FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
flacenc.c
Go to the documentation of this file.
1 /*
2  * FLAC audio encoder
3  * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include "libavutil/avassert.h"
23 #include "libavutil/crc.h"
24 #include "libavutil/intmath.h"
25 #include "libavutil/md5.h"
26 #include "libavutil/opt.h"
27 #include "avcodec.h"
28 #include "bswapdsp.h"
29 #include "put_bits.h"
30 #include "golomb.h"
31 #include "internal.h"
32 #include "lpc.h"
33 #include "flac.h"
34 #include "flacdata.h"
35 #include "flacdsp.h"
36 
37 #define FLAC_SUBFRAME_CONSTANT 0
38 #define FLAC_SUBFRAME_VERBATIM 1
39 #define FLAC_SUBFRAME_FIXED 8
40 #define FLAC_SUBFRAME_LPC 32
41 
42 #define MAX_FIXED_ORDER 4
43 #define MAX_PARTITION_ORDER 8
44 #define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER)
45 #define MAX_LPC_PRECISION 15
46 #define MAX_LPC_SHIFT 15
47 
48 enum CodingMode {
51 };
52 
53 typedef struct CompressionOptions {
64  int ch_mode;
68 
69 typedef struct RiceContext {
71  int porder;
73 } RiceContext;
74 
75 typedef struct FlacSubframe {
76  int type;
77  int type_code;
78  int obits;
79  int wasted;
80  int order;
82  int shift;
83 
86  uint64_t rc_sums[32][MAX_PARTITIONS];
87 
90 } FlacSubframe;
91 
92 typedef struct FlacFrame {
94  int blocksize;
95  int bs_code[2];
97  int ch_mode;
99 } FlacFrame;
100 
101 typedef struct FlacEncodeContext {
102  AVClass *class;
104  int channels;
106  int sr_code[2];
107  int bps_code;
112  uint32_t frame_count;
113  uint64_t sample_count;
119  struct AVMD5 *md5ctx;
121  unsigned int md5_buffer_size;
124 
125  int flushed;
126  int64_t next_pts;
128 
129 
130 /**
131  * Write streaminfo metadata block to byte array.
132  */
134 {
135  PutBitContext pb;
136 
137  memset(header, 0, FLAC_STREAMINFO_SIZE);
138  init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
139 
140  /* streaminfo metadata block */
141  put_bits(&pb, 16, s->max_blocksize);
142  put_bits(&pb, 16, s->max_blocksize);
143  put_bits(&pb, 24, s->min_framesize);
144  put_bits(&pb, 24, s->max_framesize);
145  put_bits(&pb, 20, s->samplerate);
146  put_bits(&pb, 3, s->channels-1);
147  put_bits(&pb, 5, s->avctx->bits_per_raw_sample - 1);
148  /* write 36-bit sample count in 2 put_bits() calls */
149  put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12);
150  put_bits(&pb, 12, s->sample_count & 0x000000FFFLL);
151  flush_put_bits(&pb);
152  memcpy(&header[18], s->md5sum, 16);
153 }
154 
155 
156 /**
157  * Set blocksize based on samplerate.
158  * Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds.
159  */
160 static int select_blocksize(int samplerate, int block_time_ms)
161 {
162  int i;
163  int target;
164  int blocksize;
165 
166  av_assert0(samplerate > 0);
167  blocksize = ff_flac_blocksize_table[1];
168  target = (samplerate * block_time_ms) / 1000;
169  for (i = 0; i < 16; i++) {
170  if (target >= ff_flac_blocksize_table[i] &&
171  ff_flac_blocksize_table[i] > blocksize) {
172  blocksize = ff_flac_blocksize_table[i];
173  }
174  }
175  return blocksize;
176 }
177 
178 
180 {
181  AVCodecContext *avctx = s->avctx;
182  CompressionOptions *opt = &s->options;
183 
184  av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", opt->compression_level);
185 
186  switch (opt->lpc_type) {
187  case FF_LPC_TYPE_NONE:
188  av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n");
189  break;
190  case FF_LPC_TYPE_FIXED:
191  av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n");
192  break;
194  av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n");
195  break;
197  av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n",
198  opt->lpc_passes, opt->lpc_passes == 1 ? "" : "es");
199  break;
200  }
201 
202  av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
204 
205  switch (opt->prediction_order_method) {
206  case ORDER_METHOD_EST:
207  av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "estimate");
208  break;
209  case ORDER_METHOD_2LEVEL:
210  av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "2-level");
211  break;
212  case ORDER_METHOD_4LEVEL:
213  av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "4-level");
214  break;
215  case ORDER_METHOD_8LEVEL:
216  av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "8-level");
217  break;
218  case ORDER_METHOD_SEARCH:
219  av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "full search");
220  break;
221  case ORDER_METHOD_LOG:
222  av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "log search");
223  break;
224  }
225 
226 
227  av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
229 
230  av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", avctx->frame_size);
231 
232  av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
233  opt->lpc_coeff_precision);
234 }
235 
236 
238 {
239  int freq = avctx->sample_rate;
240  int channels = avctx->channels;
241  FlacEncodeContext *s = avctx->priv_data;
242  int i, level, ret;
243  uint8_t *streaminfo;
244 
245  s->avctx = avctx;
246 
247  switch (avctx->sample_fmt) {
248  case AV_SAMPLE_FMT_S16:
249  avctx->bits_per_raw_sample = 16;
250  s->bps_code = 4;
251  break;
252  case AV_SAMPLE_FMT_S32:
253  if (avctx->bits_per_raw_sample != 24)
254  av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
255  avctx->bits_per_raw_sample = 24;
256  s->bps_code = 6;
257  break;
258  }
259 
260  if (channels < 1 || channels > FLAC_MAX_CHANNELS) {
261  av_log(avctx, AV_LOG_ERROR, "%d channels not supported (max %d)\n",
262  channels, FLAC_MAX_CHANNELS);
263  return AVERROR(EINVAL);
264  }
265  s->channels = channels;
266 
267  /* find samplerate in table */
268  if (freq < 1)
269  return -1;
270  for (i = 4; i < 12; i++) {
