FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
error_resilience.c
Go to the documentation of this file.
1 /*
2  * Error resilience / concealment
3  *
4  * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * Error resilience / concealment.
26  */
27 
28 #include <limits.h>
29 
30 #include "libavutil/atomic.h"
31 #include "libavutil/internal.h"
32 #include "avcodec.h"
33 #include "error_resilience.h"
34 #include "me_cmp.h"
35 #include "mpegutils.h"
36 #include "mpegvideo.h"
37 #include "rectangle.h"
38 #include "thread.h"
39 #include "version.h"
40 
41 /**
42  * @param stride the number of MVs to get to the next row
43  * @param mv_step the number of MVs per row or column in a macroblock
44  */
45 static void set_mv_strides(ERContext *s, int *mv_step, int *stride)
46 {
47  if (s->avctx->codec_id == AV_CODEC_ID_H264) {
49  *mv_step = 4;
50  *stride = s->mb_width * 4;
51  } else {
52  *mv_step = 2;
53  *stride = s->b8_stride;
54  }
55 }
56 
57 /**
58  * Replace the current MB with a flat dc-only version.
59  */
60 static void put_dc(ERContext *s, uint8_t *dest_y, uint8_t *dest_cb,
61  uint8_t *dest_cr, int mb_x, int mb_y)
62 {
63  int *linesize = s->cur_pic.f->linesize;
64  int dc, dcu, dcv, y, i;
65  for (i = 0; i < 4; i++) {
66  dc = s->dc_val[0][mb_x * 2 + (i & 1) + (mb_y * 2 + (i >> 1)) * s->b8_stride];
67  if (dc < 0)
68  dc = 0;
69  else if (dc > 2040)
70  dc = 2040;
71  for (y = 0; y < 8; y++) {
72  int x;
73  for (x = 0; x < 8; x++)
74  dest_y[x + (i & 1) * 8 + (y + (i >> 1) * 8) * linesize[0]] = dc / 8;
75  }
76  }
77  dcu = s->dc_val[1][mb_x + mb_y * s->mb_stride];
78  dcv = s->dc_val[2][mb_x + mb_y * s->mb_stride];
79  if (dcu < 0)
80  dcu = 0;
81  else if (dcu > 2040)
82  dcu = 2040;
83  if (dcv < 0)
84  dcv = 0;
85  else if (dcv > 2040)
86  dcv = 2040;
87 
88  if (dest_cr)
89  for (y = 0; y < 8; y++) {
90  int x;
91  for (x = 0; x < 8; x++) {
92  dest_cb[x + y * linesize[1]] = dcu / 8;
93  dest_cr[x + y * linesize[2]] = dcv / 8;
94  }
95  }
96 }
97 
98 static void filter181(int16_t *data, int width, int height, int stride)
99 {
100  int x, y;
101 
102  /* horizontal filter */
103  for (y = 1; y < height - 1; y++) {
104  int prev_dc = data[0 + y * stride];
105 
106  for (x = 1; x < width - 1; x++) {
107  int dc;
108  dc = -prev_dc +
109  data[x + y * stride] * 8 -
110  data[x + 1 + y * stride];
111  dc = (dc * 10923 + 32768) >> 16;
112  prev_dc = data[x + y * stride];
113  data[x + y * stride] = dc;
114  }
115  }
116 
117  /* vertical filter */
118  for (x = 1; x < width - 1; x++) {
119  int prev_dc = data[x];
120 
121  for (y = 1; y < height - 1; y++) {
122  int dc;
123 
124  dc = -prev_dc +
125  data[x + y * stride] * 8 -
126  data[x + (y + 1) * stride];
127  dc = (dc * 10923 + 32768) >> 16;
128  prev_dc = data[x + y * stride];
129  data[x + y * stride] = dc;
130  }
131  }
132 }
133 
134 /**
135  * guess the dc of blocks which do not have an undamaged dc
136  * @param w width in 8 pixel blocks
137  * @param h height in 8 pixel blocks
138  */
139 static void guess_dc(ERContext *s, int16_t *dc, int w,
140  int h, int stride, int is_luma)
141 {
142  int b_x, b_y;
143  int16_t (*col )[4] = av_malloc_array(stride, h*sizeof( int16_t)*4);
144  uint32_t (*dist)[4] = av_malloc_array(stride, h*sizeof(uint32_t)*4);
145 
146  if(!col || !dist) {
147  av_log(s->avctx, AV_LOG_ERROR, "guess_dc() is out of memory\n");
148  goto fail;
149  }
150 
151  for(b_y=0; b_y<h; b_y++){
152  int color= 1024;
153  int distance= -1;
154  for(b_x=0; b_x<w; b_x++){
155  int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
156  int error_j= s->error_status_table[mb_index_j];
157  int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
158  if(intra_j==0 || !(error_j&ER_DC_ERROR)){
159  color= dc[b_x + b_y*stride];
160  distance= b_x;
161  }
162  col [b_x + b_y*stride][1]= color;
163  dist[b_x + b_y*stride][1]= distance >= 0 ? b_x-distance : 9999;
164  }
165  color= 1024;
166  distance= -1;
167  for(b_x=w-1; b_x>=0; b_x--){
168  int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
169  int error_j= s->error_status_table[mb_index_j];
170  int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
171  if(intra_j==0 || !(error_j&ER_DC_ERROR)){
172  color= dc[b_x + b_y*stride];
173  distance= b_x;
174  }
175  col [b_x + b_y*stride][0]= color;
176  dist[b_x + b_y*stride][0]= distance >= 0 ? distance-b_x : 9999;
177  }
178  }
179  for(b_x=0; b_x<w; b_x++){
180  int color= 1024;
181  int distance= -1;
182  for(b_y=0; b_y<h; b_y++){
183  int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
184  int error_j= s->error_status_table[mb_index_j];
185  int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
186  if(intra_j==0 || !(error_j&ER_DC_ERROR)){
187  color= dc[b_x + b_y*stride];
188  distance= b_y;
189  }
190  col [b_x + b_y*stride][3]= color;
191  dist[b_x + b_y*stride][3]= distance >= 0 ? b_y-distance : 9999;
192  }
193  color= 1024;
194  distance= -1;
195  for(b_y=h-1; b_y>=0; b_y--){
196  int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
197  int error_j= s->error_status_table[mb_index_j];
198  int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
199  if(intra_j==0 || !(error_j&ER_DC_ERROR)){
200  color= dc[b_x + b_y*stride];
201  distance= b_y;
202  }
203  col [b_x + b_y*stride][2]= color;
204  dist[b_x + b_y*stride][2]= distance >= 0 ? distance-b_y : 9999;
205  }
206  }
207 
208  for (b_y = 0; b_y < h; b_y++) {
209  for (b_x = 0; b_x < w; b_x++) {
210  int mb_index, error, j;
211  int64_t guess, weight_sum;
212  mb_index = (b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride;
213  error = s->error_status_table[mb_index];
214 
215  if (IS_INTER(s->cur_pic.mb_type[mb_index]))
216  continue; // inter
217  if (!(error & ER_DC_ERROR))
218  continue; // dc-ok
219 
220  weight_sum = 0;
221  guess = 0;
222  for (j = 0; j < 4; j++) {
223  int64_t weight = 256 * 256 * 256 * 16 / FFMAX(dist[b_x + b_y*stride][j], 1);
224  guess += weight*(int64_t)col[b_x + b_y*stride][j];
225  weight_sum += weight;
226  }
227  guess = (guess + weight_sum / 2) / weight_sum;
