FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
huffyuvenc.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2002-2014 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
5  * the algorithm used
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  *
23  * yuva, gray, 4:4:4, 4:1:1, 4:1:0 and >8 bit per sample support sponsored by NOA
24  */
25 
26 /**
27  * @file
28  * huffyuv encoder
29  */
30 
31 #include "avcodec.h"
32 #include "huffyuv.h"
33 #include "huffman.h"
34 #include "huffyuvencdsp.h"
35 #include "internal.h"
36 #include "put_bits.h"
37 #include "libavutil/opt.h"
38 #include "libavutil/pixdesc.h"
39 
40 static inline void diff_bytes(HYuvContext *s, uint8_t *dst,
41  const uint8_t *src0, const uint8_t *src1, int w)
42 {
43  if (s->bps <= 8) {
44  s->hencdsp.diff_bytes(dst, src0, src1, w);
45  } else {
46  s->llviddsp.diff_int16((uint16_t *)dst, (const uint16_t *)src0, (const uint16_t *)src1, s->n - 1, w);
47  }
48 }
49 
50 static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
51  const uint8_t *src, int w, int left)
52 {
53  int i;
54  if (s->bps <= 8) {
55  if (w < 32) {
56  for (i = 0; i < w; i++) {
57  const int temp = src[i];
58  dst[i] = temp - left;
59  left = temp;
60  }
61  return left;
62  } else {
63  for (i = 0; i < 32; i++) {
64  const int temp = src[i];
65  dst[i] = temp - left;
66  left = temp;
67  }
68  s->hencdsp.diff_bytes(dst + 32, src + 32, src + 31, w - 32);
69  return src[w-1];
70  }
71  } else {
72  const uint16_t *src16 = (const uint16_t *)src;
73  uint16_t *dst16 = ( uint16_t *)dst;
74  if (w < 32) {
75  for (i = 0; i < w; i++) {
76  const int temp = src16[i];
77  dst16[i] = temp - left;
78  left = temp;
79  }
80  return left;
81  } else {
82  for (i = 0; i < 16; i++) {
83  const int temp = src16[i];
84  dst16[i] = temp - left;
85  left = temp;
86  }
87  s->llviddsp.diff_int16(dst16 + 16, src16 + 16, src16 + 15, s->n - 1, w - 16);
88  return src16[w-1];
89  }
90  }
91 }
92 
93 static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
94  const uint8_t *src, int w,
95  int *red, int *green, int *blue,
96  int *alpha)
97 {
98  int i;
99  int r, g, b, a;
100  r = *red;
101  g = *green;
102  b = *blue;
103  a = *alpha;
104 
105  for (i = 0; i < FFMIN(w, 4); i++) {
106  const int rt = src[i * 4 + R];
107  const int gt = src[i * 4 + G];
108  const int bt = src[i * 4 + B];
109  const int at = src[i * 4 + A];
110  dst[i * 4 + R] = rt - r;
111  dst[i * 4 + G] = gt - g;
112  dst[i * 4 + B] = bt - b;
113  dst[i * 4 + A] = at - a;
114  r = rt;
115  g = gt;
116  b = bt;
117  a = at;
118  }
119 
120  s->hencdsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
121 
122  *red = src[(w - 1) * 4 + R];
123  *green = src[(w - 1) * 4 + G];
124  *blue = src[(w - 1) * 4 + B];
125  *alpha = src[(w - 1) * 4 + A];
126 }
127 
128 static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
129  uint8_t *src, int w,
130  int *red, int *green, int *blue)
131 {
132  int i;
133  int r, g, b;
134  r = *red;
135  g = *green;
136  b = *blue;
137  for (i = 0; i < FFMIN(w, 16); i++) {
138  const int rt = src[i * 3 + 0];
139  const int gt = src[i * 3 + 1];
140  const int bt = src[i * 3 + 2];
141  dst[i * 3 + 0] = rt - r;
142  dst[i * 3 + 1] = gt - g;
143  dst[i * 3 + 2] = bt - b;
144  r = rt;
145  g = gt;
146  b = bt;
147  }
148 
149  s->hencdsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);
150 
151  *red = src[(w - 1) * 3 + 0];
152  *green = src[(w - 1) * 3 + 1];
153  *blue = src[(w - 1) * 3 + 2];
154 }
155 
156 static void sub_median_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top)
157 {
158  if (s->bps <= 8) {
159  s->hencdsp.sub_hfyu_median_pred(dst, src1, src2, w , left, left_top);
160  } else {
161  s->llviddsp.sub_hfyu_median_pred_int16((uint16_t *)dst, (const uint16_t *)src1, (const uint16_t *)src2, s->n - 1, w , left, left_top);
162  }
163 }
164 
166 {
167  int i;
168  int index = 0;
169  int n = s->vlc_n;
170 
171  for (i = 0; i < n;) {
172  int val = len[i];
173  int repeat = 0;
174 
175  for (; i < n && len[i] == val && repeat < 255; i++)
176  repeat++;
177 
178  av_assert0(val < 32 && val >0 && repeat < 256 && repeat>0);
179  if (repeat > 7) {
180  buf[index++] = val;
181  buf[index++] = repeat;
182  } else {
183  buf[index++] = val | (repeat << 5);
184  }
185  }
186 
187  return index;
188 }
189 
191 {
192  int i, ret;
193  int size = 0;
194  int count = 3;
195 
196  if (s->version > 2)
197  count = 1 + s->alpha + 2*s->chroma;
198 
199  for (i = 0; i < count; i++) {
200  if ((ret = ff_huff_gen_len_table(s->len[i], s->stats[i], s->vlc_n, 0)) < 0)
201  return ret;
202 
203  if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i], s->vlc_n) < 0) {
204  return -1;
205  }
206 
207  size += store_table(s, s->len[i], buf + size);
208  }
209  return size;
210 }
211 
213 {
214  HYuvContext *s = avctx->priv_data;
215  int i, j;
216  int ret;
217  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
218 
219  ff_huffyuv_common_init(avctx);
221 
222  avctx->extradata = av_mallocz(3*MAX_N + 4);
223  if (s->flags&AV_CODEC_FLAG_PASS1) {
