00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00027 #define UNCHECKED_BITSTREAM_READER 1
00028
00029 #include "libavutil/audioconvert.h"
00030 #include "avcodec.h"
00031 #include "get_bits.h"
00032 #include "mathops.h"
00033 #include "mpegaudiodsp.h"
00034
00035
00036
00037
00038
00039
00040 #include "mpegaudio.h"
00041 #include "mpegaudiodecheader.h"
00042
00043 #define BACKSTEP_SIZE 512
00044 #define EXTRABYTES 24
00045
00046
00047 typedef struct GranuleDef {
00048 uint8_t scfsi;
00049 int part2_3_length;
00050 int big_values;
00051 int global_gain;
00052 int scalefac_compress;
00053 uint8_t block_type;
00054 uint8_t switch_point;
00055 int table_select[3];
00056 int subblock_gain[3];
00057 uint8_t scalefac_scale;
00058 uint8_t count1table_select;
00059 int region_size[3];
00060 int preflag;
00061 int short_start, long_end;
00062 uint8_t scale_factors[40];
00063 DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18];
00064 } GranuleDef;
00065
00066 typedef struct MPADecodeContext {
00067 MPA_DECODE_HEADER
00068 uint8_t last_buf[2 * BACKSTEP_SIZE + EXTRABYTES];
00069 int last_buf_size;
00070
00071 uint32_t free_format_next_header;
00072 GetBitContext gb;
00073 GetBitContext in_gb;
00074 DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
00075 int synth_buf_offset[MPA_MAX_CHANNELS];
00076 DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
00077 INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18];
00078 GranuleDef granules[2][2];
00079 int adu_mode;
00080 int dither_state;
00081 int err_recognition;
00082 AVCodecContext* avctx;
00083 MPADSPContext mpadsp;
00084 AVFrame frame;
00085 } MPADecodeContext;
00086
00087 #if CONFIG_FLOAT
00088 # define SHR(a,b) ((a)*(1.0f/(1<<(b))))
00089 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
00090 # define FIXR(x) ((float)(x))
00091 # define FIXHR(x) ((float)(x))
00092 # define MULH3(x, y, s) ((s)*(y)*(x))
00093 # define MULLx(x, y, s) ((y)*(x))
00094 # define RENAME(a) a ## _float
00095 # define OUT_FMT AV_SAMPLE_FMT_FLT
00096 #else
00097 # define SHR(a,b) ((a)>>(b))
00098
00099 # define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
00100 # define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
00101 # define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
00102 # define MULH3(x, y, s) MULH((s)*(x), y)
00103 # define MULLx(x, y, s) MULL(x,y,s)
00104 # define RENAME(a) a ## _fixed
00105 # define OUT_FMT AV_SAMPLE_FMT_S16
00106 #endif
00107
00108
00109
00110 #define HEADER_SIZE 4
00111
00112 #include "mpegaudiodata.h"
00113 #include "mpegaudiodectab.h"
00114
00115
00116 static VLC huff_vlc[16];
00117 static VLC_TYPE huff_vlc_tables[
00118 0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
00119 142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
00120 ][2];
00121 static const int huff_vlc_tables_sizes[16] = {
00122 0, 128, 128, 128, 130, 128, 154, 166,
00123 142, 204, 190, 170, 542, 460, 662, 414
00124 };
00125 static VLC huff_quad_vlc[2];
00126 static VLC_TYPE huff_quad_vlc_tables[128+16][2];
00127 static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
00128
00129 static uint16_t band_index_long[9][23];
00130 #include "mpegaudio_tablegen.h"
00131
00132 static INTFLOAT is_table[2][16];
00133 static INTFLOAT is_table_lsf[2][2][16];
00134 static INTFLOAT csa_table[8][4];
00138 DECLARE_ALIGNED(16, static INTFLOAT, mdct_win)[8][40];
00139
00140 static int16_t division_tab3[1<<6 ];
00141 static int16_t division_tab5[1<<8 ];
00142 static int16_t division_tab9[1<<11];
00143
00144 static int16_t * const division_tabs[4] = {
00145 division_tab3, division_tab5, NULL, division_tab9
00146 };
00147
00148
00149 static uint16_t scale_factor_modshift[64];
00150
00151 static int32_t scale_factor_mult[15][3];
00152
00153
00154 #define SCALE_GEN(v) \
00155 { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
00156
00157 static const int32_t scale_factor_mult2[3][3] = {
00158 SCALE_GEN(4.0 / 3.0),
00159 SCALE_GEN(4.0 / 5.0),
00160 SCALE_GEN(4.0 / 9.0),
00161 };
00162
00167 static void ff_region_offset2size(GranuleDef *g)
00168 {
00169 int i, k, j = 0;
00170 g->region_size[2] = 576 / 2;
00171 for (i = 0; i < 3; i++) {
00172 k = FFMIN(g->region_size[i], g->big_values);
00173 g->region_size[i] = k - j;
00174 j = k;
00175 }
00176 }
00177
00178 static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g)
00179 {
00180 if (g->block_type == 2)
00181 g->region_size[0] = (36 / 2);
00182 else {
00183 if (s->sample_rate_index <= 2)
00184 g->region_size[0] = (36 / 2);
00185 else if (s->sample_rate_index != 8)
00186 g->region_size[0] = (54 / 2);
00187 else
00188 g->region_size[0] = (108 / 2);
00189 }
00190 g->region_size[1] = (576 / 2);
00191 }
00192
00193 static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2)
00194 {
00195 int l;
00196 g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
00197
00198 l = FFMIN(ra1 + ra2 + 2, 22);
00199 g->region_size[1] = band_index_long[s->sample_rate_index][ l] >> 1;
00200 }
00201
00202 static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
00203 {
00204 if (g->block_type == 2) {
00205 if (g->switch_point) {
00206
00207
00208
00209 if (s->sample_rate_index <= 2)
00210 g->long_end = 8;
00211 else if (s->sample_rate_index != 8)
00212 g->long_end = 6;
00213 else
00214 g->long_end = 4;
00215
00216 g->short_start = 2 + (s->sample_rate_index != 8);
00217 } else {
00218 g->long_end = 0;
00219 g->short_start = 0;
00220 }
00221 } else {
00222 g->short_start = 13;
00223 g->long_end = 22;
00224 }
00225 }
00226
00227
00228
00229 static inline int l1_unscale(int n, int mant, int scale_factor)
00230 {
00231 int shift, mod;
00232 int64_t val;
00233
00234 shift = scale_factor_modshift[scale_factor];
00235 mod = shift & 3;
00236 shift >>= 2;
00237 val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
00238 shift += n;
00239
00240 return (int)((val + (1LL << (shift - 1))) >> shift);
00241 }
00242
00243 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
00244 {
00245 int shift, mod, val;
00246
00247 shift = scale_factor_modshift[scale_factor];
00248 mod = shift & 3;
00249 shift >>= 2;
00250
00251 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
00252
00253 if (shift > 0)
00254 val = (val + (1 << (shift - 1))) >> shift;
00255 return val;
00256 }
00257
00258
00259 static inline int l3_unscale(int value, int exponent)
00260 {
00261 unsigned int m;
00262 int e;
00263
00264 e = table_4_3_exp [4 * value + (exponent & 3)];
00265 m = table_4_3_value[4 * value + (exponent & 3)];
00266 e -= exponent >> 2;
00267 assert(e >= 1);
00268 if (e > 31)
00269 return 0;
00270 m = (m + (1 << (e - 1))) >> e;
00271
00272 return m;
00273 }
00274
00275 static av_cold void decode_init_static(void)
00276 {
00277 int i, j, k;
00278 int offset;
00279
00280
00281 for (i = 0; i < 64; i++) {
00282 int shift, mod;
00283
00284 shift = i / 3;
00285 mod = i % 3;
00286 scale_factor_modshift[i] = mod | (shift << 2);
00287 }
00288
00289
00290 for (i = 0; i < 15; i++) {