228  dc[b_x + b_y * stride] = guess;
229  }
230  }
231 
232 fail:
233  av_freep(&col);
234  av_freep(&dist);
235 }
236 
237 /**
238  * simple horizontal deblocking filter used for error resilience
239  * @param w width in 8 pixel blocks
240  * @param h height in 8 pixel blocks
241  */
242 static void h_block_filter(ERContext *s, uint8_t *dst, int w,
243  int h, int stride, int is_luma)
244 {
245  int b_x, b_y, mvx_stride, mvy_stride;
246  const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
247  set_mv_strides(s, &mvx_stride, &mvy_stride);
248  mvx_stride >>= is_luma;
249  mvy_stride *= mvx_stride;
250 
251  for (b_y = 0; b_y < h; b_y++) {
252  for (b_x = 0; b_x < w - 1; b_x++) {
253  int y;
254  int left_status = s->error_status_table[( b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride];
255  int right_status = s->error_status_table[((b_x + 1) >> is_luma) + (b_y >> is_luma) * s->mb_stride];
256  int left_intra = IS_INTRA(s->cur_pic.mb_type[( b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride]);
257  int right_intra = IS_INTRA(s->cur_pic.mb_type[((b_x + 1) >> is_luma) + (b_y >> is_luma) * s->mb_stride]);
258  int left_damage = left_status & ER_MB_ERROR;
259  int right_damage = right_status & ER_MB_ERROR;
260  int offset = b_x * 8 + b_y * stride * 8;
261  int16_t *left_mv = s->cur_pic.motion_val[0][mvy_stride * b_y + mvx_stride * b_x];
262  int16_t *right_mv = s->cur_pic.motion_val[0][mvy_stride * b_y + mvx_stride * (b_x + 1)];
263  if (!(left_damage || right_damage))
264  continue; // both undamaged
265  if ((!left_intra) && (!right_intra) &&
266  FFABS(left_mv[0] - right_mv[0]) +
267  FFABS(left_mv[1] + right_mv[1]) < 2)
268  continue;
269 
270  for (y = 0; y < 8; y++) {
271  int a, b, c, d;
272 
273  a = dst[offset + 7 + y * stride] - dst[offset + 6 + y * stride];
274  b = dst[offset + 8 + y * stride] - dst[offset + 7 + y * stride];
275  c = dst[offset + 9 + y * stride] - dst[offset + 8 + y * stride];
276 
277  d = FFABS(b) - ((FFABS(a) + FFABS(c) + 1) >> 1);
278  d = FFMAX(d, 0);
279  if (b < 0)
280  d = -d;
281 
282  if (d == 0)
283  continue;
284 
285  if (!(left_damage && right_damage))
286  d = d * 16 / 9;
287 
288  if (left_damage) {
289  dst[offset + 7 + y * stride] = cm[dst[offset + 7 + y * stride] + ((d * 7) >> 4)];
290  dst[offset + 6 + y * stride] = cm[dst[offset + 6 + y * stride] + ((d * 5) >> 4)];
291  dst[offset + 5 + y * stride] = cm[dst[offset + 5 + y * stride] + ((d * 3) >> 4)];
292  dst[offset + 4 + y * stride] = cm[dst[offset + 4 + y * stride] + ((d * 1) >> 4)];
293  }
294  if (right_damage) {
295  dst[offset + 8 + y * stride] = cm[dst[offset + 8 + y * stride] - ((d * 7) >> 4)];
296  dst[offset + 9 + y * stride] = cm[dst[offset + 9 + y * stride] - ((d * 5) >> 4)];
297  dst[offset + 10+ y * stride] = cm[dst[offset + 10 + y * stride] - ((d * 3) >> 4)];
298  dst[offset + 11+ y * stride] = cm[dst[offset + 11 + y * stride] - ((d * 1) >> 4)];
299  }
300  }
301  }
302  }
303 }
304 
305 /**
306  * simple vertical deblocking filter used for error resilience
307  * @param w width in 8 pixel blocks
308  * @param h height in 8 pixel blocks
309  */
310 static void v_block_filter(ERContext *s, uint8_t *dst, int w, int h,
311  int stride, int is_luma)
312 {
313  int b_x, b_y, mvx_stride, mvy_stride;
314  const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
315  set_mv_strides(s, &mvx_stride, &mvy_stride);
316  mvx_stride >>= is_luma;
317  mvy_stride *= mvx_stride;
318 
319  for (b_y = 0; b_y < h - 1; b_y++) {
320  for (b_x = 0; b_x < w; b_x++) {
321  int x;
322  int top_status = s->error_status_table[(b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride];
323  int bottom_status = s->error_status_table[(b_x >> is_luma) + ((b_y + 1) >> is_luma) * s->mb_stride];
324  int top_intra = IS_INTRA(s->cur_pic.mb_type[(b_x >> is_luma) + ( b_y >> is_luma) * s->mb_stride]);
325  int bottom_intra = IS_INTRA(s->cur_pic.mb_type[(b_x >> is_luma) + ((b_y + 1) >> is_luma) * s->mb_stride]);
326  int top_damage = top_status & ER_MB_ERROR;
327  int bottom_damage = bottom_status & ER_MB_ERROR;
328  int offset = b_x * 8 + b_y * stride * 8;
329 
330  int16_t *top_mv = s->cur_pic.motion_val[0][mvy_stride * b_y + mvx_stride * b_x];
331  int16_t *bottom_mv = s->cur_pic.motion_val[0][mvy_stride * (b_y + 1) + mvx_stride * b_x];
332 
333  if (!(top_damage || bottom_damage))
334  continue; // both undamaged
335 
336  if ((!top_intra) && (!bottom_intra) &&
337  FFABS(top_mv[0] - bottom_mv[0]) +
338  FFABS(top_mv[1] + bottom_mv[1]) < 2)
339  continue;
340 
341  for (x = 0; x < 8; x++) {
342  int a, b, c, d;
343 
344  a = dst[offset + x + 7 * stride] - dst[offset + x + 6 * stride];
345  b = dst[offset + x + 8 * stride] - dst[offset + x + 7 * stride];
346  c = dst[offset + x + 9 * stride] - dst[offset + x + 8 * stride];
347 
348  d = FFABS(b) - ((FFABS(a) + FFABS(c) + 1) >> 1);
349  d = FFMAX(d, 0);
350  if (b < 0)
351  d = -d;
352 
353  if (d == 0)
354  continue;
355 
356  if (!(top_damage && bottom_damage))
357  d = d * 16 / 9;
358 
359  if (top_damage) {
360  dst[offset + x + 7 * stride] = cm[dst[offset + x + 7 * stride] + ((d * 7) >> 4)];
361  dst[offset + x + 6 * stride] = cm[dst[offset + x + 6 * stride] + ((d * 5) >> 4)];
362  dst[offset + x + 5 * stride] = cm[dst[offset + x + 5 * stride] + ((d * 3) >> 4)];
363  dst[offset + x + 4 * stride] = cm[dst[offset + x + 4 * stride] + ((d * 1) >> 4)];
364  }
365  if (bottom_damage) {
366  dst[offset + x + 8 * stride] = cm[dst[offset + x + 8 * stride] - ((d * 7) >> 4)];
367  dst[offset + x + 9 * stride] = cm[dst[offset + x + 9 * stride] - ((d * 5) >> 4)];
368  dst[offset + x + 10 * stride] = cm[dst[offset + x + 10 * stride] - ((d * 3) >> 4)];
369  dst[offset + x + 11 * stride] = cm[dst[offset + x + 11 * stride] - ((d * 1) >> 4)];
370  }
371  }
372  }
373  }
374 }
375 
376 static void guess_mv(ERContext *s)
377 {
378  uint8_t *fixed = s->er_temp_buffer;
379 #define MV_FROZEN 3
380 #define MV_CHANGED 2
381 #define MV_UNCHANGED 1
382  const int mb_stride = s->mb_stride;