224 #define STATS_OUT_SIZE 21*MAX_N*3 + 4
225  avctx->stats_out = av_mallocz(STATS_OUT_SIZE); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
226  if (!avctx->stats_out)
227  return AVERROR(ENOMEM);
228  }
229  s->version = 2;
230 
231  if (!avctx->extradata)
232  return AVERROR(ENOMEM);
233 
234 #if FF_API_CODED_FRAME
237  avctx->coded_frame->key_frame = 1;
239 #endif
240 #if FF_API_PRIVATE_OPT
242  if (avctx->context_model == 1)
243  s->context = avctx->context_model;
245 #endif
246 
247  s->bps = desc->comp[0].depth;
248  s->yuv = !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
249  s->chroma = desc->nb_components > 2;
250  s->alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
252  &s->chroma_h_shift,
253  &s->chroma_v_shift);
254 
255  switch (avctx->pix_fmt) {
256  case AV_PIX_FMT_YUV420P:
257  case AV_PIX_FMT_YUV422P:
258  if (s->width & 1) {
259  av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
260  return AVERROR(EINVAL);
261  }
262  s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
263  break;
264  case AV_PIX_FMT_YUV444P:
265  case AV_PIX_FMT_YUV410P:
266  case AV_PIX_FMT_YUV411P:
267  case AV_PIX_FMT_YUV440P:
268  case AV_PIX_FMT_GBRP:
269  case AV_PIX_FMT_GBRP9:
270  case AV_PIX_FMT_GBRP10:
271  case AV_PIX_FMT_GBRP12:
272  case AV_PIX_FMT_GBRP14:
273  case AV_PIX_FMT_GBRP16:
274  case AV_PIX_FMT_GRAY8:
275  case AV_PIX_FMT_GRAY16:
276  case AV_PIX_FMT_YUVA444P:
277  case AV_PIX_FMT_YUVA420P:
278  case AV_PIX_FMT_YUVA422P:
279  case AV_PIX_FMT_GBRAP:
280  case AV_PIX_FMT_GRAY8A:
281  case AV_PIX_FMT_YUV420P9:
286  case AV_PIX_FMT_YUV422P9:
291  case AV_PIX_FMT_YUV444P9:
305  s->version = 3;
306  break;
307  case AV_PIX_FMT_RGB32:
308  s->bitstream_bpp = 32;
309  break;
310  case AV_PIX_FMT_RGB24:
311  s->bitstream_bpp = 24;
312  break;
313  default:
314  av_log(avctx, AV_LOG_ERROR, "format not supported\n");
315  return AVERROR(EINVAL);
316  }
317  s->n = 1<<s->bps;
318  s->vlc_n = FFMIN(s->n, MAX_VLC_N);
319 
321  s->decorrelate = s->bitstream_bpp >= 24 && !s->yuv && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR);
322 #if FF_API_PRIVATE_OPT
324  if (avctx->prediction_method)
325  s->predictor = avctx->prediction_method;
327 #endif
328  s->interlaced = avctx->flags & AV_CODEC_FLAG_INTERLACED_ME ? 1 : 0;
329  if (s->context) {
331  av_log(avctx, AV_LOG_ERROR,
332  "context=1 is not compatible with "
333  "2 pass huffyuv encoding\n");
334  return AVERROR(EINVAL);
335  }
336  }
337 
338  if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
339  if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
340  av_log(avctx, AV_LOG_ERROR,
341  "Error: YV12 is not supported by huffyuv; use "
342  "vcodec=ffvhuff or format=422p\n");
343  return AVERROR(EINVAL);
344  }
345 #if FF_API_PRIVATE_OPT
346  if (s->context) {
347  av_log(avctx, AV_LOG_ERROR,
348  "Error: per-frame huffman tables are not supported "
349  "by huffyuv; use vcodec=ffvhuff\n");
350  return AVERROR(EINVAL);
351  }
352  if (s->version > 2) {
353  av_log(avctx, AV_LOG_ERROR,
354  "Error: ver>2 is not supported "
355  "by huffyuv; use vcodec=ffvhuff\n");
356  return AVERROR(EINVAL);
357  }
358 #endif
359  if (s->interlaced != ( s->height > 288 ))
360  av_log(avctx, AV_LOG_INFO,
361  "using huffyuv 2.2.0 or newer interlacing flag\n");
362  }
363 
365  av_log(avctx, AV_LOG_ERROR, "Ver > 3 is under development, files encoded with it may not be decodable with future versions!!!\n"
366  "Use vstrict=-2 / -strict -2 to use it anyway.\n");
367  return AVERROR(EINVAL);
368  }
369 
370  if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN && s->version <= 2) {
371  av_log(avctx, AV_LOG_ERROR,
372  "Error: RGB is incompatible with median predictor\n");
373  return AVERROR(EINVAL);
374  }
375 
376  ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
377  ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
378  if (s->context)
379  ((uint8_t*)avctx->extradata)[2] |= 0x40;
380  if (s->version < 3) {
381  ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
382  ((uint8_t*)avctx->extradata)[3] = 0;
383  } else {
384  ((uint8_t*)avctx->extradata)[1] = ((s->bps-1)<<4) | s->chroma_h_shift | (s->chroma_v_shift<<2);
385  if (s->chroma)
386  ((uint8_t*)avctx->extradata)[2] |= s->yuv ? 1 : 2;
387  if (s->alpha)
388  ((uint8_t*)avctx->extradata)[2] |= 4;
389  ((uint8_t*)avctx->extradata)[3] = 1;
390  }
391  s->avctx->extradata_size = 4;
392 
393  if (avctx->stats_in) {
394  char *p = avctx->stats_in;
395 
396  for (i = 0; i < 4; i++)
397  for (j = 0; j < s->vlc_n; j++)
398  s->stats[i][j] = 1;
399 
400  for (;;) {
401  for (i = 0; i < 4; i++) {
402  char *next;
403 
404  for (j = 0; j < s->vlc_n; j++) {
405  s->stats[i][j] += strtol(p, &next, 0);
406  if (next == p) return -1;
407  p = next;
408  }
409  }
410  if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
411  }
412  } else {
413  for (i = 0; i < 4; i++)
414  for (j = 0; j < s->vlc_n; j++) {
415  int d = FFMIN(j, s->vlc_n - j);
416 
417  s->stats[i][j] = 100000000 / (d*d + 1);
418  }
419  }
420 
422  if (ret < 0)