00291 int n, norm;
00292 n = i + 2;
00293 norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
00294 scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
00295 scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
00296 scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
00297 av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
00298 scale_factor_mult[i][0],
00299 scale_factor_mult[i][1],
00300 scale_factor_mult[i][2]);
00301 }
00302
00303 RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
00304
00305
00306 offset = 0;
00307 for (i = 1; i < 16; i++) {
00308 const HuffTable *h = &mpa_huff_tables[i];
00309 int xsize, x, y;
00310 uint8_t tmp_bits [512];
00311 uint16_t tmp_codes[512];
00312
00313 memset(tmp_bits , 0, sizeof(tmp_bits ));
00314 memset(tmp_codes, 0, sizeof(tmp_codes));
00315
00316 xsize = h->xsize;
00317
00318 j = 0;
00319 for (x = 0; x < xsize; x++) {
00320 for (y = 0; y < xsize; y++) {
00321 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
00322 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
00323 }
00324 }
00325
00326
00327 huff_vlc[i].table = huff_vlc_tables+offset;
00328 huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
00329 init_vlc(&huff_vlc[i], 7, 512,
00330 tmp_bits, 1, 1, tmp_codes, 2, 2,
00331 INIT_VLC_USE_NEW_STATIC);
00332 offset += huff_vlc_tables_sizes[i];
00333 }
00334 assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
00335
00336 offset = 0;
00337 for (i = 0; i < 2; i++) {
00338 huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
00339 huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
00340 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
00341 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
00342 INIT_VLC_USE_NEW_STATIC);
00343 offset += huff_quad_vlc_tables_sizes[i];
00344 }
00345 assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
00346
00347 for (i = 0; i < 9; i++) {
00348 k = 0;
00349 for (j = 0; j < 22; j++) {
00350 band_index_long[i][j] = k;
00351 k += band_size_long[i][j];
00352 }
00353 band_index_long[i][22] = k;
00354 }
00355
00356
00357
00358 mpegaudio_tableinit();
00359
00360 for (i = 0; i < 4; i++) {
00361 if (ff_mpa_quant_bits[i] < 0) {
00362 for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
00363 int val1, val2, val3, steps;
00364 int val = j;
00365 steps = ff_mpa_quant_steps[i];
00366 val1 = val % steps;
00367 val /= steps;
00368 val2 = val % steps;
00369 val3 = val / steps;
00370 division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
00371 }
00372 }
00373 }
00374
00375
00376 for (i = 0; i < 7; i++) {
00377 float f;
00378 INTFLOAT v;
00379 if (i != 6) {
00380 f = tan((double)i * M_PI / 12.0);
00381 v = FIXR(f / (1.0 + f));
00382 } else {
00383 v = FIXR(1.0);
00384 }
00385 is_table[0][ i] = v;
00386 is_table[1][6 - i] = v;
00387 }
00388
00389 for (i = 7; i < 16; i++)
00390 is_table[0][i] = is_table[1][i] = 0.0;
00391
00392 for (i = 0; i < 16; i++) {
00393 double f;
00394 int e, k;
00395
00396 for (j = 0; j < 2; j++) {
00397 e = -(j + 1) * ((i + 1) >> 1);
00398 f = pow(2.0, e / 4.0);
00399 k = i & 1;
00400 is_table_lsf[j][k ^ 1][i] = FIXR(f);
00401 is_table_lsf[j][k ][i] = FIXR(1.0);
00402 av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
00403 i, j, (float) is_table_lsf[j][0][i],
00404 (float) is_table_lsf[j][1][i]);
00405 }
00406 }
00407
00408 for (i = 0; i < 8; i++) {
00409 float ci, cs, ca;
00410 ci = ci_table[i];
00411 cs = 1.0 / sqrt(1.0 + ci * ci);
00412 ca = cs * ci;
00413 #if !CONFIG_FLOAT
00414 csa_table[i][0] = FIXHR(cs/4);
00415 csa_table[i][1] = FIXHR(ca/4);
00416 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
00417 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
00418 #else
00419 csa_table[i][0] = cs;
00420 csa_table[i][1] = ca;
00421 csa_table[i][2] = ca + cs;
00422 csa_table[i][3] = ca - cs;
00423 #endif
00424 }
00425
00426
00427 for (i = 0; i < 36; i++) {
00428 for (j = 0; j < 4; j++) {
00429 double d;
00430
00431 if (j == 2 && i % 3 != 1)
00432 continue;
00433
00434 d = sin(M_PI * (i + 0.5) / 36.0);
00435 if (j == 1) {
00436 if (i >= 30) d = 0;
00437 else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0);
00438 else if (i >= 18) d = 1;
00439 } else if (j == 3) {
00440 if (i < 6) d = 0;
00441 else if (i < 12) d = sin(M_PI * (i - 6 + 0.5) / 12.0);
00442 else if (i < 18) d = 1;
00443 }
00444
00445 d *= 0.5 / cos(M_PI * (2 * i + 19) / 72);
00446
00447 if (j == 2)
00448 mdct_win[j][i/3] = FIXHR((d / (1<<5)));
00449 else {
00450 int idx = i < 18 ? i : i + 2;
00451 mdct_win[j][idx] = FIXHR((d / (1<<5)));
00452 }
00453 }
00454 }
00455
00456
00457
00458 for (j = 0; j < 4; j++) {
00459 for (i = 0; i < 40; i += 2) {
00460 mdct_win[j + 4][i ] = mdct_win[j][i ];
00461 mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
00462 }
00463 }
00464 }
00465
00466 static av_cold int decode_init(AVCodecContext * avctx)
00467 {
00468 static int initialized_tables = 0;
00469 MPADecodeContext *s = avctx->priv_data;
00470
00471 if (!initialized_tables) {
00472 decode_init_static();
00473 initialized_tables = 1;
00474 }
00475
00476 s->avctx = avctx;
00477
00478 ff_mpadsp_init(&s->mpadsp);
00479
00480 avctx->sample_fmt= OUT_FMT;
00481 s->err_recognition = avctx->err_recognition;
00482
00483 if (avctx->codec_id == CODEC_ID_MP3ADU)
00484 s->adu_mode = 1;
00485
00486 avcodec_get_frame_defaults(&s->frame);
00487 avctx->coded_frame = &s->frame;
00488
00489 return 0;
00490 }
00491
00492 #define C3 FIXHR(0.86602540378443864676/2)
00493 #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
00494 #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
00495 #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
00496
00497
00498
00499 static void imdct12(INTFLOAT *out, INTFLOAT *in)
00500 {
00501 INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
00502
00503 in0 = in[0*3];
00504 in1 = in[1*3] + in[0*3];
00505 in2 = in[2*3] + in[1*3];
00506 in3 = in[3*3] + in[2*3];
00507 in4 = in[4*3] + in[3*3];
00508 in5 = in[5*3] + in[4*3];
00509 in5 += in3;
00510 in3 += in1;
00511
00512 in2 = MULH3(in2, C3, 2);
00513 in3 = MULH3(in3, C3, 4);
00514
00515 t1 = in0 - in4;
00516 t2 = MULH3(in1 - in5, C4, 2);
00517
00518 out[ 7] =
00519 out[10] = t1 + t2;
00520 out[ 1] =
00521 out[ 4] = t1 - t2;
00522
00523 in0 += SHR(in4, 1);
00524 in4 = in0 + in2;
00525 in5 += 2*in1;
00526 in1 = MULH3(in5 + in3, C5, 1);
00527 out[ 8] =
00528 out[ 9] = in4 + in1;
00529 out[ 2] =
00530 out[ 3] = in4 - in1;
00531
00532 in0 -= in2;
00533 in5 = MULH3(in5 - in3, C6, 2);
00534 out[ 0] =
00535 out[ 5] = in0 - in5;
00536 out[ 6] =
00537 out[11] = in0 + in5;
00538 }
00539
00540
00541 static int mp_decode_layer1(MPADecodeContext *s)
00542 {
00543 int bound, i, v, n, ch, j, mant;
00544 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
00545 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
00546
00547 if (s->mode == MPA_JSTEREO)
00548 bound = (s->mode_ext + 1) * 4;
00549 else
00550 bound = SBLIMIT;
00551
00552
00553 for (i = 0; i < bound; i++) {
