static const uint8_t chan_offset[8][5] = {
01810     { 0             },
01811     { 0             },  
01812     { 0             },  
01813     { 2, 0          },  
01814     { 2, 0, 3       },  
01815     { 2, 0, 3       },  
01816     { 2, 0, 4, 3    },  
01817     { 2, 0, 6, 4, 3 },  
01818 };
01819 
01820 
01821 static const int16_t chan_layout[8] = {
01822     0,
01823     AV_CH_LAYOUT_MONO,
01824     AV_CH_LAYOUT_STEREO,
01825     AV_CH_LAYOUT_SURROUND,
01826     AV_CH_LAYOUT_4POINT0,
01827     AV_CH_LAYOUT_5POINT0,
01828     AV_CH_LAYOUT_5POINT1,
01829     AV_CH_LAYOUT_7POINT1
01830 };
01831 
01832 static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
01833 {
01834     MP3On4DecodeContext *s = avctx->priv_data;
01835     int i;
01836 
01837     for (i = 0; i < s->frames; i++)
01838         av_free(s->mp3decctx[i]);
01839 
01840     av_freep(&s->decoded_buf);
01841 
01842     return 0;
01843 }
01844 
01845 
01846 static int decode_init_mp3on4(AVCodecContext * avctx)
01847 {
01848     MP3On4DecodeContext *s = avctx->priv_data;
01849     MPEG4AudioConfig cfg;
01850     int i;
01851 
01852     if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
01853         av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
01854         return AVERROR_INVALIDDATA;
01855     }
01856 
01857     avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
01858                                  avctx->extradata_size * 8, 1);
01859     if (!cfg.chan_config || cfg.chan_config > 7) {
01860         av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
01861         return AVERROR_INVALIDDATA;
01862     }
01863     s->frames             = mp3Frames[cfg.chan_config];
01864     s->coff               = chan_offset[cfg.chan_config];
01865     avctx->channels       = ff_mpeg4audio_channels[cfg.chan_config];
01866     avctx->channel_layout = chan_layout[cfg.chan_config];
01867 
01868     if (cfg.sample_rate < 16000)
01869         s->syncword = 0xffe00000;
01870     else
01871         s->syncword = 0xfff00000;
01872 
01873     
01874 
01875 
01876 
01877 
01878     
01879     s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
01880     if (!s->mp3decctx[0])
01881         goto alloc_fail;
01882     
01883     avctx->priv_data = s->mp3decctx[0];
01884     decode_init(avctx);
01885     s->frame = avctx->coded_frame;
01886     
01887     avctx->priv_data = s;
01888     s->mp3decctx[0]->adu_mode = 1; 
01889 
01890     
01891 
01892 
01893     for (i = 1; i < s->frames; i++) {
01894         s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
01895         if (!s->mp3decctx[i])
01896             goto alloc_fail;
01897         s->mp3decctx[i]->adu_mode = 1;
01898         s->mp3decctx[i]->avctx = avctx;
01899         s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
01900     }
01901 
01902     
01903     if (s->frames > 1) {
01904         s->decoded_buf = av_malloc(MPA_FRAME_SIZE * MPA_MAX_CHANNELS *
01905                                    sizeof(*s->decoded_buf));
01906         if (!s->decoded_buf)
01907             goto alloc_fail;
01908     }
01909 
01910     return 0;
01911 alloc_fail:
01912     decode_close_mp3on4(avctx);
01913     return AVERROR(ENOMEM);
01914 }
01915 
01916 
01917 static void flush_mp3on4(AVCodecContext *avctx)
01918 {
01919     int i;
01920     MP3On4DecodeContext *s = avctx->priv_data;
01921 
01922     for (i = 0; i < s->frames; i++) {
01923         MPADecodeContext *m = s->mp3decctx[i];
01924         memset(m->synth_buf, 0, sizeof(m->synth_buf));
01925         m->last_buf_size = 0;
01926     }
01927 }
01928 
01929 
01930 static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
01931                                int *got_frame_ptr, AVPacket *avpkt)
01932 {
01933     const uint8_t *buf     = avpkt->data;
01934     int buf_size           = avpkt->size;
01935     MP3On4DecodeContext *s = avctx->priv_data;
01936     MPADecodeContext *m;
01937     int fsize, len = buf_size, out_size = 0;
01938     uint32_t header;
01939     OUT_INT *out_samples;
01940     OUT_INT *outptr, *bp;
01941     int fr, j, n, ch, ret;
01942 
01943     
01944     s->frame->nb_samples = MPA_FRAME_SIZE;
01945     if ((ret = avctx->get_buffer(avctx, s->frame)) < 0) {
01946         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01947         return ret;
01948     }
01949     out_samples = (OUT_INT *)s->frame->data[0];
01950 
01951     
01952     if (buf_size < HEADER_SIZE)
01953         return AVERROR_INVALIDDATA;
01954 
01955     
01956     outptr = s->frames == 1 ? out_samples : s->decoded_buf;
01957 
01958     avctx->bit_rate = 0;
01959 
01960     ch = 0;
01961     for (fr = 0; fr < s->frames; fr++) {
01962         fsize = AV_RB16(buf) >> 4;
01963         fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
01964         m     = s->mp3decctx[fr];
01965         assert(m != NULL);
01966 