423  return ret;
424  s->avctx->extradata_size += ret;
425 
426  if (s->context) {
427  for (i = 0; i < 4; i++) {
428  int pels = s->width * s->height / (i ? 40 : 10);
429  for (j = 0; j < s->vlc_n; j++) {
430  int d = FFMIN(j, s->vlc_n - j);
431  s->stats[i][j] = pels/(d*d + 1);
432  }
433  }
434  } else {
435  for (i = 0; i < 4; i++)
436  for (j = 0; j < s->vlc_n; j++)
437  s->stats[i][j]= 0;
438  }
439 
440  if (ff_huffyuv_alloc_temp(s)) {
442  return AVERROR(ENOMEM);
443  }
444 
445  s->picture_number=0;
446 
447  return 0;
448 }
450 {
451  int i;
452  const uint8_t *y = s->temp[0] + offset;
453  const uint8_t *u = s->temp[1] + offset / 2;
454  const uint8_t *v = s->temp[2] + offset / 2;
455 
456  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
457  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
458  return -1;
459  }
460 
461 #define LOAD4\
462  int y0 = y[2 * i];\
463  int y1 = y[2 * i + 1];\
464  int u0 = u[i];\
465  int v0 = v[i];
466 
467  count /= 2;
468 
469  if (s->flags & AV_CODEC_FLAG_PASS1) {
470  for(i = 0; i < count; i++) {
471  LOAD4;
472  s->stats[0][y0]++;
473  s->stats[1][u0]++;
474  s->stats[0][y1]++;
475  s->stats[2][v0]++;
476  }
477  }
479  return 0;
480  if (s->context) {
481  for (i = 0; i < count; i++) {
482  LOAD4;
483  s->stats[0][y0]++;
484  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
485  s->stats[1][u0]++;
486  put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
487  s->stats[0][y1]++;
488  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
489  s->stats[2][v0]++;
490  put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
491  }
492  } else {
493  for(i = 0; i < count; i++) {
494  LOAD4;
495  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
496  put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
497  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
498  put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
499  }
500  }
501  return 0;
502 }
503 
505 {
506  int i, count = width/2;
507 
508  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < count * s->bps / 2) {
509  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
510  return -1;
511  }
512 
513 #define LOADEND\
514  int y0 = s->temp[0][width-1];
515 #define LOADEND_14\
516  int y0 = s->temp16[0][width-1] & mask;
517 #define LOADEND_16\
518  int y0 = s->temp16[0][width-1];
519 #define STATEND\
520  s->stats[plane][y0]++;
521 #define STATEND_16\
522  s->stats[plane][y0>>2]++;
523 #define WRITEEND\
524  put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);
525 #define WRITEEND_16\
526  put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
527  put_bits(&s->pb, 2, y0&3);
528 
529 #define LOAD2\
530  int y0 = s->temp[0][2 * i];\
531  int y1 = s->temp[0][2 * i + 1];
532 #define LOAD2_14\
533  int y0 = s->temp16[0][2 * i] & mask;\
534  int y1 = s->temp16[0][2 * i + 1] & mask;
535 #define LOAD2_16\
536  int y0 = s->temp16[0][2 * i];\
537  int y1 = s->temp16[0][2 * i + 1];
538 #define STAT2\
539  s->stats[plane][y0]++;\
540  s->stats[plane][y1]++;
541 #define STAT2_16\
542  s->stats[plane][y0>>2]++;\
543  s->stats[plane][y1>>2]++;
544 #define WRITE2\
545  put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);\
546  put_bits(&s->pb, s->len[plane][y1], s->bits[plane][y1]);
547 #define WRITE2_16\
548  put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
549  put_bits(&s->pb, 2, y0&3);\
550  put_bits(&s->pb, s->len[plane][y1>>2], s->bits[plane][y1>>2]);\
551  put_bits(&s->pb, 2, y1&3);
552 
553  if (s->bps <= 8) {
554  if (s->flags & AV_CODEC_FLAG_PASS1) {
555  for (i = 0; i < count; i++) {
556  LOAD2;
557  STAT2;
558  }
559  if (width&1) {
560  LOADEND;
561  STATEND;
562  }
563  }
565  return 0;
566 
567  if (s->context) {
568  for (i = 0; i < count; i++) {
569  LOAD2;
570  STAT2;
571  WRITE2;
572  }
573  if (width&1) {
574  LOADEND;
575  STATEND;
576  WRITEEND;
577  }
578  } else {
579  for (i = 0; i < count; i++) {
580  LOAD2;
581  WRITE2;
582  }
583  if (width&1) {
584  LOADEND;
585  WRITEEND;
586  }
587  }
588  } else if (s->bps <= 14) {
589  int mask = s->n - 1;
590  if (s->flags & AV_CODEC_FLAG_PASS1) {
591  for (i = 0; i < count; i++) {
592  LOAD2_14;
593  STAT2;
594  }
595  if (width&1) {
596  LOADEND_14;
597  STATEND;
598  }
599  }
601  return 0;
602 
603  if (s->context) {
604  for (i = 0; i < count; i++) {
605  LOAD2_14;
606  STAT2;
607  WRITE2;
608  }
609  if (width&1) {
610  LOADEND_14;
611  STATEND;
612  WRITEEND;
613  }
614  } else {
615  for (i = 0; i < count; i++) {
616  LOAD2_14;
617  WRITE2;
618  }
619  if (width&1) {
620  LOADEND_14;
621  WRITEEND;
622  }
623  }
624  } else {
625  if (s->flags & AV_CODEC_FLAG_PASS1) {
626  for (i = 0; i < count; i++) {
627  LOAD2_16;
628  STAT2_16;
629  }
630  if (width&1) {
631  LOADEND_16;
632  STATEND_16;
633  }
634  }
636  return 0;
637 
638  if (s->context) {
639  for (i = 0; i < count; i++) {
640  LOAD2_16;
641  STAT2_16;
642  WRITE2_16;
643  }
644  if (width&1) {
645  LOADEND_16;
646  STATEND_16;
647  WRITEEND_16;
648  }
649  } else {
650  for (i = 0; i < count; i++) {