00554 for (ch = 0; ch < s->nb_channels; ch++) {
00555 allocation[ch][i] = get_bits(&s->gb, 4);
00556 }
00557 }
00558 for (i = bound; i < SBLIMIT; i++)
00559 allocation[0][i] = get_bits(&s->gb, 4);
00560
00561
00562 for (i = 0; i < bound; i++) {
00563 for (ch = 0; ch < s->nb_channels; ch++) {
00564 if (allocation[ch][i])
00565 scale_factors[ch][i] = get_bits(&s->gb, 6);
00566 }
00567 }
00568 for (i = bound; i < SBLIMIT; i++) {
00569 if (allocation[0][i]) {
00570 scale_factors[0][i] = get_bits(&s->gb, 6);
00571 scale_factors[1][i] = get_bits(&s->gb, 6);
00572 }
00573 }
00574
00575
00576 for (j = 0; j < 12; j++) {
00577 for (i = 0; i < bound; i++) {
00578 for (ch = 0; ch < s->nb_channels; ch++) {
00579 n = allocation[ch][i];
00580 if (n) {
00581 mant = get_bits(&s->gb, n + 1);
00582 v = l1_unscale(n, mant, scale_factors[ch][i]);
00583 } else {
00584 v = 0;
00585 }
00586 s->sb_samples[ch][j][i] = v;
00587 }
00588 }
00589 for (i = bound; i < SBLIMIT; i++) {
00590 n = allocation[0][i];
00591 if (n) {
00592 mant = get_bits(&s->gb, n + 1);
00593 v = l1_unscale(n, mant, scale_factors[0][i]);
00594 s->sb_samples[0][j][i] = v;
00595 v = l1_unscale(n, mant, scale_factors[1][i]);
00596 s->sb_samples[1][j][i] = v;
00597 } else {
00598 s->sb_samples[0][j][i] = 0;
00599 s->sb_samples[1][j][i] = 0;
00600 }
00601 }
00602 }
00603 return 12;
00604 }
00605
00606 static int mp_decode_layer2(MPADecodeContext *s)
00607 {
00608 int sblimit;
00609 const unsigned char *alloc_table;
00610 int table, bit_alloc_bits, i, j, ch, bound, v;
00611 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
00612 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
00613 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
00614 int scale, qindex, bits, steps, k, l, m, b;
00615
00616
00617 table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
00618 s->sample_rate, s->lsf);
00619 sblimit = ff_mpa_sblimit_table[table];
00620 alloc_table = ff_mpa_alloc_tables[table];
00621
00622 if (s->mode == MPA_JSTEREO)
00623 bound = (s->mode_ext + 1) * 4;
00624 else
00625 bound = sblimit;
00626
00627 av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
00628
00629
00630 if (bound > sblimit)
00631 bound = sblimit;
00632
00633
00634 j = 0;
00635 for (i = 0; i < bound; i++) {
00636 bit_alloc_bits = alloc_table[j];
00637 for (ch = 0; ch < s->nb_channels; ch++)
00638 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
00639 j += 1 << bit_alloc_bits;
00640 }
00641 for (i = bound; i < sblimit; i++) {
00642 bit_alloc_bits = alloc_table[j];
00643 v = get_bits(&s->gb, bit_alloc_bits);
00644 bit_alloc[0][i] = v;
00645 bit_alloc[1][i] = v;
00646 j += 1 << bit_alloc_bits;
00647 }
00648
00649
00650 for (i = 0; i < sblimit; i++) {
00651 for (ch = 0; ch < s->nb_channels; ch++) {
00652 if (bit_alloc[ch][i])
00653 scale_code[ch][i] = get_bits(&s->gb, 2);
00654 }
00655 }
00656
00657
00658 for (i = 0; i < sblimit; i++) {
00659 for (ch = 0; ch < s->nb_channels; ch++) {
00660 if (bit_alloc[ch][i]) {
00661 sf = scale_factors[ch][i];
00662 switch (scale_code[ch][i]) {
00663 default:
00664 case 0:
00665 sf[0] = get_bits(&s->gb, 6);
00666 sf[1] = get_bits(&s->gb, 6);
00667 sf[2] = get_bits(&s->gb, 6);
00668 break;
00669 case 2:
00670 sf[0] = get_bits(&s->gb, 6);
00671 sf[1] = sf[0];
00672 sf[2] = sf[0];
00673 break;
00674 case 1:
00675 sf[0] = get_bits(&s->gb, 6);
00676 sf[2] = get_bits(&s->gb, 6);
00677 sf[1] = sf[0];
00678 break;
00679 case 3:
00680 sf[0] = get_bits(&s->gb, 6);
00681 sf[2] = get_bits(&s->gb, 6);
00682 sf[1] = sf[2];
00683 break;
00684 }
00685 }
00686 }
00687 }
00688
00689
00690 for (k = 0; k < 3; k++) {
00691 for (l = 0; l < 12; l += 3) {
00692 j = 0;
00693 for (i = 0; i < bound; i++) {
00694 bit_alloc_bits = alloc_table[j];
00695 for (ch = 0; ch < s->nb_channels; ch++) {
00696 b = bit_alloc[ch][i];
00697 if (b) {
00698 scale = scale_factors[ch][i][k];
00699 qindex = alloc_table[j+b];
00700 bits = ff_mpa_quant_bits[qindex];
00701 if (bits < 0) {
00702 int v2;
00703
00704 v = get_bits(&s->gb, -bits);
00705 v2 = division_tabs[qindex][v];
00706 steps = ff_mpa_quant_steps[qindex];
00707
00708 s->sb_samples[ch][k * 12 + l + 0][i] =
00709 l2_unscale_group(steps, v2 & 15, scale);
00710 s->sb_samples[ch][k * 12 + l + 1][i] =
00711 l2_unscale_group(steps, (v2 >> 4) & 15, scale);
00712 s->sb_samples[ch][k * 12 + l + 2][i] =
00713 l2_unscale_group(steps, v2 >> 8 , scale);
00714 } else {
00715 for (m = 0; m < 3; m++) {
00716 v = get_bits(&s->gb, bits);
00717 v = l1_unscale(bits - 1, v, scale);
00718 s->sb_samples[ch][k * 12 + l + m][i] = v;
00719 }
00720 }
00721 } else {
00722 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
00723 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
00724 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
00725 }
00726 }
00727
00728 j += 1 << bit_alloc_bits;
00729 }
00730
00731 for (i = bound; i < sblimit; i++) {
00732 bit_alloc_bits = alloc_table[j];
00733 b = bit_alloc[0][i];
00734 if (b) {
00735 int mant, scale0, scale1;
00736 scale0 = scale_factors[0][i][k];
00737 scale1 = scale_factors[1][i][k];
00738 qindex = alloc_table[j+b];
00739 bits = ff_mpa_quant_bits[qindex];
00740 if (bits < 0) {
00741
00742 v = get_bits(&s->gb, -bits);
00743 steps = ff_mpa_quant_steps[qindex];
00744 mant = v % steps;
00745 v = v / steps;
00746 s->sb_samples[0][k * 12 + l + 0][i] =
00747 l2_unscale_group(steps, mant, scale0);
00748 s->sb_samples[1][k * 12 + l + 0][i] =
00749 l2_unscale_group(steps, mant, scale1);
00750 mant = v % steps;
00751 v = v / steps;
00752 s->sb_samples[0][k * 12 + l + 1][i] =
00753 l2_unscale_group(steps, mant, scale0);
00754 s->sb_samples[1][k * 12 + l + 1][i] =
00755 l2_unscale_group(steps, mant, scale1);
00756 s->sb_samples[0][k * 12 + l + 2][i] =
00757 l2_unscale_group(steps, v, scale0);
00758 s->sb_samples[1][k * 12 + l + 2][i] =
00759 l2_unscale_group(steps, v, scale1);
00760 } else {
00761 for (m = 0; m < 3; m++) {
00762 mant = get_bits(&s->gb, bits);
00763 s->sb_samples[0][k * 12 + l + m][i] =
00764 l1_unscale(bits - 1, mant, scale0);
00765 s->sb_samples[1][k * 12 + l + m][i] =
00766 l1_unscale(bits - 1, mant, scale1);
00767 }
00768 }
00769 } else {
00770 s->sb_samples[0][k * 12 + l + 0][i] = 0;
00771 s->sb_samples[0][k * 12 + l + 1][i] = 0;
00772 s->sb_samples[0][k * 12 + l + 2][i] = 0;
00773 s->sb_samples[1][k * 12 + l + 0][i] = 0;
00774 s->sb_samples[1][k * 12 + l + 1][i] = 0;
00775 s->sb_samples[1][k * 12 + l + 2][i] = 0;
00776 }
00777
00778 j += 1 << bit_alloc_bits;
00779 }
00780
00781 for (i = sblimit; i < SBLIMIT; i++) {
00782 for (ch = 0; ch < s->nb_channels; ch++) {
00783 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
00784 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
00785 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
00786 }
00787 }
00788 }
00789 }
00790 return 3 * 12;
00791 }
00792
00793 #define SPLIT(dst,sf,n) \
00794 if (n == 3) { \
00795 int m = (sf * 171) >> 9; \
00796 dst = sf - 3 * m; \
00797 sf = m; \