271  if (freq == ff_flac_sample_rate_table[i]) {
273  s->sr_code[0] = i;
274  s->sr_code[1] = 0;
275  break;
276  }
277  }
278  /* if not in table, samplerate is non-standard */
279  if (i == 12) {
280  if (freq % 1000 == 0 && freq < 255000) {
281  s->sr_code[0] = 12;
282  s->sr_code[1] = freq / 1000;
283  } else if (freq % 10 == 0 && freq < 655350) {
284  s->sr_code[0] = 14;
285  s->sr_code[1] = freq / 10;
286  } else if (freq < 65535) {
287  s->sr_code[0] = 13;
288  s->sr_code[1] = freq;
289  } else {
290  av_log(avctx, AV_LOG_ERROR, "%d Hz not supported\n", freq);
291  return AVERROR(EINVAL);
292  }
293  s->samplerate = freq;
294  }
295 
296  /* set compression option defaults based on avctx->compression_level */
297  if (avctx->compression_level < 0)
298  s->options.compression_level = 5;
299  else
301 
302  level = s->options.compression_level;
303  if (level > 12) {
304  av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
306  return AVERROR(EINVAL);
307  }
308 
309  s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
310 
316  FF_LPC_TYPE_LEVINSON})[level];
317 
318  if (s->options.min_prediction_order < 0)
319  s->options.min_prediction_order = ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level];
320  if (s->options.max_prediction_order < 0)
321  s->options.max_prediction_order = ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level];
322 
323  if (s->options.prediction_order_method < 0)
328  ORDER_METHOD_SEARCH})[level];
329 
331  av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
333  return AVERROR(EINVAL);
334  }
335  if (s->options.min_partition_order < 0)
336  s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level];
337  if (s->options.max_partition_order < 0)
338  s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level];
339 
340 #if FF_API_PRIVATE_OPT
342  if (avctx->min_prediction_order >= 0) {
343  if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
344  if (avctx->min_prediction_order > MAX_FIXED_ORDER) {
345  av_log(avctx, AV_LOG_WARNING,
346  "invalid min prediction order %d, clamped to %d\n",
349  }
350  } else if (avctx->min_prediction_order < MIN_LPC_ORDER ||
352  av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
353  avctx->min_prediction_order);
354  return AVERROR(EINVAL);
355  }
357  }
358  if (avctx->max_prediction_order >= 0) {
359  if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
360  if (avctx->max_prediction_order > MAX_FIXED_ORDER) {
361  av_log(avctx, AV_LOG_WARNING,
362  "invalid max prediction order %d, clamped to %d\n",
365  }
366  } else if (avctx->max_prediction_order < MIN_LPC_ORDER ||
368  av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
369  avctx->max_prediction_order);
370  return AVERROR(EINVAL);
371  }
373  }
375 #endif
376  if (s->options.lpc_type == FF_LPC_TYPE_NONE) {
379  } else if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
381  av_log(avctx, AV_LOG_WARNING,
382  "invalid min prediction order %d, clamped to %d\n",
385  }
387  av_log(avctx, AV_LOG_WARNING,
388  "invalid max prediction order %d, clamped to %d\n",
391  }
392  }
393 
395  av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
397  return AVERROR(EINVAL);
398  }
399 
400  if (avctx->frame_size > 0) {
401  if (avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
402  avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
403  av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
404  avctx->frame_size);
405  return AVERROR(EINVAL);
406  }
407  } else {
409  }
410  s->max_blocksize = s->avctx->frame_size;
411 
412  /* set maximum encoded frame size in verbatim mode */
414  s->channels,
416 
417  /* initialize MD5 context */
418  s->md5ctx = av_md5_alloc();
419  if (!s->md5ctx)
420  return AVERROR(ENOMEM);
421  av_md5_init(s->md5ctx);
422 
423  streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
424  if (!streaminfo)
425  return AVERROR(ENOMEM);
426  write_streaminfo(s, streaminfo);
427  avctx->extradata = streaminfo;
429 
430  s->frame_count = 0;
432 
433  if (channels == 3 &&
435  channels == 4 &&
436  avctx->channel_layout != AV_CH_LAYOUT_2_2 &&
437  avctx->channel_layout != AV_CH_LAYOUT_QUAD ||
438  channels == 5 &&
441  channels == 6 &&
444  if (avctx->channel_layout) {
445  av_log(avctx, AV_LOG_ERROR, "Channel layout not supported by Flac, "
446  "output stream will have incorrect "
447  "channel layout.\n");
448  } else {
449  av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The encoder "
450  "will use Flac channel layout for "
451  "%d channels.\n", channels);
452  }
453  }
454 
455  ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
457 
458  ff_bswapdsp_init(&s->bdsp);
459  ff_flacdsp_init(&s->flac_dsp, avctx->sample_fmt, channels,
460  avctx->bits_per_raw_sample);
461 
463 
464  return ret;
465 }
466 
467 
468 static void init_frame(FlacEncodeContext *s, int nb_samples)
469 {
470  int i, ch;
471  FlacFrame *frame;
472 
473  frame = &s->frame;
474 
475  for (i = 0; i < 16; i++) {
476  if (nb_samples == ff_flac_blocksize_table[i]) {
478  frame->bs_code[0] = i;
479  frame->bs_code[1] = 0;
480  break;
481  }
482  }
483  if (i == 16) {
484  frame->blocksize = nb_samples;
485  if (frame->blocksize <= 256) {
486  frame->bs_code[0] = 6;
487  frame->bs_code[1] = frame->blocksize-1;
488  } else {
489  frame->bs_code[0] = 7;
490  frame->bs_code[1] = frame->blocksize-1;
491  }
492  }
493 
494  for (ch = 0; ch < s->channels; ch++) {
495  FlacSubframe *sub = &frame->subframes[ch];
496 
497  sub->wasted = 0;
498  sub->obits = s->avctx->bits_per_raw_sample;
499 
500  if (sub->obits > 16)
502  else
504  }
505 
506  frame->verbatim_only = 0;
507 }
508 
509 
510 /**
511  * Copy channel-interleaved input samples into separate subframes.