651  LOAD2_16;
652  WRITE2_16;
653  }
654  if (width&1) {
655  LOADEND_16;
656  WRITEEND_16;
657  }
658  }
659  }
660 #undef LOAD2
661 #undef STAT2
662 #undef WRITE2
663  return 0;
664 }
665 
667 {
668  int i;
669 
670  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
671  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
672  return -1;
673  }
674 
675 #define LOAD2\
676  int y0 = s->temp[0][2 * i];\
677  int y1 = s->temp[0][2 * i + 1];
678 #define STAT2\
679  s->stats[0][y0]++;\
680  s->stats[0][y1]++;
681 #define WRITE2\
682  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
683  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
684 
685  count /= 2;
686 
687  if (s->flags & AV_CODEC_FLAG_PASS1) {
688  for (i = 0; i < count; i++) {
689  LOAD2;
690  STAT2;
691  }
692  }
694  return 0;
695 
696  if (s->context) {
697  for (i = 0; i < count; i++) {
698  LOAD2;
699  STAT2;
700  WRITE2;
701  }
702  } else {
703  for (i = 0; i < count; i++) {
704  LOAD2;
705  WRITE2;
706  }
707  }
708  return 0;
709 }
710 
711 static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
712 {
713  int i;
714 
715  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
716  4 * planes * count) {
717  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
718  return -1;
719  }
720 
721 #define LOAD_GBRA \
722  int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G]; \
723  int b =(s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g) & 0xFF;\
724  int r =(s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g) & 0xFF;\
725  int a = s->temp[0][planes * i + A];
726 
727 #define STAT_BGRA \
728  s->stats[0][b]++; \
729  s->stats[1][g]++; \
730  s->stats[2][r]++; \
731  if (planes == 4) \
732  s->stats[2][a]++;
733 
734 #define WRITE_GBRA \
735  put_bits(&s->pb, s->len[1][g], s->bits[1][g]); \
736  put_bits(&s->pb, s->len[0][b], s->bits[0][b]); \
737  put_bits(&s->pb, s->len[2][r], s->bits[2][r]); \
738  if (planes == 4) \
739  put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
740 
741  if ((s->flags & AV_CODEC_FLAG_PASS1) &&
743  for (i = 0; i < count; i++) {
744  LOAD_GBRA;
745  STAT_BGRA;
746  }
747  } else if (s->context || (s->flags & AV_CODEC_FLAG_PASS1)) {
748  for (i = 0; i < count; i++) {
749  LOAD_GBRA;
750  STAT_BGRA;
751  WRITE_GBRA;
752  }
753  } else {
754  for (i = 0; i < count; i++) {
755  LOAD_GBRA;
756  WRITE_GBRA;
757  }
758  }
759  return 0;
760 }
761 
763  const AVFrame *pict, int *got_packet)
764 {
765  HYuvContext *s = avctx->priv_data;
766  const int width = s->width;
767  const int width2 = s->width>>1;
768  const int height = s->height;
769  const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
770  const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
771  const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
772  const AVFrame * const p = pict;
773  int i, j, size = 0, ret;
774 
775  if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0)
776  return ret;
777 
778  if (s->context) {
779  size = store_huffman_tables(s, pkt->data);
780  if (size < 0)
781  return size;
782 
783  for (i = 0; i < 4; i++)
784  for (j = 0; j < s->vlc_n; j++)
785  s->stats[i][j] >>= 1;
786  }
787 
788  init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
789 
790  if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
791  avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
792  int lefty, leftu, leftv, y, cy;
793 
794  put_bits(&s->pb, 8, leftv = p->data[2][0]);
795  put_bits(&s->pb, 8, lefty = p->data[0][1]);
796  put_bits(&s->pb, 8, leftu = p->data[1][0]);
797  put_bits(&s->pb, 8, p->data[0][0]);
798 
799  lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
800  leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
801  leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
802 
803  encode_422_bitstream(s, 2, width-2);
804 
805  if (s->predictor==MEDIAN) {
806  int lefttopy, lefttopu, lefttopv;
807  cy = y = 1;
808  if (s->interlaced) {
809  lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
810  leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
811  leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
812 
813  encode_422_bitstream(s, 0, width);
814  y++; cy++;
815  }
816 
817  lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
818  leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
819  leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
820 
821  encode_422_bitstream(s, 0, 4);
822 
823  lefttopy = p->data[0][3];
824  lefttopu = p->data[1][1];
825  lefttopv = p->data[2][1];
826  s->hencdsp.sub_hfyu_median_pred(s->temp[0], p->data[0] + 4, p->data[0] + fake_ystride + 4, width - 4, &lefty, &lefttopy);
827  s->hencdsp.sub_hfyu_median_pred(s->temp[1], p->data[1] + 2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
828  s->hencdsp.sub_hfyu_median_pred(s->temp[2], p->data[2] + 2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
829  encode_422_bitstream(s, 0, width - 4);
830  y++; cy++;
831 
832  for (; y < height; y++,cy++) {
833  uint8_t *ydst, *udst, *vdst;
834 
835  if (s->bitstream_bpp == 12) {