00798 } else if (n == 4) { \
00799 dst = sf & 3; \
00800 sf >>= 2; \
00801 } else if (n == 5) { \
00802 int m = (sf * 205) >> 10; \
00803 dst = sf - 5 * m; \
00804 sf = m; \
00805 } else if (n == 6) { \
00806 int m = (sf * 171) >> 10; \
00807 dst = sf - 6 * m; \
00808 sf = m; \
00809 } else { \
00810 dst = 0; \
00811 }
00812
00813 static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
00814 int n3)
00815 {
00816 SPLIT(slen[3], sf, n3)
00817 SPLIT(slen[2], sf, n2)
00818 SPLIT(slen[1], sf, n1)
00819 slen[0] = sf;
00820 }
00821
00822 static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
00823 int16_t *exponents)
00824 {
00825 const uint8_t *bstab, *pretab;
00826 int len, i, j, k, l, v0, shift, gain, gains[3];
00827 int16_t *exp_ptr;
00828
00829 exp_ptr = exponents;
00830 gain = g->global_gain - 210;
00831 shift = g->scalefac_scale + 1;
00832
00833 bstab = band_size_long[s->sample_rate_index];
00834 pretab = mpa_pretab[g->preflag];
00835 for (i = 0; i < g->long_end; i++) {
00836 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
00837 len = bstab[i];
00838 for (j = len; j > 0; j--)
00839 *exp_ptr++ = v0;
00840 }
00841
00842 if (g->short_start < 13) {
00843 bstab = band_size_short[s->sample_rate_index];
00844 gains[0] = gain - (g->subblock_gain[0] << 3);
00845 gains[1] = gain - (g->subblock_gain[1] << 3);
00846 gains[2] = gain - (g->subblock_gain[2] << 3);
00847 k = g->long_end;
00848 for (i = g->short_start; i < 13; i++) {
00849 len = bstab[i];
00850 for (l = 0; l < 3; l++) {
00851 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
00852 for (j = len; j > 0; j--)
00853 *exp_ptr++ = v0;
00854 }
00855 }
00856 }
00857 }
00858
00859
00860 static inline int get_bitsz(GetBitContext *s, int n)
00861 {
00862 return n ? get_bits(s, n) : 0;
00863 }
00864
00865
00866 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
00867 int *end_pos2)
00868 {
00869 if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
00870 s->gb = s->in_gb;
00871 s->in_gb.buffer = NULL;
00872 assert((get_bits_count(&s->gb) & 7) == 0);
00873 skip_bits_long(&s->gb, *pos - *end_pos);
00874 *end_pos2 =
00875 *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos;
00876 *pos = get_bits_count(&s->gb);
00877 }
00878 }
00879
00880
00881
00882
00883
00884
00885
00886 #if CONFIG_FLOAT
00887 #define READ_FLIP_SIGN(dst,src) \
00888 v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
00889 AV_WN32A(dst, v);
00890 #else
00891 #define READ_FLIP_SIGN(dst,src) \
00892 v = -get_bits1(&s->gb); \
00893 *(dst) = (*(src) ^ v) - v;
00894 #endif
00895
00896 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
00897 int16_t *exponents, int end_pos2)
00898 {
00899 int s_index;
00900 int i;
00901 int last_pos, bits_left;
00902 VLC *vlc;
00903 int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
00904
00905
00906 s_index = 0;
00907 for (i = 0; i < 3; i++) {
00908 int j, k, l, linbits;
00909 j = g->region_size[i];
00910 if (j == 0)
00911 continue;
00912
00913 k = g->table_select[i];
00914 l = mpa_huff_data[k][0];
00915 linbits = mpa_huff_data[k][1];
00916 vlc = &huff_vlc[l];
00917
00918 if (!l) {
00919 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
00920 s_index += 2 * j;
00921 continue;
00922 }
00923
00924
00925 for (; j > 0; j--) {
00926 int exponent, x, y;
00927 int v;
00928 int pos = get_bits_count(&s->gb);
00929
00930 if (pos >= end_pos){
00931
00932 switch_buffer(s, &pos, &end_pos, &end_pos2);
00933
00934 if (pos >= end_pos)
00935 break;
00936 }
00937 y = get_vlc2(&s->gb, vlc->table, 7, 3);
00938
00939 if (!y) {
00940 g->sb_hybrid[s_index ] =
00941 g->sb_hybrid[s_index+1] = 0;
00942 s_index += 2;
00943 continue;
00944 }
00945
00946 exponent= exponents[s_index];
00947
00948 av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
00949 i, g->region_size[i] - j, x, y, exponent);
00950 if (y & 16) {
00951 x = y >> 5;
00952 y = y & 0x0f;
00953 if (x < 15) {
00954 READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
00955 } else {
00956 x += get_bitsz(&s->gb, linbits);
00957 v = l3_unscale(x, exponent);
00958 if (get_bits1(&s->gb))
00959 v = -v;
00960 g->sb_hybrid[s_index] = v;
00961 }
00962 if (y < 15) {
00963 READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
00964 } else {
00965 y += get_bitsz(&s->gb, linbits);
00966 v = l3_unscale(y, exponent);
00967 if (get_bits1(&s->gb))
00968 v = -v;
00969 g->sb_hybrid[s_index+1] = v;
00970 }
00971 } else {
00972 x = y >> 5;
00973 y = y & 0x0f;
00974 x += y;
00975 if (x < 15) {
00976 READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
00977 } else {
00978 x += get_bitsz(&s->gb, linbits);
00979 v = l3_unscale(x, exponent);
00980 if (get_bits1(&s->gb))
00981 v = -v;
00982 g->sb_hybrid[s_index+!!y] = v;
00983 }
00984 g->sb_hybrid[s_index + !y] = 0;
00985 }
00986 s_index += 2;
00987 }
00988 }
00989
00990
00991 vlc = &huff_quad_vlc[g->count1table_select];
00992 last_pos = 0;
00993 while (s_index <= 572) {
00994 int pos, code;
00995 pos = get_bits_count(&s->gb);
00996 if (pos >= end_pos) {
00997 if (pos > end_pos2 && last_pos) {
00998
00999
01000 s_index -= 4;
01001 skip_bits_long(&s->gb, last_pos - pos);
01002 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
01003 if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
01004 s_index=0;
01005 break;
01006 }
01007
01008 switch_buffer(s, &pos, &end_pos, &end_pos2);
01009
01010 if (pos >= end_pos)
01011 break;
01012 }
01013 last_pos = pos;
01014
01015 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
01016 av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
01017 g->sb_hybrid[s_index+0] =
01018 g->sb_hybrid[s_index+1] =
01019 g->sb_hybrid[s_index+2] =
01020 g->sb_hybrid[s_index+3] = 0;
01021 while (code) {
01022 static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
01023 int v;
01024 int pos = s_index + idxtab[code];
01025 code ^= 8 >> idxtab[code];
01026 READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
01027 }
01028 s_index += 4;
01029 }
01030
01031 bits_left = end_pos2 - get_bits_count(&s->gb);
01032
01033 if (bits_left < 0 && (s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))) {
01034 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
01035 s_index=0;
01036 } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BITSTREAM|AV_EF_AGGRESSIVE))) {
01037 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
01038 s_index = 0;
01039 }
01040 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
01041 skip_bits_long(&s->gb, bits_left);
01042
01043 i = get_bits_count(&s->gb);
01044 switch_buffer(s, &i, &end_pos, &end_pos2);
01045
01046 return 0;
01047 }
01048
01049
01050
01051
01052 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
01053 {
01054 int i, j, len;
01055 INTFLOAT *ptr, *dst, *ptr1;
01056 INTFLOAT tmp[576];
01057
01058 if (g->block_type != 2)
01059 return;
01060
01061 if (g->switch_point) {
01062 if (s->sample_rate_index != 8)
01063 ptr = g->sb_hybrid + 36;
01064 else
01065 ptr = g->sb_hybrid + 48;
01066 } else {
01067 ptr = g->sb_hybrid;