383  const int mb_width = s->mb_width;
384  const int mb_height = s->mb_height;
385  int i, depth, num_avail;
386  int mb_x, mb_y, mot_step, mot_stride;
387 
388  set_mv_strides(s, &mot_step, &mot_stride);
389 
390  num_avail = 0;
391  for (i = 0; i < s->mb_num; i++) {
392  const int mb_xy = s->mb_index2xy[i];
393  int f = 0;
394  int error = s->error_status_table[mb_xy];
395 
396  if (IS_INTRA(s->cur_pic.mb_type[mb_xy]))
397  f = MV_FROZEN; // intra // FIXME check
398  if (!(error & ER_MV_ERROR))
399  f = MV_FROZEN; // inter with undamaged MV
400 
401  fixed[mb_xy] = f;
402  if (f == MV_FROZEN)
403  num_avail++;
404  else if(s->last_pic.f->data[0] && s->last_pic.motion_val[0]){
405  const int mb_y= mb_xy / s->mb_stride;
406  const int mb_x= mb_xy % s->mb_stride;
407  const int mot_index= (mb_x + mb_y*mot_stride) * mot_step;
408  s->cur_pic.motion_val[0][mot_index][0]= s->last_pic.motion_val[0][mot_index][0];
409  s->cur_pic.motion_val[0][mot_index][1]= s->last_pic.motion_val[0][mot_index][1];
410  s->cur_pic.ref_index[0][4*mb_xy] = s->last_pic.ref_index[0][4*mb_xy];
411  }
412  }
413 
414  if ((!(s->avctx->error_concealment&FF_EC_GUESS_MVS)) ||
415  num_avail <= mb_width / 2) {
416  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
417  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
418  const int mb_xy = mb_x + mb_y * s->mb_stride;
419  int mv_dir = (s->last_pic.f && s->last_pic.f->data[0]) ? MV_DIR_FORWARD : MV_DIR_BACKWARD;
420 
421  if (IS_INTRA(s->cur_pic.mb_type[mb_xy]))
422  continue;
423  if (!(s->error_status_table[mb_xy] & ER_MV_ERROR))
424  continue;
425 
426  s->mv[0][0][0] = 0;
427  s->mv[0][0][1] = 0;
428  s->decode_mb(s->opaque, 0, mv_dir, MV_TYPE_16X16, &s->mv,
429  mb_x, mb_y, 0, 0);
430  }
431  }
432  return;
433  }
434 
435  for (depth = 0; ; depth++) {
436  int changed, pass, none_left;
437 
438  none_left = 1;
439  changed = 1;
440  for (pass = 0; (changed || pass < 2) && pass < 10; pass++) {
441  int mb_x, mb_y;
442  int score_sum = 0;
443 
444  changed = 0;
445  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
446  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
447  const int mb_xy = mb_x + mb_y * s->mb_stride;
448  int mv_predictor[8][2] = { { 0 } };
449  int ref[8] = { 0 };
450  int pred_count = 0;
451  int j;
452  int best_score = 256 * 256 * 256 * 64;
453  int best_pred = 0;
454  const int mot_index = (mb_x + mb_y * mot_stride) * mot_step;
455  int prev_x = 0, prev_y = 0, prev_ref = 0;
456 
457  if ((mb_x ^ mb_y ^ pass) & 1)
458  continue;
459 
460  if (fixed[mb_xy] == MV_FROZEN)
461  continue;
462  av_assert1(!IS_INTRA(s->cur_pic.mb_type[mb_xy]));
463  av_assert1(s->last_pic.f && s->last_pic.f->data[0]);
464 
465  j = 0;
466  if (mb_x > 0 && fixed[mb_xy - 1] == MV_FROZEN)
467  j = 1;
468  if (mb_x + 1 < mb_width && fixed[mb_xy + 1] == MV_FROZEN)
469  j = 1;
470  if (mb_y > 0 && fixed[mb_xy - mb_stride] == MV_FROZEN)
471  j = 1;
472  if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] == MV_FROZEN)
473  j = 1;
474  if (j == 0)
475  continue;
476 
477  j = 0;
478  if (mb_x > 0 && fixed[mb_xy - 1 ] == MV_CHANGED)
479  j = 1;
480  if (mb_x + 1 < mb_width && fixed[mb_xy + 1 ] == MV_CHANGED)
481  j = 1;
482  if (mb_y > 0 && fixed[mb_xy - mb_stride] == MV_CHANGED)
483  j = 1;
484  if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] == MV_CHANGED)
485  j = 1;
486  if (j == 0 && pass > 1)
487  continue;
488 
489  none_left = 0;
490 
491  if (mb_x > 0 && fixed[mb_xy - 1]) {
492  mv_predictor[pred_count][0] =
493  s->cur_pic.motion_val[0][mot_index - mot_step][0];
494  mv_predictor[pred_count][1] =
495  s->cur_pic.motion_val[0][mot_index - mot_step][1];
496  ref[pred_count] =
497  s->cur_pic.ref_index[0][4 * (mb_xy - 1)];
498  pred_count++;
499  }
500  if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) {
501  mv_predictor[pred_count][0] =
502  s->cur_pic.motion_val[0][mot_index + mot_step][0];
503  mv_predictor[pred_count][1] =
504  s->cur_pic.motion_val[0][mot_index + mot_step][1];
505  ref[pred_count] =
506  s->cur_pic.ref_index[0][4 * (mb_xy + 1)];
507  pred_count++;
508  }
509  if (mb_y > 0 && fixed[mb_xy - mb_stride]) {
510  mv_predictor[pred_count][0] =
511  s->cur_pic.motion_val[0][mot_index - mot_stride * mot_step][0];
512  mv_predictor[pred_count][1] =
513  s->cur_pic.motion_val[0][mot_index - mot_stride * mot_step][1];
514  ref[pred_count] =
515  s->cur_pic.ref_index[0][4 * (mb_xy - s->mb_stride)];
516  pred_count++;
517  }
518  if (mb_y + 1<mb_height && fixed[mb_xy + mb_stride]) {
519  mv_predictor[pred_count][0] =
520  s->cur_pic.motion_val[0][mot_index + mot_stride * mot_step][0];
521  mv_predictor[pred_count][1] =
522  s->cur_pic.motion_val[0][mot_index + mot_stride * mot_step][1];
523  ref[pred_count] =
524  s->cur_pic.ref_index[0][4 * (mb_xy + s->mb_stride)];
525  pred_count++;
526  }
527  if (pred_count == 0)
528  continue;
529 
530  if (pred_count > 1) {
531  int sum_x = 0, sum_y = 0, sum_r = 0;
532  int max_x, max_y, min_x, min_y, max_r, min_r;
533 
534  for (j = 0; j < pred_count; j++) {
535  sum_x += mv_predictor[j][0];
536  sum_y += mv_predictor[j][1];
537  sum_r += ref[j];
538  if (j && ref[j] != ref[j - 1])
539  goto skip_mean_and_median;
540  }
541 
542  /* mean */
543  mv_predictor[pred_count][0] = sum_x / j;
544  mv_predictor[pred_count][1] = sum_y / j;
545  ref[pred_count] = sum_r / j;
546 
547  /* median */
548  if (pred_count >= 3) {
549  min_y = min_x = min_r = 99999;
550  max_y = max_x = max_r = -99999;
551  } else {
552  min_x = min_y = max_x = max_y = min_r = max_r = 0;
553  }
554  for (j = 0; j < pred_count; j++) {
555  max_x = FFMAX(max_x, mv_predictor[j][0]);
556  max_y = FFMAX(max_y, mv_predictor[j][1]);
557  max_r = FFMAX(max_r, ref[j]);
558  min_x = FFMIN(min_x, mv_predictor[j][0]);
559  min_y = FFMIN(min_y, mv_predictor[j][1]);
560  min_r = FFMIN(min_r, ref[j]);
561  }
562  mv_predictor[pred_count + 1][0] = sum_x - max_x - min_x;
563  mv_predictor[pred_count + 1][1] = sum_y - max_y - min_y;
564  ref[pred_count + 1] = sum_r - max_r - min_r;