836  while (2 * cy > y) {
837  ydst = p->data[0] + p->linesize[0] * y;
838  s->hencdsp.sub_hfyu_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
839  encode_gray_bitstream(s, width);
840  y++;
841  }
842  if (y >= height) break;
843  }
844  ydst = p->data[0] + p->linesize[0] * y;
845  udst = p->data[1] + p->linesize[1] * cy;
846  vdst = p->data[2] + p->linesize[2] * cy;
847 
848  s->hencdsp.sub_hfyu_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
849  s->hencdsp.sub_hfyu_median_pred(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
850  s->hencdsp.sub_hfyu_median_pred(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
851 
852  encode_422_bitstream(s, 0, width);
853  }
854  } else {
855  for (cy = y = 1; y < height; y++, cy++) {
856  uint8_t *ydst, *udst, *vdst;
857 
858  /* encode a luma only line & y++ */
859  if (s->bitstream_bpp == 12) {
860  ydst = p->data[0] + p->linesize[0] * y;
861 
862  if (s->predictor == PLANE && s->interlaced < y) {
863  s->hencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
864 
865  lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
866  } else {
867  lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
868  }
869  encode_gray_bitstream(s, width);
870  y++;
871  if (y >= height) break;
872  }
873 
874  ydst = p->data[0] + p->linesize[0] * y;
875  udst = p->data[1] + p->linesize[1] * cy;
876  vdst = p->data[2] + p->linesize[2] * cy;
877 
878  if (s->predictor == PLANE && s->interlaced < cy) {
879  s->hencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
880  s->hencdsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
881  s->hencdsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
882 
883  lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
884  leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
885  leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
886  } else {
887  lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
888  leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
889  leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
890  }
891 
892  encode_422_bitstream(s, 0, width);
893  }
894  }
895  } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
896  uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
897  const int stride = -p->linesize[0];
898  const int fake_stride = -fake_ystride;
899  int y;
900  int leftr, leftg, leftb, lefta;
901 
902  put_bits(&s->pb, 8, lefta = data[A]);
903  put_bits(&s->pb, 8, leftr = data[R]);
904  put_bits(&s->pb, 8, leftg = data[G]);
905  put_bits(&s->pb, 8, leftb = data[B]);
906 
907  sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
908  &leftr, &leftg, &leftb, &lefta);
909  encode_bgra_bitstream(s, width - 1, 4);
910 
911  for (y = 1; y < s->height; y++) {
912  uint8_t *dst = data + y*stride;
913  if (s->predictor == PLANE && s->interlaced < y) {
914  s->hencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
915  sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
916  &leftr, &leftg, &leftb, &lefta);
917  } else {
918  sub_left_prediction_bgr32(s, s->temp[0], dst, width,
919  &leftr, &leftg, &leftb, &lefta);
920  }
921  encode_bgra_bitstream(s, width, 4);
922  }
923  } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
924  uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
925  const int stride = -p->linesize[0];
926  const int fake_stride = -fake_ystride;
927  int y;
928  int leftr, leftg, leftb;
929 
930  put_bits(&s->pb, 8, leftr = data[0]);
931  put_bits(&s->pb, 8, leftg = data[1]);
932  put_bits(&s->pb, 8, leftb = data[2]);
933  put_bits(&s->pb, 8, 0);
934 
935  sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
936  &leftr, &leftg, &leftb);
937  encode_bgra_bitstream(s, width-1, 3);
938 
939  for (y = 1; y < s->height; y++) {
940  uint8_t *dst = data + y * stride;
941  if (s->predictor == PLANE && s->interlaced < y) {
942  s->hencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
943  width * 3);
944  sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
945  &leftr, &leftg, &leftb);
946  } else {
947  sub_left_prediction_rgb24(s, s->temp[0], dst, width,
948  &leftr, &leftg, &leftb);
949  }
950  encode_bgra_bitstream(s, width, 3);
951  }
952  } else if (s->version > 2) {
953  int plane;
954  for (plane = 0; plane < 1 + 2*s->chroma + s->alpha; plane++) {
955  int left, y;
956  int w = width;
957  int h = height;
958  int fake_stride = fake_ystride;
959 
960  if (s->chroma && (plane == 1 || plane == 2)) {
961  w >>= s->chroma_h_shift;
962  h >>= s->chroma_v_shift;
963  fake_stride = plane == 1 ? fake_ustride : fake_vstride;
964  }
965 
966  left = sub_left_prediction(s, s->temp[0], p->data[plane], w , 0);
967 
968  encode_plane_bitstream(s, w, plane);
969 
970  if (s->predictor==MEDIAN) {
971  int lefttop;
972  y = 1;
973  if (s->interlaced) {
974  left = sub_left_prediction(s, s->temp[0], p->data[plane] + p->linesize[plane], w , left);
975 
976  encode_plane_bitstream(s, w, plane);
977  y++;
978  }
979 
980  lefttop = p->data[plane][0];
981 
982  for (; y < h; y++) {
983  uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