01068 }
01069
01070 for (i = g->short_start; i < 13; i++) {
01071 len = band_size_short[s->sample_rate_index][i];
01072 ptr1 = ptr;
01073 dst = tmp;
01074 for (j = len; j > 0; j--) {
01075 *dst++ = ptr[0*len];
01076 *dst++ = ptr[1*len];
01077 *dst++ = ptr[2*len];
01078 ptr++;
01079 }
01080 ptr += 2 * len;
01081 memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
01082 }
01083 }
01084
01085 #define ISQRT2 FIXR(0.70710678118654752440)
01086
01087 static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
01088 {
01089 int i, j, k, l;
01090 int sf_max, sf, len, non_zero_found;
01091 INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
01092 int non_zero_found_short[3];
01093
01094
01095 if (s->mode_ext & MODE_EXT_I_STEREO) {
01096 if (!s->lsf) {
01097 is_tab = is_table;
01098 sf_max = 7;
01099 } else {
01100 is_tab = is_table_lsf[g1->scalefac_compress & 1];
01101 sf_max = 16;
01102 }
01103
01104 tab0 = g0->sb_hybrid + 576;
01105 tab1 = g1->sb_hybrid + 576;
01106
01107 non_zero_found_short[0] = 0;
01108 non_zero_found_short[1] = 0;
01109 non_zero_found_short[2] = 0;
01110 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
01111 for (i = 12; i >= g1->short_start; i--) {
01112
01113 if (i != 11)
01114 k -= 3;
01115 len = band_size_short[s->sample_rate_index][i];
01116 for (l = 2; l >= 0; l--) {
01117 tab0 -= len;
01118 tab1 -= len;
01119 if (!non_zero_found_short[l]) {
01120
01121 for (j = 0; j < len; j++) {
01122 if (tab1[j] != 0) {
01123 non_zero_found_short[l] = 1;
01124 goto found1;
01125 }
01126 }
01127 sf = g1->scale_factors[k + l];
01128 if (sf >= sf_max)
01129 goto found1;
01130
01131 v1 = is_tab[0][sf];
01132 v2 = is_tab[1][sf];
01133 for (j = 0; j < len; j++) {
01134 tmp0 = tab0[j];
01135 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
01136 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
01137 }
01138 } else {
01139 found1:
01140 if (s->mode_ext & MODE_EXT_MS_STEREO) {
01141
01142
01143 for (j = 0; j < len; j++) {
01144 tmp0 = tab0[j];
01145 tmp1 = tab1[j];
01146 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
01147 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
01148 }
01149 }
01150 }
01151 }
01152 }
01153
01154 non_zero_found = non_zero_found_short[0] |
01155 non_zero_found_short[1] |
01156 non_zero_found_short[2];
01157
01158 for (i = g1->long_end - 1;i >= 0;i--) {
01159 len = band_size_long[s->sample_rate_index][i];
01160 tab0 -= len;
01161 tab1 -= len;
01162
01163 if (!non_zero_found) {
01164 for (j = 0; j < len; j++) {
01165 if (tab1[j] != 0) {
01166 non_zero_found = 1;
01167 goto found2;
01168 }
01169 }
01170
01171 k = (i == 21) ? 20 : i;
01172 sf = g1->scale_factors[k];
01173 if (sf >= sf_max)
01174 goto found2;
01175 v1 = is_tab[0][sf];
01176 v2 = is_tab[1][sf];
01177 for (j = 0; j < len; j++) {
01178 tmp0 = tab0[j];
01179 tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
01180 tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
01181 }
01182 } else {
01183 found2:
01184 if (s->mode_ext & MODE_EXT_MS_STEREO) {
01185
01186
01187 for (j = 0; j < len; j++) {
01188 tmp0 = tab0[j];
01189 tmp1 = tab1[j];
01190 tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
01191 tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
01192 }
01193 }
01194 }
01195 }
01196 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
01197
01198
01199
01200 tab0 = g0->sb_hybrid;
01201 tab1 = g1->sb_hybrid;
01202 for (i = 0; i < 576; i++) {
01203 tmp0 = tab0[i];
01204 tmp1 = tab1[i];
01205 tab0[i] = tmp0 + tmp1;
01206 tab1[i] = tmp0 - tmp1;
01207 }
01208 }
01209 }
01210
01211 #if CONFIG_FLOAT
01212 #define AA(j) do { \
01213 float tmp0 = ptr[-1-j]; \
01214 float tmp1 = ptr[ j]; \
01215 ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
01216 ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
01217 } while (0)
01218 #else
01219 #define AA(j) do { \
01220 int tmp0 = ptr[-1-j]; \
01221 int tmp1 = ptr[ j]; \
01222 int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
01223 ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
01224 ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
01225 } while (0)
01226 #endif
01227
01228 static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
01229 {
01230 INTFLOAT *ptr;
01231 int n, i;
01232
01233
01234 if (g->block_type == 2) {
01235 if (!g->switch_point)
01236 return;
01237
01238 n = 1;
01239 } else {
01240 n = SBLIMIT - 1;
01241 }
01242
01243 ptr = g->sb_hybrid + 18;
01244 for (i = n; i > 0; i--) {
01245 AA(0);
01246 AA(1);
01247 AA(2);
01248 AA(3);
01249 AA(4);
01250 AA(5);
01251 AA(6);
01252 AA(7);
01253
01254 ptr += 18;
01255 }
01256 }
01257
01258 static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
01259 INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
01260 {
01261 INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
01262 INTFLOAT out2[12];
01263 int i, j, mdct_long_end, sblimit;
01264
01265
01266 ptr = g->sb_hybrid + 576;
01267 ptr1 = g->sb_hybrid + 2 * 18;
01268 while (ptr >= ptr1) {
01269 int32_t *p;
01270 ptr -= 6;
01271 p = (int32_t*)ptr;
01272 if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
01273 break;
01274 }
01275 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
01276
01277 if (g->block_type == 2) {
01278
01279 if (g->switch_point)
01280 mdct_long_end = 2;
01281 else
01282 mdct_long_end = 0;
01283 } else {
01284 mdct_long_end = sblimit;
01285 }
01286
01287 buf = mdct_buf;
01288 ptr = g->sb_hybrid;
01289 for (j = 0; j < mdct_long_end; j++) {
01290 int win_idx = (g->switch_point && j < 2) ? 0 : g->block_type;
01291
01292 out_ptr = sb_samples + j;
01293
01294 win = mdct_win[win_idx + (4 & -(j & 1))];
01295 s->mpadsp.RENAME(imdct36)(out_ptr, buf, ptr, win);
01296 out_ptr += 18 * SBLIMIT;
01297 ptr += 18;
01298 buf += 18;
01299 }
01300 for (j = mdct_long_end; j < sblimit; j++) {
01301
01302 win = mdct_win[2 + (4 & -(j & 1))];
01303 out_ptr = sb_samples + j;
01304
01305 for (i = 0; i < 6; i++) {
01306 *out_ptr = buf[i];
01307 out_ptr += SBLIMIT;
01308 }
01309 imdct12(out2, ptr + 0);
01310 for (i = 0; i < 6; i++) {
01311 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1];
01312 buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1);
01313 out_ptr += SBLIMIT;
01314 }
01315 imdct12(out2, ptr + 1);
01316 for (i = 0; i < 6; i++) {
01317 *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2];
01318 buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1);
01319 out_ptr += SBLIMIT;
01320 }
01321 imdct12(out2, ptr + 2);
01322 for (i = 0; i < 6; i++) {
01323 buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0];
01324 buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1);
01325 buf[i + 6*2] = 0;
01326 }
01327 ptr += 18;
01328 buf += 18;
01329 }
01330
01331 for (j = sblimit; j < SBLIMIT; j++) {
01332
01333 out_ptr = sb_samples + j;
01334 for (i = 0; i < 18; i++) {
01335 *out_ptr = buf[i];
01336 buf[i] = 0;
01337 out_ptr += SBLIMIT;
01338 }
01339 buf += 18;
01340 }
01341 }
01342
01343