565 
566  if (pred_count == 4) {
567  mv_predictor[pred_count + 1][0] /= 2;
568  mv_predictor[pred_count + 1][1] /= 2;
569  ref[pred_count + 1] /= 2;
570  }
571  pred_count += 2;
572  }
573 
574 skip_mean_and_median:
575  /* zero MV */
576  pred_count++;
577 
578  if (!fixed[mb_xy] && 0) {
579  if (s->avctx->codec_id == AV_CODEC_ID_H264) {
580  // FIXME
581  } else {
583  mb_y, 0);
584  }
585  if (!s->last_pic.motion_val[0] ||
586  !s->last_pic.ref_index[0])
587  goto skip_last_mv;
588  prev_x = s->last_pic.motion_val[0][mot_index][0];
589  prev_y = s->last_pic.motion_val[0][mot_index][1];
590  prev_ref = s->last_pic.ref_index[0][4 * mb_xy];
591  } else {
592  prev_x = s->cur_pic.motion_val[0][mot_index][0];
593  prev_y = s->cur_pic.motion_val[0][mot_index][1];
594  prev_ref = s->cur_pic.ref_index[0][4 * mb_xy];
595  }
596 
597  /* last MV */
598  mv_predictor[pred_count][0] = prev_x;
599  mv_predictor[pred_count][1] = prev_y;
600  ref[pred_count] = prev_ref;
601  pred_count++;
602 
603 skip_last_mv:
604 
605  for (j = 0; j < pred_count; j++) {
606  int *linesize = s->cur_pic.f->linesize;
607  int score = 0;
608  uint8_t *src = s->cur_pic.f->data[0] +
609  mb_x * 16 + mb_y * 16 * linesize[0];
610 
611  s->cur_pic.motion_val[0][mot_index][0] =
612  s->mv[0][0][0] = mv_predictor[j][0];
613  s->cur_pic.motion_val[0][mot_index][1] =
614  s->mv[0][0][1] = mv_predictor[j][1];
615 
616  // predictor intra or otherwise not available
617  if (ref[j] < 0)
618  continue;
619 
620  s->decode_mb(s->opaque, ref[j], MV_DIR_FORWARD,
621  MV_TYPE_16X16, &s->mv, mb_x, mb_y, 0, 0);
622 
623  if (mb_x > 0 && fixed[mb_xy - 1]) {
624  int k;
625  for (k = 0; k < 16; k++)
626  score += FFABS(src[k * linesize[0] - 1] -
627  src[k * linesize[0]]);
628  }
629  if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) {
630  int k;
631  for (k = 0; k < 16; k++)
632  score += FFABS(src[k * linesize[0] + 15] -
633  src[k * linesize[0] + 16]);
634  }
635  if (mb_y > 0 && fixed[mb_xy - mb_stride]) {
636  int k;
637  for (k = 0; k < 16; k++)
638  score += FFABS(src[k - linesize[0]] - src[k]);
639  }
640  if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride]) {
641  int k;
642  for (k = 0; k < 16; k++)
643  score += FFABS(src[k + linesize[0] * 15] -
644  src[k + linesize[0] * 16]);
645  }
646 
647  if (score <= best_score) { // <= will favor the last MV
648  best_score = score;
649  best_pred = j;
650  }
651  }
652  score_sum += best_score;
653  s->mv[0][0][0] = mv_predictor[best_pred][0];
654  s->mv[0][0][1] = mv_predictor[best_pred][1];
655 
656  for (i = 0; i < mot_step; i++)
657  for (j = 0; j < mot_step; j++) {
658  s->cur_pic.motion_val[0][mot_index + i + j * mot_stride][0] = s->mv[0][0][0];
659  s->cur_pic.motion_val[0][mot_index + i + j * mot_stride][1] = s->mv[0][0][1];
660  }
661 
662  s->decode_mb(s->opaque, ref[best_pred], MV_DIR_FORWARD,
663  MV_TYPE_16X16, &s->mv, mb_x, mb_y, 0, 0);
664 
665 
666  if (s->mv[0][0][0] != prev_x || s->mv[0][0][1] != prev_y) {
667  fixed[mb_xy] = MV_CHANGED;
668  changed++;
669  } else
670  fixed[mb_xy] = MV_UNCHANGED;
671  }
672  }
673  }
674 
675  if (none_left)
676  return;
677 
678  for (i = 0; i < s->mb_num; i++) {
679  int mb_xy = s->mb_index2xy[i];
680  if (fixed[mb_xy])
681  fixed[mb_xy] = MV_FROZEN;
682  }
683  }
684 }
685 
687 {
688  int is_intra_likely, i, j, undamaged_count, skip_amount, mb_x, mb_y;
689 
690  if (!s->last_pic.f || !s->last_pic.f->data[0])
691  return 1; // no previous frame available -> use spatial prediction
692 
694  return 0;
695 
696  undamaged_count = 0;
697  for (i = 0; i < s->mb_num; i++) {
698  const int mb_xy = s->mb_index2xy[i];
699  const int error = s->error_status_table[mb_xy];
700  if (!((error & ER_DC_ERROR) && (error & ER_MV_ERROR)))
701  undamaged_count++;
702  }
703 
704  if (undamaged_count < 5)
705  return 0; // almost all MBs damaged -> use temporal prediction
706 
707  // prevent dsp.sad() check, that requires access to the image
708  if (CONFIG_XVMC &&
709  s->avctx->hwaccel && s->avctx->hwaccel->decode_mb &&
711  return 1;
712 
713  skip_amount = FFMAX(undamaged_count / 50, 1); // check only up to 50 MBs
714  is_intra_likely = 0;
715 
716  j = 0;
717  for (mb_y = 0; mb_y < s->mb_height - 1; mb_y++) {
718  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
719  int error;
720  const int mb_xy = mb_x + mb_y * s->mb_stride;
721 
722  error = s->error_status_table[mb_xy];
723  if ((error & ER_DC_ERROR) && (error & ER_MV_ERROR))
724  continue; // skip damaged
725 
726  j++;
727  // skip a few to speed things up
728  if ((j % skip_amount) != 0)
729  continue;
730 
731  if (s->cur_pic.f->pict_type == AV_PICTURE_TYPE_I) {
732  int *linesize = s->cur_pic.f->linesize;
733  uint8_t *mb_ptr = s->cur_pic.f->data[0] +
734  mb_x * 16 + mb_y * 16 * linesize[0];
735  uint8_t *last_mb_ptr = s->last_pic.f->data[0] +
736  mb_x * 16 + mb_y * 16 * linesize[0];
737 
738  if (s->avctx->codec_id == AV_CODEC_ID_H264) {
739  // FIXME
740  } else {
741  ff_thread_await_progress(s->last_pic.tf, mb_y, 0);
742  }
743  is_intra_likely += s->mecc.sad[0](NULL, last_mb_ptr, mb_ptr,
744  linesize[0], 16);
745  // FIXME need await_progress() here
746  is_intra_likely -= s->mecc.sad[0](NULL, last_mb_ptr,
747  last_mb_ptr + linesize[0] * 16,
748  linesize[0], 16);
749  } else {
750  if (IS_INTRA(s->cur_pic.mb_type[mb_xy]))
751  is_intra_likely++;
752  else
753  is_intra_likely--;
754  }
755  }
756  }
757 // av_log(NULL, AV_LOG_ERROR, "is_intra_likely: %d type:%d\n", is_intra_likely, s->pict_type);
758  return is_intra_likely > 0;
759 }
760 
762 {
763  if (!s->avctx->error_concealment)
764  return;
765 
766  if (!s->mecc_inited) {
767  ff_me_cmp_init(&s->mecc, s->avctx);
768  s->mecc_inited = 1;
769  }
770 
772  s->mb_stride * s->mb_height * sizeof(uint8_t));
773  s->error_count = 3 * s->mb_num;
774  s->error_occurred = 0;
775 }
776 
778 {
779  if(s->avctx->hwaccel && s->avctx->hwaccel->decode_slice ||
782 #endif
783  !s->cur_pic.f ||
785  )
786  return 0;
787  return 1;
788 }
789 
790 /**
791  * Add a slice.