984 
985  sub_median_prediction(s, s->temp[0], dst - fake_stride, dst, w , &left, &lefttop);
986 
987  encode_plane_bitstream(s, w, plane);
988  }
989  } else {
990  for (y = 1; y < h; y++) {
991  uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
992 
993  if (s->predictor == PLANE && s->interlaced < y) {
994  diff_bytes(s, s->temp[1], dst, dst - fake_stride, w);
995 
996  left = sub_left_prediction(s, s->temp[0], s->temp[1], w , left);
997  } else {
998  left = sub_left_prediction(s, s->temp[0], dst, w , left);
999  }
1000 
1001  encode_plane_bitstream(s, w, plane);
1002  }
1003  }
1004  }
1005  } else {
1006  av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
1007  }
1008  emms_c();
1009 
1010  size += (put_bits_count(&s->pb) + 31) / 8;
1011  put_bits(&s->pb, 16, 0);
1012  put_bits(&s->pb, 15, 0);
1013  size /= 4;
1014 
1015  if ((s->flags & AV_CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
1016  int j;
1017  char *p = avctx->stats_out;
1018  char *end = p + STATS_OUT_SIZE;
1019  for (i = 0; i < 4; i++) {
1020  for (j = 0; j < s->vlc_n; j++) {
1021  snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
1022  p += strlen(p);
1023  s->stats[i][j]= 0;
1024  }
1025  snprintf(p, end-p, "\n");
1026  p++;
1027  if (end <= p)
1028  return AVERROR(ENOMEM);
1029  }
1030  } else if (avctx->stats_out)
1031  avctx->stats_out[0] = '\0';
1032  if (!(s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) {
1033  flush_put_bits(&s->pb);
1034  s->bdsp.bswap_buf((uint32_t *) pkt->data, (uint32_t *) pkt->data, size);
1035  }
1036 
1037  s->picture_number++;
1038 
1039  pkt->size = size * 4;
1040  pkt->flags |= AV_PKT_FLAG_KEY;
1041  *got_packet = 1;
1042 
1043  return 0;
1044 }
1045 
1047 {
1048  HYuvContext *s = avctx->priv_data;
1049 
1051 
1052  av_freep(&avctx->extradata);
1053  av_freep(&avctx->stats_out);
1054 
1055  return 0;
1056 }
1057 
1058 #define OFFSET(x) offsetof(HYuvContext, x)
1059 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1060 
1061 #define COMMON_OPTIONS \
1062  { "non_deterministic", "Allow multithreading for e.g. context=1 at the expense of determinism", \
1063  OFFSET(non_determ), AV_OPT_TYPE_BOOL, { .i64 = 1 }, \
1064  0, 1, VE }, \
1065  { "pred", "Prediction method", OFFSET(predictor), AV_OPT_TYPE_INT, { .i64 = LEFT }, LEFT, MEDIAN, VE, "pred" }, \
1066  { "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, INT_MIN, INT_MAX, VE, "pred" }, \
1067  { "plane", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PLANE }, INT_MIN, INT_MAX, VE, "pred" }, \
1068  { "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, INT_MIN, INT_MAX, VE, "pred" }, \
1069 
1070 static const AVOption normal_options[] = {
1072  { NULL },
1073 };
1074 
1075 static const AVOption ff_options[] = {
1077  { "context", "Set per-frame huffman tables", OFFSET(context), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1078  { NULL },
1079 };
1080 
1081 static const AVClass normal_class = {
1082  .class_name = "huffyuv",
1083  .item_name = av_default_item_name,
1084  .option = normal_options,
1085  .version = LIBAVUTIL_VERSION_INT,
1086 };
1087 
1088 static const AVClass ff_class = {
1089  .class_name = "ffvhuff",
1090  .item_name = av_default_item_name,
1091  .option = ff_options,
1092  .version = LIBAVUTIL_VERSION_INT,
1093 };
1094 
1096  .name = "huffyuv",
1097  .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
1098  .type = AVMEDIA_TYPE_VIDEO,
1099  .id = AV_CODEC_ID_HUFFYUV,
1100  .priv_data_size = sizeof(HYuvContext),
1101  .init = encode_init,
1102  .encode2 = encode_frame,
1103  .close = encode_end,
1105  .priv_class = &normal_class,
1106  .pix_fmts = (const enum AVPixelFormat[]){
1109  },
1110  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
1112 };
1113 
1114 #if CONFIG_FFVHUFF_ENCODER
1115 AVCodec ff_ffvhuff_encoder = {
1116  .name = "ffvhuff",
1117  .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
1118  .type = AVMEDIA_TYPE_VIDEO,
1119  .id = AV_CODEC_ID_FFVHUFF,
1120  .priv_data_size = sizeof(HYuvContext),
1121  .init = encode_init,
1122  .encode2 = encode_frame,
1123  .close = encode_end,
1125  .priv_class = &ff_class,
1126  .pix_fmts = (const enum AVPixelFormat[]){
1143  },
1144  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
1146 };
1147 #endif
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:48
#define AV_CODEC_FLAG_INTERLACED_ME
interlaced motion estimation
Definition: avcodec.h:796
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
int plane
Definition: avisynth_c.h:291
#define FF_COMPLIANCE_EXPERIMENTAL
Allow nonstandardized experimental things.
Definition: avcodec.h:2746
#define NULL
Definition: coverity.c:32
const struct AVCodec * codec
Definition: avcodec.h:1541
const char const char void * val
Definition: avisynth_c.h:634
#define AV_PIX_FMT_YUVA422P16
Definition: pixfmt.h:365
const char * s
Definition: avisynth_c.h:631
#define AV_PIX_FMT_YUVA422P9
Definition: pixfmt.h:359
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2157
This structure describes decoded (raw) audio or video data.