01344 static int mp_decode_layer3(MPADecodeContext *s)
01345 {
01346 int nb_granules, main_data_begin;
01347 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
01348 GranuleDef *g;
01349 int16_t exponents[576];
01350
01351
01352 if (s->lsf) {
01353 main_data_begin = get_bits(&s->gb, 8);
01354 skip_bits(&s->gb, s->nb_channels);
01355 nb_granules = 1;
01356 } else {
01357 main_data_begin = get_bits(&s->gb, 9);
01358 if (s->nb_channels == 2)
01359 skip_bits(&s->gb, 3);
01360 else
01361 skip_bits(&s->gb, 5);
01362 nb_granules = 2;
01363 for (ch = 0; ch < s->nb_channels; ch++) {
01364 s->granules[ch][0].scfsi = 0;
01365 s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
01366 }
01367 }
01368
01369 for (gr = 0; gr < nb_granules; gr++) {
01370 for (ch = 0; ch < s->nb_channels; ch++) {
01371 av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
01372 g = &s->granules[ch][gr];
01373 g->part2_3_length = get_bits(&s->gb, 12);
01374 g->big_values = get_bits(&s->gb, 9);
01375 if (g->big_values > 288) {
01376 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
01377 return AVERROR_INVALIDDATA;
01378 }
01379
01380 g->global_gain = get_bits(&s->gb, 8);
01381
01382
01383 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
01384 MODE_EXT_MS_STEREO)
01385 g->global_gain -= 2;
01386 if (s->lsf)
01387 g->scalefac_compress = get_bits(&s->gb, 9);
01388 else
01389 g->scalefac_compress = get_bits(&s->gb, 4);
01390 blocksplit_flag = get_bits1(&s->gb);
01391 if (blocksplit_flag) {
01392 g->block_type = get_bits(&s->gb, 2);
01393 if (g->block_type == 0) {
01394 av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
01395 return AVERROR_INVALIDDATA;
01396 }
01397 g->switch_point = get_bits1(&s->gb);
01398 for (i = 0; i < 2; i++)
01399 g->table_select[i] = get_bits(&s->gb, 5);
01400 for (i = 0; i < 3; i++)
01401 g->subblock_gain[i] = get_bits(&s->gb, 3);
01402 ff_init_short_region(s, g);
01403 } else {
01404 int region_address1, region_address2;
01405 g->block_type = 0;
01406 g->switch_point = 0;
01407 for (i = 0; i < 3; i++)
01408 g->table_select[i] = get_bits(&s->gb, 5);
01409
01410 region_address1 = get_bits(&s->gb, 4);
01411 region_address2 = get_bits(&s->gb, 3);
01412 av_dlog(s->avctx, "region1=%d region2=%d\n",
01413 region_address1, region_address2);
01414 ff_init_long_region(s, g, region_address1, region_address2);
01415 }
01416 ff_region_offset2size(g);
01417 ff_compute_band_indexes(s, g);
01418
01419 g->preflag = 0;
01420 if (!s->lsf)
01421 g->preflag = get_bits1(&s->gb);
01422 g->scalefac_scale = get_bits1(&s->gb);
01423 g->count1table_select = get_bits1(&s->gb);
01424 av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
01425 g->block_type, g->switch_point);
01426 }
01427 }
01428
01429 if (!s->adu_mode) {
01430 const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
01431 assert((get_bits_count(&s->gb) & 7) == 0);
01432
01433 av_dlog(s->avctx, "seekback: %d\n", main_data_begin);
01434
01435
01436 memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
01437 s->in_gb = s->gb;
01438 init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
01439 skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
01440 }
01441
01442 for (gr = 0; gr < nb_granules; gr++) {
01443 for (ch = 0; ch < s->nb_channels; ch++) {
01444 g = &s->granules[ch][gr];
01445 if (get_bits_count(&s->gb) < 0) {
01446 av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
01447 main_data_begin, s->last_buf_size, gr);
01448 skip_bits_long(&s->gb, g->part2_3_length);
01449 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
01450 if (get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer) {
01451 skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
01452 s->gb = s->in_gb;
01453 s->in_gb.buffer = NULL;
01454 }
01455 continue;
01456 }
01457
01458 bits_pos = get_bits_count(&s->gb);
01459
01460 if (!s->lsf) {
01461 uint8_t *sc;
01462 int slen, slen1, slen2;
01463
01464
01465 slen1 = slen_table[0][g->scalefac_compress];
01466 slen2 = slen_table[1][g->scalefac_compress];
01467 av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
01468 if (g->block_type == 2) {
01469 n = g->switch_point ? 17 : 18;
01470 j = 0;
01471 if (slen1) {
01472 for (i = 0; i < n; i++)
01473 g->scale_factors[j++] = get_bits(&s->gb, slen1);
01474 } else {
01475 for (i = 0; i < n; i++)
01476 g->scale_factors[j++] = 0;
01477 }
01478 if (slen2) {
01479 for (i = 0; i < 18; i++)
01480 g->scale_factors[j++] = get_bits(&s->gb, slen2);
01481 for (i = 0; i < 3; i++)
01482 g->scale_factors[j++] = 0;
01483 } else {
01484 for (i = 0; i < 21; i++)
01485 g->scale_factors[j++] = 0;
01486 }
01487 } else {
01488 sc = s->granules[ch][0].scale_factors;
01489 j = 0;
01490 for (k = 0; k < 4; k++) {
01491 n = k == 0 ? 6 : 5;
01492 if ((g->scfsi & (0x8 >> k)) == 0) {
01493 slen = (k < 2) ? slen1 : slen2;
01494 if (slen) {
01495 for (i = 0; i < n; i++)
01496 g->scale_factors[j++] = get_bits(&s->gb, slen);
01497 } else {
01498 for (i = 0; i < n; i++)
01499 g->scale_factors[j++] = 0;
01500 }
01501 } else {
01502
01503 for (i = 0; i < n; i++) {
01504 g->scale_factors[j] = sc[j];
01505 j++;
01506 }
01507 }
01508 }
01509 g->scale_factors[j++] = 0;
01510 }
01511 } else {
01512 int tindex, tindex2, slen[4], sl, sf;
01513
01514
01515 if (g->block_type == 2)
01516 tindex = g->switch_point ? 2 : 1;
01517 else
01518 tindex = 0;
01519
01520 sf = g->scalefac_compress;
01521 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
01522
01523 sf >>= 1;
01524 if (sf < 180) {
01525 lsf_sf_expand(slen, sf, 6, 6, 0);
01526 tindex2 = 3;
01527 } else if (sf < 244) {
01528 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
01529 tindex2 = 4;
01530 } else {
01531 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
01532 tindex2 = 5;
01533 }
01534 } else {
01535
01536 if (sf < 400) {
01537 lsf_sf_expand(slen, sf, 5, 4, 4);
01538 tindex2 = 0;
01539 } else if (sf < 500) {
01540 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
01541 tindex2 = 1;
01542 } else {
01543 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
01544 tindex2 = 2;
01545 g->preflag = 1;
01546 }
01547 }
01548
01549 j = 0;
01550 for (k = 0; k < 4; k++) {
01551 n = lsf_nsf_table[tindex2][tindex][k];
01552 sl = slen[k];
01553 if (sl) {
01554 for (i = 0; i < n; i++)
01555 g->scale_factors[j++] = get_bits(&s->gb, sl);
01556 } else {
01557 for (i = 0; i < n; i++)
01558 g->scale_factors[j++] = 0;
01559 }
01560 }
01561
01562 for (; j < 40; j++)
01563 g->scale_factors[j] = 0;
01564 }
01565
01566 exponents_from_scale_factors(s, g, exponents);
01567
01568
01569 huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
01570 }
01571
01572 if (s->nb_channels == 2)
01573 compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
01574
01575 for (ch = 0; ch < s->nb_channels; ch++) {
01576 g = &s->granules[ch][gr];
01577
01578 reorder_block(s, g);
01579 compute_antialias(s, g);
01580 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
01581 }
01582 }
01583 if (get_bits_count(&s->gb) < 0)