792  * @param endx x component of the last macroblock, can be -1
793  * for the last of the previous line
794  * @param status the status at the end (ER_MV_END, ER_AC_ERROR, ...), it is
795  * assumed that no earlier end or error of the same type occurred
796  */
797 void ff_er_add_slice(ERContext *s, int startx, int starty,
798  int endx, int endy, int status)
799 {
800  const int start_i = av_clip(startx + starty * s->mb_width, 0, s->mb_num - 1);
801  const int end_i = av_clip(endx + endy * s->mb_width, 0, s->mb_num);
802  const int start_xy = s->mb_index2xy[start_i];
803  const int end_xy = s->mb_index2xy[end_i];
804  int mask = -1;
805 
806  if (s->avctx->hwaccel && s->avctx->hwaccel->decode_slice)
807  return;
808 
809  if (start_i > end_i || start_xy > end_xy) {
811  "internal error, slice end before start\n");
812  return;
813  }
814 
815  if (!s->avctx->error_concealment)
816  return;
817 
818  mask &= ~VP_START;
819  if (status & (ER_AC_ERROR | ER_AC_END)) {
820  mask &= ~(ER_AC_ERROR | ER_AC_END);
821  avpriv_atomic_int_add_and_fetch(&s->error_count, start_i - end_i - 1);
822  }
823  if (status & (ER_DC_ERROR | ER_DC_END)) {
824  mask &= ~(ER_DC_ERROR | ER_DC_END);
825  avpriv_atomic_int_add_and_fetch(&s->error_count, start_i - end_i - 1);
826  }
827  if (status & (ER_MV_ERROR | ER_MV_END)) {
828  mask &= ~(ER_MV_ERROR | ER_MV_END);
829  avpriv_atomic_int_add_and_fetch(&s->error_count, start_i - end_i - 1);
830  }
831 
832  if (status & ER_MB_ERROR) {
833  s->error_occurred = 1;
834  avpriv_atomic_int_set(&s->error_count, INT_MAX);
835  }
836 
837  if (mask == ~0x7F) {
838  memset(&s->error_status_table[start_xy], 0,
839  (end_xy - start_xy) * sizeof(uint8_t));
840  } else {
841  int i;
842  for (i = start_xy; i < end_xy; i++)
843  s->error_status_table[i] &= mask;
844  }
845 
846  if (end_i == s->mb_num)
847  avpriv_atomic_int_set(&s->error_count, INT_MAX);
848  else {
849  s->error_status_table[end_xy] &= mask;
850  s->error_status_table[end_xy] |= status;
851  }
852 
853  s->error_status_table[start_xy] |= VP_START;
854 
855  if (start_xy > 0 && !(s->avctx->active_thread_type & FF_THREAD_SLICE) &&
856  er_supported(s) && s->avctx->skip_top * s->mb_width < start_i) {
857  int prev_status = s->error_status_table[s->mb_index2xy[start_i - 1]];
858 
859  prev_status &= ~ VP_START;
860  if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END)) {
861  s->error_occurred = 1;
862  avpriv_atomic_int_set(&s->error_count, INT_MAX);
863  }
864  }
865 }
866 
868 {
869  int *linesize = NULL;
870  int i, mb_x, mb_y, error, error_type, dc_error, mv_error, ac_error;
871  int distance;
872  int threshold_part[4] = { 100, 100, 100 };
873  int threshold = 50;
874  int is_intra_likely;
875  int size = s->b8_stride * 2 * s->mb_height;
876 
877  /* We do not support ER of field pictures yet,
878  * though it should not crash if enabled. */
879  if (!s->avctx->error_concealment || s->error_count == 0 ||
880  s->avctx->lowres ||
881  !er_supported(s) ||
882  s->error_count == 3 * s->mb_width *
883  (s->avctx->skip_top + s->avctx->skip_bottom)) {
884  return;
885  }
886  linesize = s->cur_pic.f->linesize;
887  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
888  int status = s->error_status_table[mb_x + (s->mb_height - 1) * s->mb_stride];
889  if (status != 0x7F)
890  break;
891  }
892 
893  if ( mb_x == s->mb_width
895  && (s->avctx->height&16)
896  && s->error_count == 3 * s->mb_width * (s->avctx->skip_top + s->avctx->skip_bottom + 1)
897  ) {
898  av_log(s->avctx, AV_LOG_DEBUG, "ignoring last missing slice\n");
899  return;
900  }
901 
902  if (s->last_pic.f) {
903  if (s->last_pic.f->width != s->cur_pic.f->width ||
904  s->last_pic.f->height != s->cur_pic.f->height ||
905  s->last_pic.f->format != s->cur_pic.f->format) {
906  av_log(s->avctx, AV_LOG_WARNING, "Cannot use previous picture in error concealment\n");
907  memset(&s->last_pic, 0, sizeof(s->last_pic));
908  }
909  }
910  if (s->next_pic.f) {
911  if (s->next_pic.f->width != s->cur_pic.f->width ||
912  s->next_pic.f->height != s->cur_pic.f->height ||
913  s->next_pic.f->format != s->cur_pic.f->format) {
914  av_log(s->avctx, AV_LOG_WARNING, "Cannot use next picture in error concealment\n");
915  memset(&s->next_pic, 0, sizeof(s->next_pic));
916  }
917  }
918 
919  if (!s->cur_pic.motion_val[0] || !s->cur_pic.ref_index[0]) {
920  av_log(s->avctx, AV_LOG_ERROR, "Warning MVs not available\n");
921 
922  for (i = 0; i < 2; i++) {
923  s->ref_index_buf[i] = av_buffer_allocz(s->mb_stride * s->mb_height * 4 * sizeof(uint8_t));
924  s->motion_val_buf[i] = av_buffer_allocz((size + 4) * 2 * sizeof(uint16_t));
925  if (!s->ref_index_buf[i] || !s->motion_val_buf[i])
926  break;
927  s->cur_pic.ref_index[i] = s->ref_index_buf[i]->data;
928  s->cur_pic.motion_val[i] = (int16_t (*)[2])s->motion_val_buf[i]->data + 4;
929  }
930  if (i < 2) {
931  for (i = 0; i < 2; i++) {
934  s->cur_pic.ref_index[i] = NULL;
935  s->cur_pic.motion_val[i] = NULL;
936  }
937  return;
938  }
939  }
940 
941  if (s->avctx->debug & FF_DEBUG_ER) {
942  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
943  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
944  int status = s->error_status_table[mb_x + mb_y * s->mb_stride];
945 
946  av_log(s->avctx, AV_LOG_DEBUG, "%2X ", status);
947  }
948  av_log(s->avctx, AV_LOG_DEBUG, "\n");
949  }
950  }
951 
952 #if 1
953  /* handle overlapping slices */
954  for (error_type = 1; error_type <= 3; error_type++) {
955  int end_ok = 0;
956 
957  for (i = s->mb_num - 1; i >= 0; i--) {
958  const int mb_xy = s->mb_index2xy[i];
959  int error = s->error_status_table[mb_xy];
960 
961  if (error & (1 << error_type))
962  end_ok = 1;
963  if (error & (8 << error_type))
964  end_ok = 1;
965 
966  if (!end_ok)
967  s->error_status_table[mb_xy] |= 1 << error_type;
968 
969  if (error & VP_START)
970  end_ok = 0;
971  }
972  }
973 #endif
974 #if 1
975  /* handle slices with partitions of different length */
976  if (s->partitioned_frame) {
977  int end_ok = 0;
