40 #if !CONFIG_HARDCODED_TABLES
80 if(n <= 2)
return i&1;
90 #if (!CONFIG_HARDCODED_TABLES) && (!FFT_FIXED_32)
93 double freq = 2*
M_PI/
m;
96 tab[i] =
FIX15(cos(i*freq));
103 0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
123 for (i = 0; i <
n; i += 16) {
126 for (k = 0; k < 16; k++)
131 for (k = 0; k < 16; k++) {
133 j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
144 if (nbits < 2 || nbits > 16)
183 for(j=4; j<=
nbits; j++) {
195 j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
213 for(j=0;j<np;j++) s->
tmp_buf[revtab[j]] = z[j];
229 FFTSample tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
231 const int fft_size = (1 << s->
nbits);
234 num_transforms = (0x2aab >> (16 - s->
nbits)) | 1;
236 for (n=0; n<num_transforms; n++){
240 tmp1 = tmpz[0].
re + tmpz[1].
re;
241 tmp5 = tmpz[2].
re + tmpz[3].
re;
242 tmp2 = tmpz[0].
im + tmpz[1].
im;
243 tmp6 = tmpz[2].
im + tmpz[3].
im;
244 tmp3 = tmpz[0].
re - tmpz[1].
re;
245 tmp8 = tmpz[2].
im - tmpz[3].
im;
246 tmp4 = tmpz[0].
im - tmpz[1].
im;
247 tmp7 = tmpz[2].
re - tmpz[3].
re;
249 tmpz[0].
re = tmp1 + tmp5;
250 tmpz[2].
re = tmp1 - tmp5;
251 tmpz[0].
im = tmp2 + tmp6;
252 tmpz[2].
im = tmp2 - tmp6;
253 tmpz[1].
re = tmp3 + tmp8;
254 tmpz[3].
re = tmp3 - tmp8;
255 tmpz[1].
im = tmp4 - tmp7;
256 tmpz[3].
im = tmp4 + tmp7;
262 num_transforms = (num_transforms >> 1) | 1;
264 for (n=0; n<num_transforms; n++){
268 tmp1 = tmpz[4].
re + tmpz[5].
re;
269 tmp3 = tmpz[6].
re + tmpz[7].
re;
270 tmp2 = tmpz[4].
im + tmpz[5].
im;
271 tmp4 = tmpz[6].
im + tmpz[7].
im;
277 tmp1 = tmpz[4].
re - tmpz[5].
re;
278 tmp2 = tmpz[4].
im - tmpz[5].
im;
279 tmp3 = tmpz[6].
re - tmpz[7].
re;
280 tmp4 = tmpz[6].
im - tmpz[7].
im;
282 tmpz[4].
re = tmpz[0].
re - tmp5;
283 tmpz[0].
re = tmpz[0].
re + tmp5;
284 tmpz[4].
im = tmpz[0].
im - tmp6;
285 tmpz[0].
im = tmpz[0].
im + tmp6;
286 tmpz[6].
re = tmpz[2].
re - tmp8;
287 tmpz[2].
re = tmpz[2].
re + tmp8;
288 tmpz[6].
im = tmpz[2].
im + tmp7;
289 tmpz[2].
im = tmpz[2].
im - tmp7;
292 tmp5 = (
int32_t)((accu + 0x40000000) >> 31);
294 tmp7 = (
int32_t)((accu + 0x40000000) >> 31);
296 tmp6 = (
int32_t)((accu + 0x40000000) >> 31);
298 tmp8 = (
int32_t)((accu + 0x40000000) >> 31);
304 tmpz[5].
re = tmpz[1].
re - tmp1;
305 tmpz[1].
re = tmpz[1].
re + tmp1;
306 tmpz[5].
im = tmpz[1].
im - tmp2;
307 tmpz[1].
im = tmpz[1].
im + tmp2;
308 tmpz[7].
re = tmpz[3].
re - tmp4;
309 tmpz[3].
re = tmpz[3].
re + tmp4;
310 tmpz[7].
im = tmpz[3].
im + tmp3;
311 tmpz[3].
im = tmpz[3].
im - tmp3;
317 for (nbits=4; nbits<=s->
nbits; nbits++){
320 num_transforms = (num_transforms >> 1) | 1;
322 for (n=0; n<num_transforms; n++){
328 tmp5 = tmpz[ n2].
re + tmpz[n34].
re;
329 tmp1 = tmpz[ n2].
re - tmpz[n34].
re;
330 tmp6 = tmpz[ n2].
im + tmpz[n34].
im;
331 tmp2 = tmpz[ n2].
im - tmpz[n34].
im;
333 tmpz[ n2].
re = tmpz[ 0].
re - tmp5;
334 tmpz[ 0].
re = tmpz[ 0].
re + tmp5;
335 tmpz[ n2].
im = tmpz[ 0].
im - tmp6;
336 tmpz[ 0].
im = tmpz[ 0].
im + tmp6;
337 tmpz[n34].
re = tmpz[n4].
re - tmp2;
338 tmpz[ n4].
re = tmpz[n4].
re + tmp2;
339 tmpz[n34].
im = tmpz[n4].
im + tmp1;
340 tmpz[ n4].
im = tmpz[n4].
im - tmp1;
342 for (i=1; i<n4; i++){
345 accu = (int64_t)w_re*tmpz[ n2+i].
re;
346 accu += (int64_t)w_im*tmpz[ n2+i].
im;
347 tmp1 = (
int32_t)((accu + 0x40000000) >> 31);
348 accu = (int64_t)w_re*tmpz[ n2+i].
im;
349 accu -= (int64_t)w_im*tmpz[ n2+i].