01584 skip_bits_long(&s->gb, -get_bits_count(&s->gb));
01585 return nb_granules * 18;
01586 }
01587
01588 static int mp_decode_frame(MPADecodeContext *s, OUT_INT *samples,
01589 const uint8_t *buf, int buf_size)
01590 {
01591 int i, nb_frames, ch, ret;
01592 OUT_INT *samples_ptr;
01593
01594 init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
01595
01596
01597 if (s->error_protection)
01598 skip_bits(&s->gb, 16);
01599
01600 switch(s->layer) {
01601 case 1:
01602 s->avctx->frame_size = 384;
01603 nb_frames = mp_decode_layer1(s);
01604 break;
01605 case 2:
01606 s->avctx->frame_size = 1152;
01607 nb_frames = mp_decode_layer2(s);
01608 break;
01609 case 3:
01610 s->avctx->frame_size = s->lsf ? 576 : 1152;
01611 default:
01612 nb_frames = mp_decode_layer3(s);
01613
01614 s->last_buf_size=0;
01615 if (s->in_gb.buffer) {
01616 align_get_bits(&s->gb);
01617 i = get_bits_left(&s->gb)>>3;
01618 if (i >= 0 && i <= BACKSTEP_SIZE) {
01619 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
01620 s->last_buf_size=i;
01621 } else
01622 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
01623 s->gb = s->in_gb;
01624 s->in_gb.buffer = NULL;
01625 }
01626
01627 align_get_bits(&s->gb);
01628 assert((get_bits_count(&s->gb) & 7) == 0);
01629 i = get_bits_left(&s->gb) >> 3;
01630
01631 if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
01632 if (i < 0)
01633 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
01634 i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
01635 }
01636 assert(i <= buf_size - HEADER_SIZE && i >= 0);
01637 memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
01638 s->last_buf_size += i;
01639 }
01640
01641
01642 if (!samples) {
01643 s->frame.nb_samples = s->avctx->frame_size;
01644 if ((ret = s->avctx->get_buffer(s->avctx, &s->frame)) < 0) {
01645 av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01646 return ret;
01647 }
01648 samples = (OUT_INT *)s->frame.data[0];
01649 }
01650
01651
01652 for (ch = 0; ch < s->nb_channels; ch++) {
01653 samples_ptr = samples + ch;
01654 for (i = 0; i < nb_frames; i++) {
01655 RENAME(ff_mpa_synth_filter)(
01656 &s->mpadsp,
01657 s->synth_buf[ch], &(s->synth_buf_offset[ch]),
01658 RENAME(ff_mpa_synth_window), &s->dither_state,
01659 samples_ptr, s->nb_channels,
01660 s->sb_samples[ch][i]);
01661 samples_ptr += 32 * s->nb_channels;
01662 }
01663 }
01664
01665 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
01666 }
01667
01668 static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
01669 AVPacket *avpkt)
01670 {
01671 const uint8_t *buf = avpkt->data;
01672 int buf_size = avpkt->size;
01673 MPADecodeContext *s = avctx->priv_data;
01674 uint32_t header;
01675 int out_size;
01676
01677 if (buf_size < HEADER_SIZE)
01678 return AVERROR_INVALIDDATA;
01679
01680 header = AV_RB32(buf);
01681 if (ff_mpa_check_header(header) < 0) {
01682 av_log(avctx, AV_LOG_ERROR, "Header missing\n");
01683 return AVERROR_INVALIDDATA;
01684 }
01685
01686 if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
01687
01688 s->frame_size = -1;
01689 return AVERROR_INVALIDDATA;
01690 }
01691
01692 avctx->channels = s->nb_channels;
01693 avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
01694 if (!avctx->bit_rate)
01695 avctx->bit_rate = s->bit_rate;
01696 avctx->sub_id = s->layer;
01697
01698 if (s->frame_size <= 0 || s->frame_size > buf_size) {
01699 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
01700 return AVERROR_INVALIDDATA;
01701 }else if(s->frame_size < buf_size){
01702 av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
01703 buf_size= s->frame_size;
01704 }
01705
01706 out_size = mp_decode_frame(s, NULL, buf, buf_size);
01707 if (out_size >= 0) {
01708 *got_frame_ptr = 1;
01709 *(AVFrame *)data = s->frame;
01710 avctx->sample_rate = s->sample_rate;
01711
01712 } else {
01713 av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
01714
01715
01716
01717
01718 *got_frame_ptr = 0;
01719 if (buf_size == avpkt->size)
01720 return out_size;
01721 }
01722 s->frame_size = 0;
01723 return buf_size;
01724 }
01725
01726 static void flush(AVCodecContext *avctx)
01727 {
01728 MPADecodeContext *s = avctx->priv_data;
01729 memset(s->synth_buf, 0, sizeof(s->synth_buf));
01730 s->last_buf_size = 0;
01731 }
01732
01733 #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
01734 static int decode_frame_adu(AVCodecContext *avctx, void *data,
01735 int *got_frame_ptr, AVPacket *avpkt)
01736 {
01737 const uint8_t *buf = avpkt->data;
01738 int buf_size = avpkt->size;
01739 MPADecodeContext *s = avctx->priv_data;
01740 uint32_t header;
01741 int len, out_size;
01742
01743 len = buf_size;
01744
01745
01746 if (buf_size < HEADER_SIZE) {
01747 av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
01748 return AVERROR_INVALIDDATA;
01749 }
01750
01751
01752 if (len > MPA_MAX_CODED_FRAME_SIZE)
01753 len = MPA_MAX_CODED_FRAME_SIZE;
01754
01755
01756 header = AV_RB32(buf) | 0xffe00000;
01757
01758 if (ff_mpa_check_header(header) < 0) {
01759 av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
01760 return AVERROR_INVALIDDATA;
01761 }
01762
01763 avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
01764
01765 avctx->sample_rate = s->sample_rate;
01766 avctx->channels = s->nb_channels;
01767 if (!avctx->bit_rate)
01768 avctx->bit_rate = s->bit_rate;
01769 avctx->sub_id = s->layer;
01770
01771 s->frame_size = len;
01772
01773 #if FF_API_PARSE_FRAME
01774 if (avctx->parse_only)
01775 out_size = buf_size;
01776 else
01777 #endif
01778 out_size = mp_decode_frame(s, NULL, buf, buf_size);
01779
01780 *got_frame_ptr = 1;
01781 *(AVFrame *)data = s->frame;
01782
01783 return buf_size;
01784 }
01785 #endif
01786
01787 #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
01788
01792 typedef struct MP3On4DecodeContext {
01793 AVFrame *frame;
01794 int frames;
01795 int syncword;
01796 const uint8_t *coff;
01797 MPADecodeContext *mp3decctx[5];
01798 OUT_INT *decoded_buf;
01799 } MP3On4DecodeContext;
01800
01801 #include "mpeg4audio.h"
01802
01803
01804
01805
01806 static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
01807
01808
01809 static const uint8_t chan_offset[8][5] = {
01810 { 0 },
01811 { 0 },
01812 { 0 },
01813 { 2, 0 },
01814 { 2, 0, 3 },
01815 { 2, 0, 3 },
01816 { 2, 0, 4, 3 },
01817 { 2, 0, 6, 4, 3 },
01818 };
01819
01820
01821 static const int16_t chan_layout[8] = {
01822 0,
01823 AV_CH_LAYOUT_MONO,
01824 AV_CH_LAYOUT_STEREO,
01825 AV_CH_LAYOUT_SURROUND,
01826 AV_CH_LAYOUT_4POINT0,
01827 AV_CH_LAYOUT_5POINT0,
01828 AV_CH_LAYOUT_5POINT1,
01829 AV_CH_LAYOUT_7POINT1
01830 };
01831
01832 static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
01833 {
01834 MP3On4DecodeContext *s = avctx->priv_data;
01835 int i;
01836
01837 for (i = 0; i < s->frames; i++)
01838 av_free(s->mp3decctx[i]);
01839
01840 av_freep(&s->decoded_buf);
01841
01842 return 0;
01843 }
01844
01845
01846 static int decode_init_mp3on4(AVCodecContext * avctx)
01847 {
01848 MP3On4DecodeContext *s = avctx->priv_data;
01849 MPEG4AudioConfig cfg;