978 
979  for (i = s->mb_num - 1; i >= 0; i--) {
980  const int mb_xy = s->mb_index2xy[i];
981  int error = s->error_status_table[mb_xy];
982 
983  if (error & ER_AC_END)
984  end_ok = 0;
985  if ((error & ER_MV_END) ||
986  (error & ER_DC_END) ||
987  (error & ER_AC_ERROR))
988  end_ok = 1;
989 
990  if (!end_ok)
991  s->error_status_table[mb_xy]|= ER_AC_ERROR;
992 
993  if (error & VP_START)
994  end_ok = 0;
995  }
996  }
997 #endif
998  /* handle missing slices */
999  if (s->avctx->err_recognition & AV_EF_EXPLODE) {
1000  int end_ok = 1;
1001 
1002  // FIXME + 100 hack
1003  for (i = s->mb_num - 2; i >= s->mb_width + 100; i--) {
1004  const int mb_xy = s->mb_index2xy[i];
1005  int error1 = s->error_status_table[mb_xy];
1006  int error2 = s->error_status_table[s->mb_index2xy[i + 1]];
1007 
1008  if (error1 & VP_START)
1009  end_ok = 1;
1010 
1011  if (error2 == (VP_START | ER_MB_ERROR | ER_MB_END) &&
1012  error1 != (VP_START | ER_MB_ERROR | ER_MB_END) &&
1013  ((error1 & ER_AC_END) || (error1 & ER_DC_END) ||
1014  (error1 & ER_MV_END))) {
1015  // end & uninit
1016  end_ok = 0;
1017  }
1018 
1019  if (!end_ok)
1020  s->error_status_table[mb_xy] |= ER_MB_ERROR;
1021  }
1022  }
1023 
1024 #if 1
1025  /* backward mark errors */
1026  distance = 9999999;
1027  for (error_type = 1; error_type <= 3; error_type++) {
1028  for (i = s->mb_num - 1; i >= 0; i--) {
1029  const int mb_xy = s->mb_index2xy[i];
1030  int error = s->error_status_table[mb_xy];
1031 
1032  if (!s->mbskip_table || !s->mbskip_table[mb_xy]) // FIXME partition specific
1033  distance++;
1034  if (error & (1 << error_type))
1035  distance = 0;
1036 
1037  if (s->partitioned_frame) {
1038  if (distance < threshold_part[error_type - 1])
1039  s->error_status_table[mb_xy] |= 1 << error_type;
1040  } else {
1041  if (distance < threshold)
1042  s->error_status_table[mb_xy] |= 1 << error_type;
1043  }
1044 
1045  if (error & VP_START)
1046  distance = 9999999;
1047  }
1048  }
1049 #endif
1050 
1051  /* forward mark errors */
1052  error = 0;
1053  for (i = 0; i < s->mb_num; i++) {
1054  const int mb_xy = s->mb_index2xy[i];
1055  int old_error = s->error_status_table[mb_xy];
1056 
1057  if (old_error & VP_START) {
1058  error = old_error & ER_MB_ERROR;
1059  } else {
1060  error |= old_error & ER_MB_ERROR;
1061  s->error_status_table[mb_xy] |= error;
1062  }
1063  }
1064 #if 1
1065  /* handle not partitioned case */
1066  if (!s->partitioned_frame) {
1067  for (i = 0; i < s->mb_num; i++) {
1068  const int mb_xy = s->mb_index2xy[i];
1069  int error = s->error_status_table[mb_xy];
1070  if (error & ER_MB_ERROR)
1071  error |= ER_MB_ERROR;
1072  s->error_status_table[mb_xy] = error;
1073  }
1074  }
1075 #endif
1076 
1077  dc_error = ac_error = mv_error = 0;
1078  for (i = 0; i < s->mb_num; i++) {
1079  const int mb_xy = s->mb_index2xy[i];
1080  int error = s->error_status_table[mb_xy];
1081  if (error & ER_DC_ERROR)
1082  dc_error++;
1083  if (error & ER_AC_ERROR)
1084  ac_error++;
1085  if (error & ER_MV_ERROR)
1086  mv_error++;
1087  }
1088  av_log(s->avctx, AV_LOG_INFO, "concealing %d DC, %d AC, %d MV errors in %c frame\n",
1089  dc_error, ac_error, mv_error, av_get_picture_type_char(s->cur_pic.f->pict_type));
1090 
1091  is_intra_likely = is_intra_more_likely(s);
1092 
1093  /* set unknown mb-type to most likely */
1094  for (i = 0; i < s->mb_num; i++) {
1095  const int mb_xy = s->mb_index2xy[i];
1096  int error = s->error_status_table[mb_xy];
1097  if (!((error & ER_DC_ERROR) && (error & ER_MV_ERROR)))
1098  continue;
1099 
1100  if (is_intra_likely)
1101  s->cur_pic.mb_type[mb_xy] = MB_TYPE_INTRA4x4;
1102  else
1103  s->cur_pic.mb_type[mb_xy] = MB_TYPE_16x16 | MB_TYPE_L0;
1104  }
1105 
1106  // change inter to intra blocks if no reference frames are available
1107  if (!(s->last_pic.f && s->last_pic.f->data[0]) &&
1108  !(s->next_pic.f && s->next_pic.f->data[0]))
1109  for (i = 0; i < s->mb_num; i++) {
1110  const int mb_xy = s->mb_index2xy[i];
1111  if (!IS_INTRA(s->cur_pic.mb_type[mb_xy]))
1112  s->cur_pic.mb_type[mb_xy] = MB_TYPE_INTRA4x4;
1113  }
1114 
1115  /* handle inter blocks with damaged AC */
1116  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1117  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1118  const int mb_xy = mb_x + mb_y * s->mb_stride;
1119  const int mb_type = s->cur_pic.mb_type[mb_xy];
1120  const int dir = !(s->last_pic.f && s->last_pic.f->data[0]);
1121  const int mv_dir = dir ? MV_DIR_BACKWARD : MV_DIR_FORWARD;
1122  int mv_type;
1123 
1124  int error = s->error_status_table[mb_xy];
1125 
1126  if (IS_INTRA(mb_type))
1127  continue; // intra
1128  if (error & ER_MV_ERROR)
1129  continue; // inter with damaged MV
1130  if (!(error & ER_AC_ERROR))
1131  continue; // undamaged inter
1132 
1133  if (IS_8X8(mb_type)) {
1134  int mb_index = mb_x * 2 + mb_y * 2 * s->b8_stride;
1135  int j;
1136  mv_type = MV_TYPE_8X8;
1137  for (j = 0; j < 4; j++) {
1138  s->mv[0][j][0] = s->cur_pic.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][0];
1139  s->mv[0][j][1] = s->cur_pic.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][1];
1140  }
1141  } else {
1142  mv_type = MV_TYPE_16X16;
1143  s->mv[0][0][0] = s->cur_pic.motion_val[dir][mb_x * 2 + mb_y * 2 * s->b8_stride][0];
1144  s->mv[0][0][1] = s->cur_pic.motion_val[dir][mb_x * 2 + mb_y * 2 * s->b8_stride][1];
1145  }
1146 
1147  s->decode_mb(s->opaque, 0 /* FIXME h264 partitioned slices need this set */,
1148  mv_dir, mv_type, &s->mv, mb_x, mb_y, 0, 0);
1149  }
1150  }
1151 
1152  /* guess MVs */
1153  if (s->cur_pic.f->pict_type == AV_PICTURE_TYPE_B) {
1154  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1155  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1156  int xy = mb_x * 2 + mb_y * 2 * s->b8_stride;
1157  const int mb_xy = mb_x + mb_y * s->mb_stride;
1158  const int mb_type = s->cur_pic.mb_type[mb_xy];
1159  int mv_dir = MV_DIR_FORWARD | MV_DIR_BACKWARD;
1160 
1161  int error = s->error_status_table[mb_xy];
1162 
1163  if (IS_INTRA(mb_type))