01967         header = (AV_RB32(buf) & 0x000fffff) | s->syncword; 
01968 
01969         if (ff_mpa_check_header(header) < 0) 
01970             break;
01971 
01972         avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
01973 
01974         if (ch + m->nb_channels > avctx->channels) {
01975             av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
01976                                         "channel count\n");
01977             return AVERROR_INVALIDDATA;
01978         }
01979         ch += m->nb_channels;
01980 
01981         out_size += mp_decode_frame(m, outptr, buf, fsize);
01982         buf      += fsize;
01983         len      -= fsize;
01984 
01985         if (s->frames > 1) {
01986             n = m->avctx->frame_size*m->nb_channels;
01987             
01988             bp = out_samples + s->coff[fr];
01989             if (m->nb_channels == 1) {
01990                 for (j = 0; j < n; j++) {
01991                     *bp = s->decoded_buf[j];
01992                     bp += avctx->channels;
01993                 }
01994             } else {
01995                 for (j = 0; j < n; j++) {
01996                     bp[0] = s->decoded_buf[j++];
01997                     bp[1] = s->decoded_buf[j];
01998                     bp   += avctx->channels;
01999                 }
02000             }
02001         }
02002         avctx->bit_rate += m->bit_rate;
02003     }
02004 
02005     
02006     avctx->sample_rate = s->mp3decctx[0]->sample_rate;
02007 
02008     s->frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
02009     *got_frame_ptr   = 1;
02010     *(AVFrame *)data = *s->frame;
02011 
02012     return buf_size;
02013 }
02014 #endif 
02015 
02016 #if !CONFIG_FLOAT
02017 #if CONFIG_MP1_DECODER
02018 AVCodec ff_mp1_decoder = {
02019     .name           = "mp1",
02020     .type           = AVMEDIA_TYPE_AUDIO,
02021     .id             = CODEC_ID_MP1,
02022     .priv_data_size = sizeof(MPADecodeContext),
02023     .init           = decode_init,
02024     .decode         = decode_frame,
02025 #if FF_API_PARSE_FRAME
02026     .capabilities   = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02027 #else
02028     .capabilities   = CODEC_CAP_DR1,
02029 #endif
02030     .flush          = flush,
02031     .long_name      = NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
02032 };
02033 #endif
02034 #if CONFIG_MP2_DECODER
02035 AVCodec ff_mp2_decoder = {
02036     .name           = "mp2",
02037     .type           = AVMEDIA_TYPE_AUDIO,
02038     .id             = CODEC_ID_MP2,
02039     .priv_data_size = sizeof(MPADecodeContext),
02040     .init           = decode_init,
02041     .decode         = decode_frame,
02042 #if FF_API_PARSE_FRAME
02043     .capabilities   = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02044 #else
02045     .capabilities   = CODEC_CAP_DR1,
02046 #endif
02047     .flush          = flush,
02048     .long_name      = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
02049 };
02050 #endif
02051 #if CONFIG_MP3_DECODER
02052 AVCodec ff_mp3_decoder = {
02053     .name           = "mp3",
02054     .type           = AVMEDIA_TYPE_AUDIO,
02055     .id             = CODEC_ID_MP3,
02056     .priv_data_size = sizeof(MPADecodeContext),
02057     .init           = decode_init,
02058     .decode         = decode_frame,
02059 #if FF_API_PARSE_FRAME
02060     .capabilities   = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02061 #else
02062     .capabilities   = CODEC_CAP_DR1,
02063 #endif
02064     .flush          = flush,
02065     .long_name      = NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
02066 };
02067 #endif
02068 #if CONFIG_MP3ADU_DECODER
02069 AVCodec ff_mp3adu_decoder = {
02070     .name           = "mp3adu",
02071     .type           = AVMEDIA_TYPE_AUDIO,
02072     .id             = CODEC_ID_MP3ADU,
02073     .priv_data_size = sizeof(MPADecodeContext),
02074     .init           = decode_init,
02075     .decode         = decode_frame_adu,
02076 #if FF_API_PARSE_FRAME
02077     .capabilities   = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02078 #else
02079     .capabilities   = CODEC_CAP_DR1,
02080 #endif
02081     .flush          = flush,
02082     .long_name      = NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
02083 };
02084 #endif
02085 #if CONFIG_MP3ON4_DECODER
02086 AVCodec ff_mp3on4_decoder = {
02087     .name           = "mp3on4",
02088     .type           = AVMEDIA_TYPE_AUDIO,
02089     .id             = CODEC_ID_MP3ON4,
02090     .priv_data_size = sizeof(MP3On4DecodeContext),
02091     .init           = decode_init_mp3on4,
02092     .close          = decode_close_mp3on4,
02093     .decode         = decode_frame_mp3on4,
02094     .capabilities   = CODEC_CAP_DR1,
02095     .flush          = flush_mp3on4,
02096     .long_name      = NULL_IF_CONFIG_SMALL("MP3onMP4"),
02097 };
02098 #endif
02099 #endif