01850 int i;
01851
01852 if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
01853 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
01854 return AVERROR_INVALIDDATA;
01855 }
01856
01857 avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
01858 avctx->extradata_size * 8, 1);
01859 if (!cfg.chan_config || cfg.chan_config > 7) {
01860 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
01861 return AVERROR_INVALIDDATA;
01862 }
01863 s->frames = mp3Frames[cfg.chan_config];
01864 s->coff = chan_offset[cfg.chan_config];
01865 avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
01866 avctx->channel_layout = chan_layout[cfg.chan_config];
01867
01868 if (cfg.sample_rate < 16000)
01869 s->syncword = 0xffe00000;
01870 else
01871 s->syncword = 0xfff00000;
01872
01873
01874
01875
01876
01877
01878
01879 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
01880 if (!s->mp3decctx[0])
01881 goto alloc_fail;
01882
01883 avctx->priv_data = s->mp3decctx[0];
01884 decode_init(avctx);
01885 s->frame = avctx->coded_frame;
01886
01887 avctx->priv_data = s;
01888 s->mp3decctx[0]->adu_mode = 1;
01889
01890
01891
01892
01893 for (i = 1; i < s->frames; i++) {
01894 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
01895 if (!s->mp3decctx[i])
01896 goto alloc_fail;
01897 s->mp3decctx[i]->adu_mode = 1;
01898 s->mp3decctx[i]->avctx = avctx;
01899 s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
01900 }
01901
01902
01903 if (s->frames > 1) {
01904 s->decoded_buf = av_malloc(MPA_FRAME_SIZE * MPA_MAX_CHANNELS *
01905 sizeof(*s->decoded_buf));
01906 if (!s->decoded_buf)
01907 goto alloc_fail;
01908 }
01909
01910 return 0;
01911 alloc_fail:
01912 decode_close_mp3on4(avctx);
01913 return AVERROR(ENOMEM);
01914 }
01915
01916
01917 static void flush_mp3on4(AVCodecContext *avctx)
01918 {
01919 int i;
01920 MP3On4DecodeContext *s = avctx->priv_data;
01921
01922 for (i = 0; i < s->frames; i++) {
01923 MPADecodeContext *m = s->mp3decctx[i];
01924 memset(m->synth_buf, 0, sizeof(m->synth_buf));
01925 m->last_buf_size = 0;
01926 }
01927 }
01928
01929
01930 static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
01931 int *got_frame_ptr, AVPacket *avpkt)
01932 {
01933 const uint8_t *buf = avpkt->data;
01934 int buf_size = avpkt->size;
01935 MP3On4DecodeContext *s = avctx->priv_data;
01936 MPADecodeContext *m;
01937 int fsize, len = buf_size, out_size = 0;
01938 uint32_t header;
01939 OUT_INT *out_samples;
01940 OUT_INT *outptr, *bp;
01941 int fr, j, n, ch, ret;
01942
01943
01944 s->frame->nb_samples = MPA_FRAME_SIZE;
01945 if ((ret = avctx->get_buffer(avctx, s->frame)) < 0) {
01946 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
01947 return ret;
01948 }
01949 out_samples = (OUT_INT *)s->frame->data[0];
01950
01951
01952 if (buf_size < HEADER_SIZE)
01953 return AVERROR_INVALIDDATA;
01954
01955
01956 outptr = s->frames == 1 ? out_samples : s->decoded_buf;
01957
01958 avctx->bit_rate = 0;
01959
01960 ch = 0;
01961 for (fr = 0; fr < s->frames; fr++) {
01962 fsize = AV_RB16(buf) >> 4;
01963 fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
01964 m = s->mp3decctx[fr];
01965 assert(m != NULL);
01966
01967 header = (AV_RB32(buf) & 0x000fffff) | s->syncword;
01968
01969 if (ff_mpa_check_header(header) < 0)
01970 break;
01971
01972 avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
01973
01974 if (ch + m->nb_channels > avctx->channels) {
01975 av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
01976 "channel count\n");
01977 return AVERROR_INVALIDDATA;
01978 }
01979 ch += m->nb_channels;
01980
01981 out_size += mp_decode_frame(m, outptr, buf, fsize);
01982 buf += fsize;
01983 len -= fsize;
01984
01985 if (s->frames > 1) {
01986 n = m->avctx->frame_size*m->nb_channels;
01987
01988 bp = out_samples + s->coff[fr];
01989 if (m->nb_channels == 1) {
01990 for (j = 0; j < n; j++) {
01991 *bp = s->decoded_buf[j];
01992 bp += avctx->channels;
01993 }
01994 } else {
01995 for (j = 0; j < n; j++) {
01996 bp[0] = s->decoded_buf[j++];
01997 bp[1] = s->decoded_buf[j];
01998 bp += avctx->channels;
01999 }
02000 }
02001 }
02002 avctx->bit_rate += m->bit_rate;
02003 }
02004
02005
02006 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
02007
02008 s->frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
02009 *got_frame_ptr = 1;
02010 *(AVFrame *)data = *s->frame;
02011
02012 return buf_size;
02013 }
02014 #endif
02015
02016 #if !CONFIG_FLOAT
02017 #if CONFIG_MP1_DECODER
02018 AVCodec ff_mp1_decoder = {
02019 .name = "mp1",
02020 .type = AVMEDIA_TYPE_AUDIO,
02021 .id = CODEC_ID_MP1,
02022 .priv_data_size = sizeof(MPADecodeContext),
02023 .init = decode_init,
02024 .decode = decode_frame,
02025 #if FF_API_PARSE_FRAME
02026 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02027 #else
02028 .capabilities = CODEC_CAP_DR1,
02029 #endif
02030 .flush = flush,
02031 .long_name = NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
02032 };
02033 #endif
02034 #if CONFIG_MP2_DECODER
02035 AVCodec ff_mp2_decoder = {
02036 .name = "mp2",
02037 .type = AVMEDIA_TYPE_AUDIO,
02038 .id = CODEC_ID_MP2,
02039 .priv_data_size = sizeof(MPADecodeContext),
02040 .init = decode_init,
02041 .decode = decode_frame,
02042 #if FF_API_PARSE_FRAME
02043 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02044 #else
02045 .capabilities = CODEC_CAP_DR1,
02046 #endif
02047 .flush = flush,
02048 .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
02049 };
02050 #endif
02051 #if CONFIG_MP3_DECODER
02052 AVCodec ff_mp3_decoder = {
02053 .name = "mp3",
02054 .type = AVMEDIA_TYPE_AUDIO,
02055 .id = CODEC_ID_MP3,
02056 .priv_data_size = sizeof(MPADecodeContext),
02057 .init = decode_init,
02058 .decode = decode_frame,
02059 #if FF_API_PARSE_FRAME
02060 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02061 #else
02062 .capabilities = CODEC_CAP_DR1,
02063 #endif
02064 .flush = flush,
02065 .long_name = NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
02066 };
02067 #endif
02068 #if CONFIG_MP3ADU_DECODER
02069 AVCodec ff_mp3adu_decoder = {
02070 .name = "mp3adu",
02071 .type = AVMEDIA_TYPE_AUDIO,
02072 .id = CODEC_ID_MP3ADU,
02073 .priv_data_size = sizeof(MPADecodeContext),
02074 .init = decode_init,
02075 .decode = decode_frame_adu,
02076 #if FF_API_PARSE_FRAME
02077 .capabilities = CODEC_CAP_PARSE_ONLY | CODEC_CAP_DR1,
02078 #else
02079 .capabilities = CODEC_CAP_DR1,
02080 #endif
02081 .flush = flush,
02082 .long_name = NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
02083 };
02084 #endif
02085 #if CONFIG_MP3ON4_DECODER
02086 AVCodec ff_mp3on4_decoder = {
02087 .name = "mp3on4",
02088 .type = AVMEDIA_TYPE_AUDIO,
02089 .id = CODEC_ID_MP3ON4,
02090 .priv_data_size = sizeof(MP3On4DecodeContext),
02091 .init = decode_init_mp3on4,
02092 .close = decode_close_mp3on4,
02093 .decode = decode_frame_mp3on4,
02094 .capabilities = CODEC_CAP_DR1,
02095 .flush = flush_mp3on4,
02096 .long_name = NULL_IF_CONFIG_SMALL("MP3onMP4"),
02097 };
02098 #endif
02099 #endif