re;
350 tmp2 = (
int32_t)((accu + 0x40000000) >> 31);
351 accu = (int64_t)w_re*tmpz[n34+i].
re;
352 accu -= (int64_t)w_im*tmpz[n34+i].
im;
353 tmp3 = (
int32_t)((accu + 0x40000000) >> 31);
354 accu = (int64_t)w_re*tmpz[n34+i].
im;
355 accu += (int64_t)w_im*tmpz[n34+i].
re;
356 tmp4 = (
int32_t)((accu + 0x40000000) >> 31);
363 tmpz[ n2+i].
re = tmpz[ i].
re - tmp5;
364 tmpz[ i].
re = tmpz[ i].
re + tmp5;
365 tmpz[ n2+i].
im = tmpz[ i].
im - tmp6;
366 tmpz[ i].
im = tmpz[ i].
im + tmp6;
367 tmpz[n34+i].
re = tmpz[n4+i].
re - tmp2;
368 tmpz[ n4+i].
re = tmpz[n4+i].
re + tmp2;
369 tmpz[n34+i].
im = tmpz[n4+i].
im + tmp1;
370 tmpz[ n4+i].
im = tmpz[n4+i].
im - tmp1;
383 #define BUTTERFLIES(a0,a1,a2,a3) {\
385 BF(a2.re, a0.re, a0.re, t5);\
386 BF(a3.im, a1.im, a1.im, t3);\
388 BF(a3.re, a1.re, a1.re, t4);\
389 BF(a2.im, a0.im, a0.im, t6);\
395 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
396 FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
398 BF(a2.re, a0.re, r0, t5);\
399 BF(a3.im, a1.im, i1, t3);\
401 BF(a3.re, a1.re, r1, t4);\
402 BF(a2.im, a0.im, i0, t6);\
405 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
406 CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
407 CMUL(t5, t6, a3.re, a3.im, wre, wim);\
408 BUTTERFLIES(a0,a1,a2,a3)\
411 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
416 BUTTERFLIES(a0,a1,a2,a3)\
421 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
423 FFTDouble t1, t2, t3, t4, t5, t6;\
427 const FFTSample *wim = wre+o1;\
430 TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
431 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
436 TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
437 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
443 #define BUTTERFLIES BUTTERFLIES_BIG
446 #define DECL_FFT(n,n2,n4)\
447 static void fft##n(FFTComplex *z)\
452 pass(z,FFT_NAME(ff_cos_##n),n4/2);\
459 BF(t3, t1, z[0].
re, z[1].re);
460 BF(t8, t6, z[3].re, z[2].re);
461 BF(z[2].re, z[0].re, t1, t6);
462 BF(t4, t2, z[0].
im, z[1].im);
463 BF(t7, t5, z[2].im, z[3].im);
464 BF(z[3].im, z[1].im, t4, t8);
465 BF(z[3].re, z[1].re, t3, t7);
466 BF(z[2].im, z[0].im, t2, t5);
475 BF(t1, z[5].
re, z[4].re, -z[5].re);
476 BF(t2, z[5].
im, z[4].im, -z[5].im);
477 BF(t5, z[7].re, z[6].re, -z[7].re);
478 BF(t6, z[7].im, z[6].im, -z[7].im);
497 TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
498 TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
509 #define pass pass_big
520 fft4,
fft8,
fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
521 fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
static void fft_permute_c(FFTContext *s, FFTComplex *z)
#define BUTTERFLIES(a0, a1, a2, a3)
void(* mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
uint16_t ff_fft_offsets_lut[0x2aab]
static const int avx_tab[]
void(* fft_permute)(struct FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling fft_calc().
static int split_radix_permutation(int i, int n, int inverse)
#define MAX_LOG2_NFFT
Specifies maximum allowed fft size.
void ff_fft_lut_init(uint16_t *table, int off, int size, int *index)
av_cold void ff_fft_init_arm(FFTContext *s)
void ff_fft_init_ppc(FFTContext *s)
const int32_t ff_w_tab_sr[MAX_FFT_SIZE/(4 *16)]
#define DECL_FFT(n, n2, n4)
static void(*const fft_dispatch[])(FFTComplex *)
static const uint8_t offset[127][2]
av_cold void ff_fft_fixed_init_arm(FFTContext *s)
static av_cold void fft_perm_avx(FFTContext *s)
void(* imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
Set up a complex FFT.
enum fft_permutation_type fft_permutation
static int is_second_half_of_fft32(int i, int n)
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
#define TRANSFORM(a0, a1, a2, a3, wre, wim)
#define TRANSFORM_ZERO(a0, a1, a2, a3)
static void fft4(FFTComplex *z)
av_cold void ff_fft_end(FFTContext *s)
void ff_mdct_calcw_c(FFTContext *s, FFTDouble *output, const FFTSample *input)
av_cold void ff_fft_init_aarch64(FFTContext *s)
void(* fft_calc)(struct FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in ff_fft_init().
void ff_fft_init_mips(FFTContext *s)
FFT transform.
static void fft8(FFTComplex *z)
COSTABLE_CONST FFTSample *const FFT_NAME(ff_cos_tabs)[]
static const struct twinvq_data tab
static uint32_t inverse(uint32_t v)
find multiplicative inverse modulo 2 ^ 32
av_cold void ff_init_ff_cos_tabs(int index)
Initialize the cosine table in ff_cos_tabs[index].
static void fft_calc_c(FFTContext *s, FFTComplex *z)
static void fft16(FFTComplex *z)
definitions and tables for FFT
void(* mdct_calcw)(struct FFTContext *s, FFTDouble *output, const FFTSample *input)
void ff_fft_init_x86(FFTContext *s)