1164  continue;
1165  if (!(error & ER_MV_ERROR))
1166  continue; // inter with undamaged MV
1167  if (!(error & ER_AC_ERROR))
1168  continue; // undamaged inter
1169 
1170  if (!(s->last_pic.f && s->last_pic.f->data[0]))
1171  mv_dir &= ~MV_DIR_FORWARD;
1172  if (!(s->next_pic.f && s->next_pic.f->data[0]))
1173  mv_dir &= ~MV_DIR_BACKWARD;
1174 
1175  if (s->pp_time) {
1176  int time_pp = s->pp_time;
1177  int time_pb = s->pb_time;
1178 
1180  ff_thread_await_progress(s->next_pic.tf, mb_y, 0);
1181 
1182  s->mv[0][0][0] = s->next_pic.motion_val[0][xy][0] * time_pb / time_pp;
1183  s->mv[0][0][1] = s->next_pic.motion_val[0][xy][1] * time_pb / time_pp;
1184  s->mv[1][0][0] = s->next_pic.motion_val[0][xy][0] * (time_pb - time_pp) / time_pp;
1185  s->mv[1][0][1] = s->next_pic.motion_val[0][xy][1] * (time_pb - time_pp) / time_pp;
1186  } else {
1187  s->mv[0][0][0] = 0;
1188  s->mv[0][0][1] = 0;
1189  s->mv[1][0][0] = 0;
1190  s->mv[1][0][1] = 0;
1191  }
1192 
1193  s->decode_mb(s->opaque, 0, mv_dir, MV_TYPE_16X16, &s->mv,
1194  mb_x, mb_y, 0, 0);
1195  }
1196  }
1197  } else
1198  guess_mv(s);
1199 
1200  /* the filters below manipulate raw image, skip them */
1201  if (CONFIG_XVMC && s->avctx->hwaccel && s->avctx->hwaccel->decode_mb)
1202  goto ec_clean;
1203  /* fill DC for inter blocks */
1204  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1205  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1206  int dc, dcu, dcv, y, n;
1207  int16_t *dc_ptr;
1208  uint8_t *dest_y, *dest_cb, *dest_cr;
1209  const int mb_xy = mb_x + mb_y * s->mb_stride;
1210  const int mb_type = s->cur_pic.mb_type[mb_xy];
1211 
1212  // error = s->error_status_table[mb_xy];
1213 
1214  if (IS_INTRA(mb_type) && s->partitioned_frame)
1215  continue;
1216  // if (error & ER_MV_ERROR)
1217  // continue; // inter data damaged FIXME is this good?
1218 
1219  dest_y = s->cur_pic.f->data[0] + mb_x * 16 + mb_y * 16 * linesize[0];
1220  dest_cb = s->cur_pic.f->data[1] + mb_x * 8 + mb_y * 8 * linesize[1];
1221  dest_cr = s->cur_pic.f->data[2] + mb_x * 8 + mb_y * 8 * linesize[2];
1222 
1223  dc_ptr = &s->dc_val[0][mb_x * 2 + mb_y * 2 * s->b8_stride];
1224  for (n = 0; n < 4; n++) {
1225  dc = 0;
1226  for (y = 0; y < 8; y++) {
1227  int x;
1228  for (x = 0; x < 8; x++)
1229  dc += dest_y[x + (n & 1) * 8 +
1230  (y + (n >> 1) * 8) * linesize[0]];
1231  }
1232  dc_ptr[(n & 1) + (n >> 1) * s->b8_stride] = (dc + 4) >> 3;
1233  }
1234 
1235  if (!s->cur_pic.f->data[2])
1236  continue;
1237 
1238  dcu = dcv = 0;
1239  for (y = 0; y < 8; y++) {
1240  int x;
1241  for (x = 0; x < 8; x++) {
1242  dcu += dest_cb[x + y * linesize[1]];
1243  dcv += dest_cr[x + y * linesize[2]];
1244  }
1245  }
1246  s->dc_val[1][mb_x + mb_y * s->mb_stride] = (dcu + 4) >> 3;
1247  s->dc_val[2][mb_x + mb_y * s->mb_stride] = (dcv + 4) >> 3;
1248  }
1249  }
1250 #if 1
1251  /* guess DC for damaged blocks */
1252  guess_dc(s, s->dc_val[0], s->mb_width*2, s->mb_height*2, s->b8_stride, 1);
1253  guess_dc(s, s->dc_val[1], s->mb_width , s->mb_height , s->mb_stride, 0);
1254  guess_dc(s, s->dc_val[2], s->mb_width , s->mb_height , s->mb_stride, 0);
1255 #endif
1256 
1257  /* filter luma DC */
1258  filter181(s->dc_val[0], s->mb_width * 2, s->mb_height * 2, s->b8_stride);
1259 
1260 #if 1
1261  /* render DC only intra */
1262  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1263  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1264  uint8_t *dest_y, *dest_cb, *dest_cr;
1265  const int mb_xy = mb_x + mb_y * s->mb_stride;
1266  const int mb_type = s->cur_pic.mb_type[mb_xy];
1267 
1268  int error = s->error_status_table[mb_xy];
1269 
1270  if (IS_INTER(mb_type))
1271  continue;
1272  if (!(error & ER_AC_ERROR))
1273  continue; // undamaged
1274 
1275  dest_y = s->cur_pic.f->data[0] + mb_x * 16 + mb_y * 16 * linesize[0];
1276  dest_cb = s->cur_pic.f->data[1] + mb_x * 8 + mb_y * 8 * linesize[1];
1277  dest_cr = s->cur_pic.f->data[2] + mb_x * 8 + mb_y * 8 * linesize[2];
1278  if (!s->cur_pic.f->data[2])
1279  dest_cb = dest_cr = NULL;
1280 
1281  put_dc(s, dest_y, dest_cb, dest_cr, mb_x, mb_y);
1282  }
1283  }
1284 #endif
1285 
1287  /* filter horizontal block boundaries */
1288  h_block_filter(s, s->cur_pic.f->data[0], s->mb_width * 2,
1289  s->mb_height * 2, linesize[0], 1);
1290 
1291  /* filter vertical block boundaries */
1292  v_block_filter(s, s->cur_pic.f->data[0], s->mb_width * 2,
1293  s->mb_height * 2, linesize[0], 1);
1294 
1295  if (s->cur_pic.f->data[2]) {
1296  h_block_filter(s, s->cur_pic.f->data[1], s->mb_width,
1297  s->mb_height, linesize[1], 0);
1298  h_block_filter(s, s->cur_pic.f->data[2], s->mb_width,
1299  s->mb_height, linesize[2], 0);
1300  v_block_filter(s, s->cur_pic.f->data[1], s->mb_width,
1301  s->mb_height, linesize[1], 0);
1302  v_block_filter(s, s->cur_pic.f->data[2], s->mb_width,
1303  s->mb_height, linesize[2], 0);
1304  }
1305  }
1306 
1307 ec_clean:
1308  /* clean a few tables */
1309  for (i = 0; i < s->mb_num; i++) {
1310  const int mb_xy = s->mb_index2xy[i];
1311  int error = s->error_status_table[mb_xy];
1312 
1313  if (s->mbskip_table && s->cur_pic.f->pict_type != AV_PICTURE_TYPE_B &&
1314  (error & (ER_DC_ERROR | ER_MV_ERROR | ER_AC_ERROR))) {
1315  s->mbskip_table[mb_xy] = 0;
1316  }
1317  if (s->mbintra_table)
1318  s->mbintra_table[mb_xy] = 1;
1319  }
1320 
1321  for (i = 0; i < 2; i++) {
1324  s->cur_pic.ref_index[i] = NULL;
1325  s->cur_pic.motion_val[i] = NULL;
1326  }
1327 
1328  memset(&s->cur_pic, 0, sizeof(ERPicture));
1329  memset(&s->last_pic, 0, sizeof(ERPicture));
1330  memset(&s->next_pic, 0, sizeof(ERPicture));
1331 }
av_cold void ff_me_cmp_init(MECmpContext *c, AVCodecContext *avctx)
Definition: me_cmp.c:936
#define FF_EC_GUESS_MVS
Definition: avcodec.h:2833
#define NULL
Definition: coverity.c:32
const struct AVCodec * codec
Definition: avcodec.h:1511
#define avpriv_atomic_int_add_and_fetch
Definition: atomic_gcc.h:50
const char * s
Definition: avisynth_c.h:631
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it...