512  */
513 static void copy_samples(FlacEncodeContext *s, const void *samples)
514 {
515  int i, j, ch;
516  FlacFrame *frame;
519 
520 #define COPY_SAMPLES(bits) do { \
521  const int ## bits ## _t *samples0 = samples; \
522  frame = &s->frame; \
523  for (i = 0, j = 0; i < frame->blocksize; i++) \
524  for (ch = 0; ch < s->channels; ch++, j++) \
525  frame->subframes[ch].samples[i] = samples0[j] >> shift; \
526 } while (0)
527 
529  COPY_SAMPLES(16);
530  else
531  COPY_SAMPLES(32);
532 }
533 
534 
535 static uint64_t rice_count_exact(const int32_t *res, int n, int k)
536 {
537  int i;
538  uint64_t count = 0;
539 
540  for (i = 0; i < n; i++) {
541  int32_t v = -2 * res[i] - 1;
542  v ^= v >> 31;
543  count += (v >> k) + 1 + k;
544  }
545  return count;
546 }
547 
548 
550  int pred_order)
551 {
552  int p, porder, psize;
553  int i, part_end;
554  uint64_t count = 0;
555 
556  /* subframe header */
557  count += 8;
558 
559  if (sub->wasted)
560  count += sub->wasted;
561 
562  /* subframe */
563  if (sub->type == FLAC_SUBFRAME_CONSTANT) {
564  count += sub->obits;
565  } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
566  count += s->frame.blocksize * sub->obits;
567  } else {
568  /* warm-up samples */
569  count += pred_order * sub->obits;
570 
571  /* LPC coefficients */
572  if (sub->type == FLAC_SUBFRAME_LPC)
573  count += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
574 
575  /* rice-encoded block */
576  count += 2;
577 
578  /* partition order */
579  porder = sub->rc.porder;
580  psize = s->frame.blocksize >> porder;
581  count += 4;
582 
583  /* residual */
584  i = pred_order;
585  part_end = psize;
586  for (p = 0; p < 1 << porder; p++) {
587  int k = sub->rc.params[p];
588  count += sub->rc.coding_mode;
589  count += rice_count_exact(&sub->residual[i], part_end - i, k);
590  i = part_end;
591  part_end = FFMIN(s->frame.blocksize, part_end + psize);
592  }
593  }
594 
595  return count;
596 }
597 
598 
599 #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
600 
601 /**
602  * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
603  */
604 static int find_optimal_param(uint64_t sum, int n, int max_param)
605 {
606  int k;
607  uint64_t sum2;
608 
609  if (sum <= n >> 1)
610  return 0;
611  sum2 = sum - (n >> 1);
612  k = av_log2(av_clipl_int32(sum2 / n));
613  return FFMIN(k, max_param);
614 }
615 
616 static int find_optimal_param_exact(uint64_t sums[32][MAX_PARTITIONS], int i, int max_param)
617 {
618  int bestk = 0;
619  int64_t bestbits = INT64_MAX;
620  int k;
621 
622  for (k = 0; k <= max_param; k++) {
623  int64_t bits = sums[k][i];
624  if (bits < bestbits) {
625  bestbits = bits;
626  bestk = k;
627  }
628  }
629 
630  return bestk;
631 }
632 
633 static uint64_t calc_optimal_rice_params(RiceContext *rc, int porder,
634  uint64_t sums[32][MAX_PARTITIONS],
635  int n, int pred_order, int max_param, int exact)
636 {
637  int i;
638  int k, cnt, part;
639  uint64_t all_bits;
640 
641  part = (1 << porder);
642  all_bits = 4 * part;
643 
644  cnt = (n >> porder) - pred_order;
645  for (i = 0; i < part; i++) {
646  if (exact) {
647  k = find_optimal_param_exact(sums, i, max_param);
648  all_bits += sums[k][i];
649  } else {
650  k = find_optimal_param(sums[0][i], cnt, max_param);
651  all_bits += rice_encode_count(sums[0][i], cnt, k);
652  }
653  rc->params[i] = k;
654  cnt = n >> porder;
655  }
656 
657  rc->porder = porder;
658 
659  return all_bits;
660 }
661 
662 
663 static void calc_sum_top(int pmax, int kmax, const uint32_t *data, int n, int pred_order,
664  uint64_t sums[32][MAX_PARTITIONS])
665 {
666  int i, k;
667  int parts;
668  const uint32_t *res, *res_end;
669 
670  /* sums for highest level */
671  parts = (1 << pmax);
672 
673  for (k = 0; k <= kmax; k++) {
674  res = &data[pred_order];
675  res_end = &data[n >> pmax];
676  for (i = 0; i < parts; i++) {
677  if (kmax) {
678  uint64_t sum = (1LL + k) * (res_end - res);
679  while (res < res_end)
680  sum += *(res++) >> k;
681  sums[k][i] = sum;
682  } else {
683  uint64_t sum = 0;
684  while (res < res_end)
685  sum += *(res++);
686  sums[k][i] = sum;
687  }
688  res_end += n >> pmax;
689  }
690  }
691 }
692 
693 static void calc_sum_next(int level, uint64_t sums[32][MAX_PARTITIONS], int kmax)
694 {
695  int i, k;
696  int parts = (1 << level);
697  for (i = 0; i < parts; i++) {
698  for (k=0; k<=kmax; k++)
699  sums[k][i] = sums[k][2*i] + sums[k][2*i+1];
700  }
701 }
702 
703 static uint64_t calc_rice_params(RiceContext *rc,
704  uint32_t udata[FLAC_MAX_BLOCKSIZE],
705  uint64_t sums[32][MAX_PARTITIONS],
706  int pmin, int pmax,
707  const int32_t *data, int n, int pred_order, int exact)
708 {
709  int i;
710  uint64_t bits[MAX_PARTITION_ORDER+1];
711  int opt_porder;
712  RiceContext tmp_rc;
713  int kmax = (1 << rc->coding_mode) - 2;
714 
715  av_assert1(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
716  av_assert1(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
717  av_assert1(pmin <= pmax);
718 
719  tmp_rc.coding_mode = rc->coding_mode;
720 
721  for (i = 0; i < n; i++)
722  udata[i] = (2 * data[i]) ^ (data[i] >> 31);
723 
724  calc_sum_top(pmax, exact ? kmax : 0, udata, n, pred_order, sums);
725 
726  opt_porder = pmin;
727  bits[pmin] = UINT32_MAX;
728  for (i = pmax; ; ) {
729  bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums, n, pred_order, kmax, exact);
730  if (bits[i] < bits[opt_porder] || pmax == pmin) {
731  opt_porder = i;
732  *rc = tmp_rc;
733  }
734  if (i == pmin)
735  break;
736  calc_sum_next(--i, sums, exact ? kmax : 0);
737  }
738 
739  return bits[opt_porder];
740 }
741 
742 