Definition: frame.h:181
static av_cold int encode_init(AVCodecContext *avctx)
Definition: huffyuvenc.c:212
AVOption.
Definition: opt.h:245
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
#define AV_PIX_FMT_YUVA420P10
Definition: pixfmt.h:361
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:340
#define AV_PIX_FMT_YUVA422P10
Definition: pixfmt.h:362
int bitstream_bpp
Definition: huffyuv.h:62
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:68
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:168
#define LIBAVUTIL_VERSION_INT
Definition: version.h:70
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:65
#define STATEND
else temp
Definition: vf_mcdeint.c:259
const char * g
Definition: vf_curves.c:108
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:181
int size
Definition: avcodec.h:1468
const char * b
Definition: vf_curves.c:109
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:346
static int encode_plane_bitstream(HYuvContext *s, int width, int plane)
Definition: huffyuvenc.c:504
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1752
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:334
char * stats_in
pass2 encoding statistics input buffer Concatenated stuff from stats_out of pass1 should be placed he...
Definition: avcodec.h:2700
#define MAX_VLC_N
Definition: huffyuv.h:46
int context
Definition: huffyuv.h:76
void(* diff_bytes)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, intptr_t w)
Definition: huffyuvencdsp.h:25
GLfloat v0
Definition: opengl_enc.c:107
static AVPacket pkt
AVCodec.
Definition: avcodec.h:3392
int height
Definition: huffyuv.h:74
av_cold void ff_huffyuvencdsp_init(HuffYUVEncDSPContext *c)
Definition: huffyuvencdsp.c:77
#define AV_CODEC_CAP_INTRA_ONLY
Codec is intra only.
Definition: avcodec.h:939
#define LOAD_GBRA
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
Definition: vf_geq.c:46
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
Definition: internal.h:40
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:103
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:82
#define AV_PIX_FMT_FLAG_ALPHA
The pixel format has an alpha channel.
Definition: pixdesc.h:173
AVOptions.
#define STATEND_16
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int bps
Definition: huffyuv.h:66
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1647
void(* diff_int16)(uint16_t *dst, const uint16_t *src1, const uint16_t *src2, unsigned mask, int w)
#define AV_PIX_FMT_YUVA420P9
Definition: pixfmt.h:358
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:345
static void sub_median_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top)
Definition: huffyuvenc.c:156
uint8_t * data
Definition: avcodec.h:1467
attribute_deprecated int context_model
Definition: avcodec.h:2582
#define STATS_OUT_SIZE
int vlc_n
Definition: huffyuv.h:68
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:343
static void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue)
Definition: huffyuvenc.c:128
ptrdiff_t size
Definition: opengl_enc.c:101
int chroma_h_shift
Definition: huffyuv.h:72
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
Definition: avcodec.h:2917
#define LOAD2
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:335
char * stats_out
pass1 encoding statistics output buffer
Definition: avcodec.h:2692
#define AV_PIX_FMT_YUVA420P16
Definition: pixfmt.h:364
#define A(x)
Definition: vp56_arith.h:28
#define AV_INPUT_BUFFER_MIN_SIZE
minimum encoding buffer size Used to avoid some checks during header writing.
Definition: avcodec.h:642
#define av_log(a,...)
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: avcodec.h:1499
uint8_t len[4][MAX_VLC_N]
Definition: huffyuv.h:82
#define MAX_N
Definition: huffyuv.h:45
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet)
Definition: huffyuvenc.c:762
#define LOAD2_14
av_cold int ff_huffyuv_alloc_temp(HYuvContext *s)
Definition: huffyuv.c:58
enum AVCodecID id
Definition: avcodec.h:3406
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:188
static double alpha(void *priv, double x, double y)
Definition: vf_geq.c:99
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int chroma_v_shift
Definition: huffyuv.h:73
Definition: huffyuv.h:50
av_cold void ff_huffyuv_common_end(HYuvContext *s)
Definition: huffyuv.c:87
static const uint16_t mask[17]
Definition: lzw.c:38
av_default_item_name
#define AVERROR(e)
Definition: error.h:43
int flags
Definition: huffyuv.h:75
#define AV_PIX_FMT_FLAG_RGB
The pixel format contains RGB-like data (as opposed to YUV/grayscale).
Definition: pixdesc.h:148
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2185
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:176
const char * r
Definition: vf_curves.c:107
static const AVClass ff_class
Definition: huffyuvenc.c:1088
#define AV_PIX_FMT_YUVA444P16
Definition: pixfmt.h:366
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1627
uint8_t * buf
Definition: put_bits.h:38
const char * name
Name of the codec implementation.
Definition: avcodec.h:3399
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:333
static const AVClass normal_class
Definition: huffyuvenc.c:1081
int chroma
Definition: huffyuv.h:70
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
GLsizei count
Definition: opengl_enc.c:109
#define COMMON_OPTIONS
Definition: huffyuvenc.c:1061
huffyuv codec for libavcodec.
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: avcodec.h:919
int flags
A combination of AV_PKT_FLAG values.
Definition: avcodec.h:1473
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:85
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:67
#define WRITE_GBRA
uint64_t flags
Combination of AV_PIX_FMT_FLAG_...