Definition: buffer.c:124
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
#define MV_CHANGED
AVBufferRef * motion_val_buf[2]
#define FF_EC_FAVOR_INTER
Definition: avcodec.h:2835
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define ER_MB_END
static void put_dc(ERContext *s, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int mb_x, int mb_y)
Replace the current MB with a flat dc-only version.
void ff_er_frame_end(ERContext *s)
static void v_block_filter(ERContext *s, uint8_t *dst, int w, int h, int stride, int is_luma)
simple vertical deblocking filter used for error resilience
static void filter181(int16_t *data, int width, int height, int stride)
#define MB_TYPE_INTRA4x4
Definition: avcodec.h:1141
const char * b
Definition: vf_curves.c:109
#define VP_START
< current MB is the first after a resync marker
#define MAX_NEG_CROP
Definition: mathops.h:30
static void guess_mv(ERContext *s)
uint32_t * mb_type
ERPicture last_pic
mpegvideo header.
#define ER_MV_ERROR
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
#define MV_FROZEN
uint16_t pp_time
struct AVHWAccel * hwaccel
Hardware accelerator in use.
Definition: avcodec.h:2922
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
uint8_t
AVBufferRef * ref_index_buf[2]
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
Definition: log.c:94
#define FF_EC_DEBLOCK
Definition: avcodec.h:2834
Multithreading support functions.
#define ER_MB_ERROR
#define FF_API_CAP_VDPAU
Definition: version.h:95
#define avpriv_atomic_int_set
Definition: atomic_gcc.h:39
ERPicture cur_pic
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:91
#define AV_CODEC_CAP_HWACCEL_VDPAU
Codec can export data for HW decoding (VDPAU).
Definition: avcodec.h:893
#define ER_MV_END
void(* decode_mb)(struct MpegEncContext *s)
Called for every Macroblock in a slice.
Definition: avcodec.h:3685
static void guess_dc(ERContext *s, int16_t *dc, int w, int h, int stride, int is_luma)
guess the dc of blocks which do not have an undamaged dc
int lowres
low resolution decoding, 1-> 1/2 size, 2->1/4 size
Definition: avcodec.h:3013
ptrdiff_t size
Definition: opengl_enc.c:101
#define av_log(a,...)
#define cm
Definition: dvbsubdec.c:36
Libavcodec version macros.
int width
width and height of the video frame
Definition: frame.h:220
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
static const uint16_t mask[17]
Definition: lzw.c:38
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:2901
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:3052
int error_concealment
error concealment flags
Definition: avcodec.h:2832
int capabilities
Codec capabilities.
Definition: avcodec.h:3491
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
void(* decode_mb)(void *opaque, int ref, int mv_dir, int mv_type, int(*mv)[2][4][2], int mb_x, int mb_y, int mb_intra, int mb_skipped)
ThreadFrame * tf
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:79
Libavcodec external API header.
#define fail()
Definition: checkasm.h:57
uint8_t * mbintra_table
int * mb_index2xy
int depth
Definition: v4l.c:62
#define pass
Definition: fft_template.c:509
static float distance(float x, float y, int band)
uint8_t * error_status_table
common internal API header
#define ER_AC_ERROR
useful rectangle filling function
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:242
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2890
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
uint8_t * er_temp_buffer
#define FFMIN(a, b)
Definition: common.h:81
float y
#define ER_DC_END
uint16_t pb_time
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:68
int n
Definition: avisynth_c.h:547
int skip_top
Number of macroblock rows at the top which are skipped.
Definition: avcodec.h:2114
preferred ID for MPEG-1/2 video decoding
Definition: avcodec.h:107
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
Definition: frame.h:232
#define MV_TYPE_16X16
1 vector for the whole mb
Definition: mpegvideo.h:274
#define MV_DIR_BACKWARD
Definition: mpegvideo.h:271
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
AVS_Value src
Definition: avisynth_c.h:482
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:3045
enum AVCodecID codec_id
Definition: avcodec.h:1519
ERPicture next_pic
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:199
int debug
debug
Definition: avcodec.h:2842
uint8_t * data
The data buffer.
Definition: buffer.h:89
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:82
BYTE int const BYTE int int int height
Definition: avisynth_c.h:676
#define MB_TYPE_16x16
Definition: avcodec.h:1144
MECmpContext mecc
#define IS_INTER(a)
Definition: mpegutils.h:75
#define ER_DC_ERROR
AVCodecContext * avctx
static int weight(int i, int blen, int offset)
Definition: diracdec.c:1299
#define MV_DIR_FORWARD
Definition: mpegvideo.h:270
int8_t * ref_index[2]
int skip_bottom
Number of macroblock rows at the bottom which are skipped.
Definition: avcodec.h:2121
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:182
me_cmp_func sad[6]
Definition: me_cmp.h:56
#define FF_DEBUG_ER
Definition: avcodec.h:2860
volatile int error_count
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
int partitioned_frame
if(ret< 0)
Definition: vf_mcdeint.c:280
#define MV_UNCHANGED
static double c[64]
int16_t * dc_val[3]
Bi-dir predicted.
Definition: avutil.h:268
AVFrame * f
#define ff_crop_tab
#define IS_INTRA(x, y)
static int is_intra_more_likely(ERContext *s)
int mv[2][4][2]
int16_t(*[2] motion_val)[2]
#define IS_8X8(a)
Definition: mpegutils.h:85
static int er_supported(ERContext *s)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> dc
void ff_er_frame_start(ERContext *s)
int height
Definition: frame.h:220
static void h_block_filter(ERContext *s, uint8_t *dst, int w, int h, int stride, int is_luma)
simple horizontal deblocking filter used for error resilience
#define av_freep(p)
#define ER_AC_END
#define av_malloc_array(a, b)
#define stride
int(* decode_slice)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Callback for each slice.
Definition: avcodec.h:3654
#define MV_TYPE_8X8
4 vectors (h263, mpeg4 4MV)
Definition: mpegvideo.h:275
uint8_t * mbskip_table
static void set_mv_strides(ERContext *s, int *mv_step, int *stride)
#define MB_TYPE_L0
Definition: avcodec.h:1157
static int width