743 static int get_max_p_order(int max_porder, int n, int order)
744 {
745  int porder = FFMIN(max_porder, av_log2(n^(n-1)));
746  if (order > 0)
747  porder = FFMIN(porder, av_log2(n/order));
748  return porder;
749 }
750 
751 
753  FlacSubframe *sub, int pred_order)
754 {
756  s->frame.blocksize, pred_order);
758  s->frame.blocksize, pred_order);
759 
760  uint64_t bits = 8 + pred_order * sub->obits + 2 + sub->rc.coding_mode;
761  if (sub->type == FLAC_SUBFRAME_LPC)
762  bits += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
763  bits += calc_rice_params(&sub->rc, sub->rc_udata, sub->rc_sums, pmin, pmax, sub->residual,
764  s->frame.blocksize, pred_order, s->options.exact_rice_parameters);
765  return bits;
766 }
767 
768 
769 static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
770  int order)
771 {
772  int i;
773 
774  for (i = 0; i < order; i++)
775  res[i] = smp[i];
776 
777  if (order == 0) {
778  for (i = order; i < n; i++)
779  res[i] = smp[i];
780  } else if (order == 1) {
781  for (i = order; i < n; i++)
782  res[i] = smp[i] - smp[i-1];
783  } else if (order == 2) {
784  int a = smp[order-1] - smp[order-2];
785  for (i = order; i < n; i += 2) {
786  int b = smp[i ] - smp[i-1];
787  res[i] = b - a;
788  a = smp[i+1] - smp[i ];
789  res[i+1] = a - b;
790  }
791  } else if (order == 3) {
792  int a = smp[order-1] - smp[order-2];
793  int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
794  for (i = order; i < n; i += 2) {
795  int b = smp[i ] - smp[i-1];
796  int d = b - a;
797  res[i] = d - c;
798  a = smp[i+1] - smp[i ];
799  c = a - b;
800  res[i+1] = c - d;
801  }
802  } else {
803  int a = smp[order-1] - smp[order-2];
804  int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
805  int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
806  for (i = order; i < n; i += 2) {
807  int b = smp[i ] - smp[i-1];
808  int d = b - a;
809  int f = d - c;
810  res[i ] = f - e;
811  a = smp[i+1] - smp[i ];
812  c = a - b;
813  e = c - d;
814  res[i+1] = e - f;
815  }
816  }
817 }
818 
819 
821 {
822  int i, n;
823  int min_order, max_order, opt_order, omethod;
824  FlacFrame *frame;
825  FlacSubframe *sub;
827  int shift[MAX_LPC_ORDER];
828  int32_t *res, *smp;
829 
830  frame = &s->frame;
831  sub = &frame->subframes[ch];
832  res = sub->residual;
833  smp = sub->samples;
834  n = frame->blocksize;
835 
836  /* CONSTANT */
837  for (i = 1; i < n; i++)
838  if(smp[i] != smp[0])
839  break;
840  if (i == n) {
841  sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
842  res[0] = smp[0];
843  return subframe_count_exact(s, sub, 0);
844  }
845 
846  /* VERBATIM */
847  if (frame->verbatim_only || n < 5) {
848  sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
849  memcpy(res, smp, n * sizeof(int32_t));
850  return subframe_count_exact(s, sub, 0);
851  }
852 
853  min_order = s->options.min_prediction_order;
854  max_order = s->options.max_prediction_order;
855  omethod = s->options.prediction_order_method;
856 
857  /* FIXED */
858  sub->type = FLAC_SUBFRAME_FIXED;
859  if (s->options.lpc_type == FF_LPC_TYPE_NONE ||
860  s->options.lpc_type == FF_LPC_TYPE_FIXED || n <= max_order) {
861  uint64_t bits[MAX_FIXED_ORDER+1];
862  if (max_order > MAX_FIXED_ORDER)
863  max_order = MAX_FIXED_ORDER;
864  opt_order = 0;
865  bits[0] = UINT32_MAX;
866  for (i = min_order; i <= max_order; i++) {
867  encode_residual_fixed(res, smp, n, i);
868  bits[i] = find_subframe_rice_params(s, sub, i);
869  if (bits[i] < bits[opt_order])
870  opt_order = i;
871  }
872  sub->order = opt_order;
873  sub->type_code = sub->type | sub->order;
874  if (sub->order != max_order) {
875  encode_residual_fixed(res, smp, n, sub->order);
876  find_subframe_rice_params(s, sub, sub->order);
877  }
878  return subframe_count_exact(s, sub, sub->order);
879  }
880 
881  /* LPC */
882  sub->type = FLAC_SUBFRAME_LPC;
883  opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order,
884  s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type,
885  s->options.lpc_passes, omethod,
886  MAX_LPC_SHIFT, 0);
887 
888  if (omethod == ORDER_METHOD_2LEVEL ||
889  omethod == ORDER_METHOD_4LEVEL ||
890  omethod == ORDER_METHOD_8LEVEL) {
891  int levels = 1 << omethod;
892  uint64_t bits[1 << ORDER_METHOD_8LEVEL];
893  int order = -1;
894  int opt_index = levels-1;
895  opt_order = max_order-1;
896  bits[opt_index] = UINT32_MAX;
897  for (i = levels-1; i >= 0; i--) {
898  int last_order = order;
899  order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
900  order = av_clip(order, min_order - 1, max_order - 1);
901  if (order == last_order)
902  continue;
903  if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(order) <= 32) {
904  s->flac_dsp.lpc16_encode(res, smp, n, order+1, coefs[order],
905  shift[order]);
906  } else {
907  s->flac_dsp.lpc32_encode(res, smp, n, order+1, coefs[order],
908  shift[order]);
909  }
910  bits[i] = find_subframe_rice_params(s, sub, order+1);
911  if (bits[i] < bits[opt_index]) {
912  opt_index = i;
913  opt_order = order;
914  }
915  }
916  opt_order++;
917  } else if (omethod == ORDER_METHOD_SEARCH) {
918  // brute-force optimal order search
919  uint64_t bits[MAX_LPC_ORDER];
920  opt_order = 0;
921  bits[0] = UINT32_MAX;
922  for (i = min_order-1; i < max_order; i++) {
923  if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(i) <= 32) {
924  s->flac_dsp.lpc16_encode(res, smp, n, i+1, coefs[i], shift[i]);
925  } else {
926  s->flac_dsp.lpc32_encode(res, smp, n, i+1, coefs[i], shift[i]);
927  }
928  bits[i] = find_subframe_rice_params(s, sub, i+1);
929  if (bits[i] < bits[opt_order])
930  opt_order = i;
931  }
932  opt_order++;