Definition: pixdesc.h:106
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:328
uint8_t nb_components
The number of components each pixel has, (1-4)
Definition: pixdesc.h:83
#define WRITE2
int decorrelate
Definition: huffyuv.h:61
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:252
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:349
alias for AV_PIX_FMT_YA8
Definition: pixfmt.h:158
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:314
#define FFMIN(a, b)
Definition: common.h:96
int width
Definition: huffyuv.h:74
AVCodec ff_huffyuv_encoder
Definition: huffyuvenc.c:1095
#define AV_CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
Definition: avcodec.h:750
int ff_huffyuv_generate_bits_table(uint32_t *dst, const uint8_t *len_table, int n)
Definition: huffyuv.c:39
int n
Definition: avisynth_c.h:547
#define AV_PIX_FMT_YUVA444P10
Definition: pixfmt.h:363
uint8_t * temp[3]
Definition: huffyuv.h:79
#define src
Definition: vp9dsp.c:530
static av_cold int encode_end(AVCodecContext *avctx)
Definition: huffyuvenc.c:1046
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:329
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:348
int alpha
Definition: huffyuv.h:69
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:341
Definition: vf_geq.c:46
#define src1
Definition: h264pred.c:139
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:338
int picture_number
Definition: huffyuv.h:77
int ff_huff_gen_len_table(uint8_t *dst, const uint64_t *stats, int stats_size, int skip0)
Definition: huffman.c:56
static int sub_left_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int left)
Definition: huffyuvenc.c:50
Libavcodec external API header.
static int encode_422_bitstream(HYuvContext *s, int offset, int count)
Definition: huffyuvenc.c:449
attribute_deprecated int prediction_method
Definition: avcodec.h:1915
int yuv
Definition: huffyuv.h:71
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:209
static const AVOption ff_options[]
Definition: huffyuvenc.c:1075
LLVidDSPContext llviddsp
Definition: huffyuv.h:91
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:189
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
main external API structure.
Definition: avcodec.h:1532
#define AV_PIX_FMT_RGB32
Definition: pixfmt.h:307
#define STAT2
uint8_t * buf_end
Definition: put_bits.h:38
void * buf
Definition: avisynth_c.h:553
int interlaced
Definition: huffyuv.h:60
int extradata_size
Definition: avcodec.h:1648
BYTE int const BYTE int int int height
Definition: avisynth_c.h:676
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:330
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:69
Describe the class of an AVClass context structure.
Definition: log.h:67
int index
Definition: gxfenc.c:89
#define WRITEEND
huffman tree builder and VLC generator
#define STAT2_16
#define src0
Definition: h264pred.c:138
static int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
Definition: huffyuvenc.c:711
#define LOAD4
#define STAT_BGRA
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:327
#define snprintf
Definition: snprintf.h:34
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: utils.c:1621
Definition: vf_geq.c:46
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:262
void(* sub_hfyu_median_pred)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, intptr_t w, int *left, int *left_top)
Subtract HuffYUV's variant of median prediction.
Definition: huffyuvencdsp.h:33
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:339
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:347
HuffYUVEncDSPContext hencdsp
Definition: huffyuv.h:90
int version
Definition: huffyuv.h:63
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:331
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:337
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:192
Predictor predictor
Definition: huffyuv.h:57
static void diff_bytes(HYuvContext *s, uint8_t *dst, const uint8_t *src0, const uint8_t *src1, int w)
Definition: huffyuvenc.c:40
AVCodecContext * avctx
Definition: huffyuv.h:56
#define WRITE2_16
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
PutBitContext pb
Definition: huffyuv.h:59
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:63
Y , 8bpp.
Definition: pixfmt.h:71
Definition: huffyuv.h:51
#define OFFSET(x)
Definition: huffyuvenc.c:1058
#define FF_DISABLE_DEPRECATION_WARNINGS
Definition: internal.h:80
common internal api header.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:101
static int store_huffman_tables(HYuvContext *s, uint8_t *buf)
Definition: huffyuvenc.c:190
#define VE
Definition: huffyuvenc.c:1059
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:229
static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
Definition: huffyuvenc.c:165
#define LOAD2_16
#define AV_CODEC_FLAG2_NO_OUTPUT
Skip bitstream encoding.
Definition: avcodec.h:806
#define AV_PIX_FMT_YUVA444P9
Definition: pixfmt.h:360
attribute_deprecated AVFrame * coded_frame
the picture in the bitstream
Definition: avcodec.h:2945
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:70
static int encode_gray_bitstream(HYuvContext *s, int count)
Definition: huffyuvenc.c:666
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:48
static void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha)
Definition: huffyuvenc.c:93
av_cold void ff_huffyuv_common_init(AVCodecContext *avctx)
Definition: huffyuv.c:71
#define AV_CODEC_FLAG_PASS2
Use internal 2pass ratecontrol in second pass mode.
Definition: avcodec.h:754
void * priv_data
Definition: avcodec.h:1574
#define FF_ENABLE_DEPRECATION_WARNINGS
Definition: internal.h:81
int len
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:247
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:1634
#define WRITEEND_16
#define LOADEND_16
#define av_freep(p)
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:101
#define LOADEND
uint32_t bits[4][MAX_VLC_N]
Definition: huffyuv.h:83
uint64_t stats[4][MAX_VLC_N]
Definition: huffyuv.h:81
#define stride
void(* sub_hfyu_median_pred_int16)(uint16_t *dst, const uint16_t *src1, const uint16_t *src2, unsigned mask, int w, int *left, int *left_top)
static const AVOption normal_options[]
Definition: huffyuvenc.c:1070
int depth
Number of bits in the component.
Definition: pixdesc.h:58
#define LOADEND_14
AVPixelFormat
Pixel format.
Definition: pixfmt.h:61
This structure stores compressed data.
Definition: avcodec.h:1444
BswapDSPContext bdsp
Definition: huffyuv.h:88
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
Definition: pixdesc.h:144
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:252
int strict_std_compliance
strictly follow the standard (MPEG4, ...).
Definition: avcodec.h:2741
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:342
for(j=16;j >0;--j)
static int width
bitstream writer API