933  } else if (omethod == ORDER_METHOD_LOG) {
934  uint64_t bits[MAX_LPC_ORDER];
935  int step;
936 
937  opt_order = min_order - 1 + (max_order-min_order)/3;
938  memset(bits, -1, sizeof(bits));
939 
940  for (step = 16; step; step >>= 1) {
941  int last = opt_order;
942  for (i = last-step; i <= last+step; i += step) {
943  if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX)
944  continue;
945  if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(i) <= 32) {
946  s->flac_dsp.lpc32_encode(res, smp, n, i+1, coefs[i], shift[i]);
947  } else {
948  s->flac_dsp.lpc16_encode(res, smp, n, i+1, coefs[i], shift[i]);
949  }
950  bits[i] = find_subframe_rice_params(s, sub, i+1);
951  if (bits[i] < bits[opt_order])
952  opt_order = i;
953  }
954  }
955  opt_order++;
956  }
957 
958  if (s->options.multi_dim_quant) {
959  int allsteps = 1;
960  int i, step, improved;
961  int64_t best_score = INT64_MAX;
962  int32_t qmax;
963 
964  qmax = (1 << (s->options.lpc_coeff_precision - 1)) - 1;
965 
966  for (i=0; i<opt_order; i++)
967  allsteps *= 3;
968 
969  do {
970  improved = 0;
971  for (step = 0; step < allsteps; step++) {
972  int tmp = step;
973  int32_t lpc_try[MAX_LPC_ORDER];
974  int64_t score = 0;
975  int diffsum = 0;
976 
977  for (i=0; i<opt_order; i++) {
978  int diff = ((tmp + 1) % 3) - 1;
979  lpc_try[i] = av_clip(coefs[opt_order - 1][i] + diff, -qmax, qmax);
980  tmp /= 3;
981  diffsum += !!diff;
982  }
983  if (diffsum >8)
984  continue;
985 
986  if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(opt_order - 1) <= 32) {
987  s->flac_dsp.lpc16_encode(res, smp, n, opt_order, lpc_try, shift[opt_order-1]);
988  } else {
989  s->flac_dsp.lpc32_encode(res, smp, n, opt_order, lpc_try, shift[opt_order-1]);
990  }
991  score = find_subframe_rice_params(s, sub, opt_order);
992  if (score < best_score) {
993  best_score = score;
994  memcpy(coefs[opt_order-1], lpc_try, sizeof(*coefs));
995  improved=1;
996  }
997  }
998  } while(improved);
999  }
1000 
1001  sub->order = opt_order;
1002  sub->type_code = sub->type | (sub->order-1);
1003  sub->shift = shift[sub->order-1];
1004  for (i = 0; i < sub->order; i++)
1005  sub->coefs[i] = coefs[sub->order-1][i];
1006 
1007  if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(opt_order) <= 32) {
1008  s->flac_dsp.lpc16_encode(res, smp, n, sub->order, sub->coefs, sub->shift);
1009  } else {
1010  s->flac_dsp.lpc32_encode(res, smp, n, sub->order, sub->coefs, sub->shift);
1011  }
1012 
1013  find_subframe_rice_params(s, sub, sub->order);
1014 
1015  return subframe_count_exact(s, sub, sub->order);
1016 }
1017 
1018 
1020 {
1021  uint8_t av_unused tmp;
1022  int count;
1023 
1024  /*
1025  <14> Sync code
1026  <1> Reserved
1027  <1> Blocking strategy
1028  <4> Block size in inter-channel samples
1029  <4> Sample rate
1030  <4> Channel assignment
1031  <3> Sample size in bits
1032  <1> Reserved
1033  */
1034  count = 32;
1035 
1036  /* coded frame number */
1037  PUT_UTF8(s->frame_count, tmp, count += 8;)
1038 
1039  /* explicit block size */
1040  if (s->frame.bs_code[0] == 6)
1041  count += 8;
1042  else if (s->frame.bs_code[0] == 7)
1043  count += 16;
1044 
1045  /* explicit sample rate */
1046  count += ((s->sr_code[0] == 12) + (s->sr_code[0] > 12) * 2) * 8;
1047 
1048  /* frame header CRC-8 */
1049  count += 8;
1050 
1051  return count;
1052 }
1053 
1054 
1056 {
1057  int ch;
1058  uint64_t count;
1059 
1060  count = count_frame_header(s);
1061 
1062  for (ch = 0; ch < s->channels; ch++)
1063  count += encode_residual_ch(s, ch);
1064 
1065  count += (8 - (count & 7)) & 7; // byte alignment
1066  count += 16; // CRC-16
1067 
1068  count >>= 3;
1069  if (count > INT_MAX)
1070  return AVERROR_BUG;
1071  return count;
1072 }
1073 
1074 
1076 {
1077  int ch, i;
1078 
1079  for (ch = 0; ch < s->channels; ch++) {
1080  FlacSubframe *sub = &s->frame.subframes[ch];
1081  int32_t v = 0;
1082 
1083  for (i = 0; i < s->frame.blocksize; i++) {
1084  v |= sub->samples[i];
1085  if (v & 1)
1086  break;
1087  }
1088 
1089  if (v && !(v & 1)) {
1090  v = ff_ctz(v);
1091 
1092  for (i = 0; i < s->frame.blocksize; i++)
1093  sub->samples[i] >>= v;
1094 
1095  sub->wasted = v;
1096  sub->obits -= v;
1097 
1098  /* for 24-bit, check if removing wasted bits makes the range better
1099  suited for using RICE instead of RICE2 for entropy coding */
1100  if (sub->obits <= 17)
1102  }
1103  }
1104 }
1105 
1106 
1107 static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n,
1108  int max_rice_param)
1109 {
1110  int i, best;
1111  int32_t lt, rt;
1112  uint64_t sum[4];
1113  uint64_t score[4];
1114  int k;
1115 
1116  /* calculate sum of 2nd order residual for each channel */
1117  sum[0] = sum[1] = sum[2] = sum[3] = 0;
1118  for (i = 2; i < n; i++) {
1119  lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
1120  rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
1121  sum[2] += FFABS((lt + rt) >> 1);
1122  sum[3] += FFABS(lt - rt);
1123  sum[0] += FFABS(lt);
1124  sum[1] += FFABS(rt);
1125  }
1126  /* estimate bit counts */
1127  for (i = 0; i < 4; i++) {
1128  k = find_optimal_param(2 * sum[i], n, max_rice_param);
1129  sum[i] = rice_encode_count( 2 * sum[i], n, k);
1130  }
1131 
1132  /* calculate score for each mode */
1133  score[0] = sum[0] + sum[1];
1134  score[1] = sum[0] + sum[3];
1135  score[2] = sum[1] + sum[3];
1136  score[3] = sum[2] + sum[3];
1137 
1138  /* return mode with lowest score */
1139  best = 0;
1140  for (i = 1; i < 4; i++)
1141  if (score[i] < score[best])
1142  best = i;
1143 
1144  return best;
1145 }
1146 
1147 
1148 /**
1149  * Perform stereo channel decorrelation.
1150  */
1152 {
1153  FlacFrame *frame;
1154  int32_t *left, *right;
1155  int i, n;
1156 
1157  frame = &s->frame;
1158  n = frame->blocksize;
1159  left = frame->subframes[0].samples;
1160  right = frame->subframes[1].samples;
1161 
1162  if (s->channels != 2) {
1164  return;
1165  }
1166 
1167  if (s->options.ch_mode < 0) {
1168  int max_rice_param = (1 << frame->subframes[0].rc.coding_mode) - 2;
1169  frame->ch_mode = estimate_stereo_mode(left, right, n, max_rice_param);
1170  } else
1171  frame->ch_mode = s->options.ch_mode;
1172 
1173  /* perform decorrelation and adjust bits-per-sample */
1174  if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
1175  return;
1176  if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
1177  int32_t tmp;
1178  for (i = 0; i < n; i++) {
1179  tmp = left[i];
1180  left[i] = (tmp + right[i]) >> 1;
1181  right[i] = tmp - right[i];
1182  }
1183  frame->subframes[1].obits++;
1184  } else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
1185  for (i = 0; i < n; i++)
1186  right[i] = left[i] - right[i];
1187  frame->subframes[1].obits++;
1188  } else {
1189  for (i = 0; i < n; i++)
1190  left[i] -= right[i];
1191  frame->subframes[0].obits++;
1192  }
1193 }
1194 
1195 
1196 static void write_utf8(PutBitContext *pb, uint32_t val)
1197 {
1198  uint8_t tmp;
1199  PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
1200 }
1201 
1202 
1204 {
1205  FlacFrame *frame;
1206  int crc;
1207 
1208  frame = &s->frame;
1209 
1210  put_bits(&s->pb, 16, 0xFFF8);
1211  put_bits(&s->pb, 4, frame->bs_code[0]);
1212  put_bits(&s->pb, 4, s->sr_code[0]);
1213 
1214  if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
1215  put_bits(&s->pb, 4, s->channels-1);
1216  else
1217  put_bits(&s->pb, 4, frame->ch_mode + FLAC_MAX_CHANNELS - 1);
1218 
1219  put_bits(&s->pb, 3, s->bps_code);
1220  put_bits(&s->pb, 1, 0);
1221  write_utf8(&s->pb, s->frame_count);
1222 
1223  if (frame->bs_code[0] == 6)
1224  put_bits(&s->pb, 8, frame->bs_code[1]);
1225  else if (frame->bs_code[0] == 7)
1226  put_bits(&s->pb, 16, frame->bs_code[1]);
1227 
1228  if (s->sr_code[0] == 12)
1229  put_bits(&s->pb, 8, s->sr_code[1]);
1230  else if (s->sr_code[0] > 12)
1231  put_bits(&s->pb, 16, s->sr_code[1]);
1232 
1233  flush_put_bits(&s->pb);
1234  crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, s->pb.buf,
1235  put_bits_count(&s->pb) >> 3);
1236  put_bits(&s->pb, 8, crc);
1237 }
1238 
1239 
1241 {
1242  int ch;
1243 
1244  for (ch = 0; ch < s->channels; ch++) {
1245  FlacSubframe *sub = &s->frame.subframes[ch];
1246  int i, p, porder, psize;
1247  int32_t *part_end;
1248  int32_t *res = sub->residual;
1249  int32_t *frame_end = &sub->residual[s->frame.blocksize];
1250 
1251  /* subframe header */
1252  put_bits(&s->pb, 1, 0);
1253  put_bits(&s->pb, 6, sub->type_code);
1254  put_bits(&s->pb, 1, !!sub->wasted);
1255  if (sub->wasted)
1256  put_bits(&s->pb, sub->wasted, 1);
1257 
1258  /* subframe */
1259  if (sub->type == FLAC_SUBFRAME_CONSTANT) {
1260  put_sbits(&s->pb, sub->obits, res[0]);
1261  } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
1262  while (res < frame_end)
1263  put_sbits(&s->pb, sub->obits, *res++);
1264  } else {
1265  /* warm-up samples */
1266  for (i = 0; i < sub->order; i++)
1267  put_sbits(&s->pb, sub->obits, *res++);
1268 
1269  /* LPC coefficients */
1270  if (sub->type == FLAC_SUBFRAME_LPC) {
1271  int cbits = s->options.lpc_coeff_precision;
1272  put_bits( &s->pb, 4, cbits-1);
1273  put_sbits(&s->pb, 5, sub->shift);
1274  for (i = 0; i < sub->order; i++)
1275  put_sbits(&s->pb, cbits, sub->coefs[i]);
1276  }
1277 
1278  /* rice-encoded block */
1279  put_bits(&s->pb, 2, sub->rc.coding_mode - 4);
1280 
1281  /* partition order */
1282  porder = sub->rc.porder;
1283  psize = s->frame.blocksize >> porder;
1284  put_bits(&s->pb, 4, porder);
1285 
1286  /* residual */
1287  part_end = &sub->residual[psize];
1288  for (p = 0; p < 1 << porder; p++) {
1289  int k = sub->rc.params[p];
1290  put_bits(&s->pb, sub->rc.coding_mode, k);
1291  while (res < part_end)
1292  set_sr_golomb_flac(&s->pb, *res++, k, INT32_MAX, 0);
1293  part_end = FFMIN(frame_end, part_end + psize);
1294  }
1295  }
1296  }
1297 }
1298 
1299 
1301 {
1302  int crc;
1303  flush_put_bits(&s->pb);
1305  put_bits_count(&s->pb)>>3));
1306  put_bits(&s->pb, 16, crc);
1307  flush_put_bits(&s->pb);
1308 }
1309 
1310 
1312 {
1313  init_put_bits(&s->pb, avpkt->data, avpkt->size);
1314  write_frame_header(s);
1315  write_subframes(s);
1316  write_frame_footer(s);
1317  return put_bits_count(&s->pb) >> 3;
1318 }
1319 
1320 
1321 static int update_md5_sum(FlacEncodeContext *s, const void *samples)
1322 {
1323  const uint8_t *buf;
1324  int buf_size = s->frame.blocksize * s->channels *
1325  ((s->avctx->bits_per_raw_sample + 7) / 8);
1326 
1327  if (s->avctx->bits_per_raw_sample > 16 || HAVE_BIGENDIAN) {
1328  av_fast_malloc(&s->md5_buffer, &s->md5_buffer_size, buf_size);
1329  if (!s->md5_buffer)
1330  return AVERROR(ENOMEM);
1331  }
1332 
1333  if (s->avctx->bits_per_raw_sample <= 16) {
1334  buf = (const uint8_t *)samples;
1335 #if HAVE_BIGENDIAN
1336  s->bdsp.bswap16_buf((uint16_t *) s->md5_buffer,
1337  (const uint16_t *) samples, buf_size / 2);
1338  buf = s->md5_buffer;
1339 #endif
1340  } else {
1341  int i;
1342  const int32_t *samples0 = samples;
1343  uint8_t *tmp = s->md5_buffer;
1344 
1345  for (i = 0; i < s->frame.blocksize * s->channels; i++) {
1346  int32_t v = samples0[i] >> 8;
1347  AV_WL24(tmp + 3*i, v);
1348  }
1349  buf = s->md5_buffer;
1350  }
1351  av_md5_update(s->md5ctx, buf, buf_size);
1352 
1353  return 0;
1354 }
1355 
1356 
1357 static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
1358  const AVFrame *frame, int *got_packet_ptr)
1359 {
1361  int frame_bytes, out_bytes, ret;
1362 
1363  s = avctx->priv_data;
1364 
1365  /* when the last block is reached, update the header in extradata */
1366  if (!frame) {
1368  av_md5_final(s->md5ctx, s->md5sum);
1369  write_streaminfo(s, avctx->extradata);
1370 
1371 #if FF_API_SIDEDATA_ONLY_PKT
1373  if (avctx->side_data_only_packets && !s->flushed) {
1375 #else
1376  if (!s->flushed) {
1377 #endif
1379  avctx->extradata_size);
1380  if (!side_data)
1381  return AVERROR(ENOMEM);
1382  memcpy(side_data, avctx->extradata, avctx->extradata_size);
1383 
1384  avpkt->pts = s->next_pts;
1385 
1386  *got_packet_ptr = 1;
1387  s->flushed = 1;
1388  }
1389 
1390  return 0;
1391  }
1392 
1393  /* change max_framesize for small final frame */
1394  if (frame->nb_samples < s->frame.blocksize) {
1396  s->channels,
1397  avctx->bits_per_raw_sample);
1398  }
1399 
1400  init_frame(s, frame->nb_samples);
1401 
1402  copy_samples(s, frame->data[0]);
1403 
1405 
1406  remove_wasted_bits(s);
1407 
1408  frame_bytes = encode_frame(s);
1409 
1410  /* Fall back on verbatim mode if the compressed frame is larger than it
1411  would be if encoded uncompressed. */
1412  if (frame_bytes < 0 || frame_bytes > s->max_framesize) {
1413  s->frame.verbatim_only = 1;
1414  frame_bytes = encode_frame(s);
1415  if (frame_bytes < 0) {
1416  av_log(avctx, AV_LOG_ERROR, "Bad frame count\n");
1417  return frame_bytes;
1418  }
1419  }
1420 
1421  if ((ret = ff_alloc_packet2(avctx, avpkt, frame_bytes, 0)) < 0)
1422  return ret;
1423 
1424  out_bytes = write_frame(s, avpkt);
1425 
1426  s->frame_count++;
1427  s->sample_count += frame->nb_samples;
1428  if ((ret = update_md5_sum(s, frame->data[0])) < 0) {
1429  av_log(avctx, AV_LOG_ERROR, "Error updating MD5 checksum\n");
1430  return ret;
1431  }
1432  if (out_bytes > s->max_encoded_framesize)
1433  s->max_encoded_framesize = out_bytes;
1434  if (out_bytes < s->min_framesize)
1435  s->min_framesize = out_bytes;
1436 
1437  avpkt->pts = frame->pts;
1438  avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
1439  avpkt->size = out_bytes;
1440 
1441  s->next_pts = avpkt->pts + avpkt->duration;
1442 
1443  *got_packet_ptr = 1;
1444  return 0;
1445 }
1446 
1447 
1449 {
1450  if (avctx->priv_data) {
1451  FlacEncodeContext *s = avctx->priv_data;
1452  av_freep(&s->md5ctx);
1453  av_freep(&s->md5_buffer);
1454  ff_lpc_end(&s->lpc_ctx);
1455  }
1456  av_freep(&avctx->extradata);
1457  avctx->extradata_size = 0;
1458  return 0;
1459 }
1460 
1461 #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
1462 static const AVOption options[] = {
1463 { "lpc_coeff_precision", "LPC coefficient precision", offsetof(FlacEncodeContext, options.lpc_coeff_precision), AV_OPT_TYPE_INT, {.i64 = 15 }, 0, MAX_LPC_PRECISION, FLAGS },
1464 { "lpc_type", "LPC algorithm", offsetof(FlacEncodeContext, options.lpc_type), AV_OPT_TYPE_INT, {.i64 = FF_LPC_TYPE_DEFAULT }, FF_LPC_TYPE_DEFAULT, FF_LPC_TYPE_NB-1, FLAGS, "lpc_type" },
1465 { "none", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_NONE }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1466 { "fixed", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_FIXED }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1467 { "levinson", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_LEVINSON }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1468 { "cholesky", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_CHOLESKY }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1469 { "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", offsetof(FlacEncodeContext, options.lpc_passes), AV_OPT_TYPE_INT, {.i64 = 2 }, 1, INT_MAX, FLAGS },
1470 { "min_partition_order", NULL, offsetof(FlacEncodeContext, options.min_partition_order), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, MAX_PARTITION_ORDER, FLAGS },
1471 { "max_partition_order", NULL, offsetof(FlacEncodeContext, options.max_partition_order), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, MAX_PARTITION_ORDER, FLAGS },
1472 { "prediction_order_method", "Search method for selecting prediction order", offsetof(FlacEncodeContext, options.prediction_order_method), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, ORDER_METHOD_LOG, FLAGS, "predm" },
1473 { "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST }, INT_MIN, INT_MAX, FLAGS, "predm" },
1474 { "2level", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_2LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
1475 { "4level", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_4LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
1476 { "8level", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_8LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
1477 { "search", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, INT_MIN, INT_MAX, FLAGS, "predm" },
1478 { "log", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_LOG }, INT_MIN, INT_MAX, FLAGS, "predm" },
1479 { "ch_mode", "Stereo decorrelation mode", offsetof(FlacEncodeContext, options.ch_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, FLAC_CHMODE_MID_SIDE, FLAGS, "ch_mode" },
1480 { "auto", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1 }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1481 { "indep", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_INDEPENDENT }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1482 { "left_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_LEFT_SIDE }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1483 { "right_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_RIGHT_SIDE }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1484 { "mid_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_MID_SIDE }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1485 { "exact_rice_parameters", "Calculate rice parameters exactly", offsetof(FlacEncodeContext, options.exact_rice_parameters), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
1486 { "multi_dim_quant", "Multi-dimensional quantization", offsetof(FlacEncodeContext, options.multi_dim_quant), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
1487 { "min_prediction_order", NULL, offsetof(FlacEncodeContext, options.min_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS },
1488 { "max_prediction_order", NULL, offsetof(FlacEncodeContext, options.max_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS },
1489 
1490 { NULL },
1491 };
1492 
1493 static const AVClass flac_encoder_class = {
1494  .class_name = "FLAC encoder",
1495  .item_name = av_default_item_name,
1496  .option = options,
1497  .version = LIBAVUTIL_VERSION_INT,
1498 };
1499 
1501  .name = "flac",
1502  .long_name = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
1503  .type = AVMEDIA_TYPE_AUDIO,
1504  .id = AV_CODEC_ID_FLAC,
1505  .priv_data_size = sizeof(FlacEncodeContext),
1507  .encode2 = flac_encode_frame,
1508  .close = flac_encode_close,
1510  .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
1513  .priv_class = &flac_encoder_class,
1514 };
#define MAX_FIXED_ORDER
Definition: flacenc.c:42
uint32_t rc_udata[FLAC_MAX_BLOCKSIZE]
Definition: flacenc.c:85
#define NULL
Definition: coverity.c:32
#define rice_encode_count(sum, n, k)
Definition: flacenc.c:599
const char const char void * val
Definition: avisynth_c.h:634
#define ff_ctz
Definition: intmath.h:106
#define ORDER_METHOD_SEARCH
Definition: lpc.h:34
const char * s
Definition: avisynth_c.h:631
static int shift(int a, int b)
Definition: sonic.c:82
int type
Definition: flacenc.c:76
This structure describes decoded (raw) audio or video data.
Definition: frame.h:181
#define ORDER_METHOD_8LEVEL
Definition: lpc.h:33
AVCodec ff_flac_encoder
Definition: flacenc.c:1500
AVOption.
Definition: opt.h:245
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
int min_prediction_order
Definition: flacenc.c:59
Definition: lpc.h:52
static void put_sbits(PutBitContext *pb, int n, int32_t value)
Definition: put_bits.h:200
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:168
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define LIBAVUTIL_VERSION_INT
Definition: version.h:70
struct AVMD5 * md5ctx
Definition: flacenc.c:119
#define MAX_LPC_ORDER
Definition: lpc.h:38
av_cold void ff_flacdsp_init(FLACDSPContext *c, enum AVSampleFormat fmt, int channels, int bps)
Definition: flacdsp.c:88
int ff_lpc_calc_coefs(LPCContext *s, const int32_t *samples, int blocksize, int min_order, int max_order, int precision, int32_t coefs[][MAX_LPC_ORDER], int *shift, enum FFLPCType lpc_type, int lpc_passes, int omethod, int max_shift, int zero_shift)
Calculate LPC coefficients for multiple orders.
Definition: lpc.c:198
void(* bswap16_buf)(uint16_t *dst, const uint16_t *src, int len)
Definition: bswapdsp.h:26
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int ff_flac_get_max_frame_size(int blocksize, int ch, int bps)
Calculate an estimate for the maximum frame size based on verbatim mode.
Definition: flac.c:148
int size
Definition: avcodec.h:1468
const char * b
Definition: vf_curves.c:109
int min_partition_order
Definition: flacenc.c:62
#define MAX_PARTITION_ORDER
Definition: flacenc.c:43
#define av_bswap16
Definition: bswap.h:31
int av_log2(unsigned v)
Definition: intmath.c:26
#define PUT_UTF8(val, tmp, PUT_BYTE)
Convert a 32-bit Unicode character to its UTF-8 encoded form (up to 4 bytes long).
Definition: common.h:414
int64_t next_pts
Definition: flacenc.c:126
#define FLAC_MAX_BLOCKSIZE
Definition: flac.h:37
#define MAX_LPC_SHIFT
Definition: flacenc.c:46
#define AV_CH_LAYOUT_STEREO
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:2924
static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
Definition: flacenc.c:1357
int max_partition_order
Definition: flacenc.c:63
AVCodec.
Definition: avcodec.h:3392
#define AV_CH_LAYOUT_5POINT0
void(* lpc32_encode)(int32_t *res, const int32_t *smp, int len, int order, const int32_t coefs[32], int shift)
Definition: flacdsp.h:34
void av_md5_update(AVMD5 *ctx, const uint8_t *src, int len)
Update hash value.
Definition: md5.c:148
static int select_blocksize(int samplerate, int block_time_ms)
Set blocksize based on samplerate.
Definition: flacenc.c:160
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: avcodec.h:881
FlacFrame frame
Definition: flacenc.c:115
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
#define AV_WL24(p, d)
Definition: intreadwrite.h:464
attribute_deprecated int side_data_only_packets
Encoding only and set by default.
Definition: avcodec.h:3186
struct AVMD5 * av_md5_alloc(void)
Allocate an AVMD5 context.
Definition: md5.c:47
uint8_t bits
Definition: crc.c:295
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2295
uint8_t
#define ORDER_METHOD_LOG
Definition: lpc.h:35
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
AVOptions.
int order
Definition: flacenc.c:80
do not use LPC prediction or use all zero coefficients
Definition: lpc.h:45
int32_t coefs[MAX_LPC_ORDER]
Definition: flacenc.c:81
int64_t duration
Duration of this packet in AVStream->time_base units, 0 if unknown.
Definition: avcodec.h:1485
int wasted
Definition: flacenc.c:79
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:262
FLACDSPContext flac_dsp
Definition: flacenc.c:123
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1647
uint8_t * md5_buffer
Definition: flacenc.c:120
static AVFrame * frame
uint8_t * data
Definition: avcodec.h:1467
static uint64_t find_subframe_rice_params(FlacEncodeContext *s, FlacSubframe *sub, int pred_order)
Definition: flacenc.c:752
int params[MAX_PARTITIONS]
Definition: flacenc.c:72
static const uint8_t header[24]
Definition: sdr2.c:67
Definition: md5.c:39
uint64_t sample_count
Definition: flacenc.c:113
uint8_t crc8
Definition: flacenc.c:96
signed 32 bits
Definition: samplefmt.h:63
#define FLAC_MIN_BLOCKSIZE
Definition: flac.h:36
#define av_log(a,...)
static void write_subframes(FlacEncodeContext *s)
Definition: flacenc.c:1240
#define AV_CH_LAYOUT_5POINT1
int shift
Definition: flacenc.c:82
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define ORDER_METHOD_4LEVEL
Definition: lpc.h:32
unsigned int md5_buffer_size
Definition: flacenc.c:121
FLAC (Free Lossless Audio Codec) decoder/demuxer common functions.
int exact_rice_parameters
Definition: flacenc.c:65
av_default_item_name
#define AVERROR(e)
Definition: error.h:43
uint64_t rc_sums[32][MAX_PARTITIONS]
Definition: flacenc.c:86
void(* lpc16_encode)(int32_t *res, const int32_t *smp, int len, int order, const int32_t coefs[32], int shift)
Definition: flacdsp.h:32
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:176
int sr_code[2]
Definition: flacenc.c:106
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
#define FLAC_SUBFRAME_LPC
Definition: flacenc.c:40
GLenum GLint * params
Definition: opengl_enc.c:114
uint8_t * buf
Definition: put_bits.h:38
enum CodingMode coding_mode
Definition: flacenc.c:70
simple assert() macros that are a bit more flexible than ISO C assert().
#define AV_CH_LAYOUT_QUAD
const char * name
Name of the codec implementation.
Definition: avcodec.h:3399
#define COPY_SAMPLES(bits)
int porder
Definition: flacenc.c:71
#define FLAC_SUBFRAME_VERBATIM
Definition: flacenc.c:38
GLsizei count
Definition: opengl_enc.c:109
int32_t samples[FLAC_MAX_BLOCKSIZE]
Definition: flacenc.c:88
static void remove_wasted_bits(FlacEncodeContext *s)
Definition: flacenc.c:1075
#define FLAC_SUBFRAME_CONSTANT
Definition: flacenc.c:37
uint64_t channel_layout
Audio channel layout.
Definition: avcodec.h:2338
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:85
#define ORDER_METHOD_2LEVEL
Definition: lpc.h:31
static uint64_t calc_optimal_rice_params(RiceContext *rc, int porder, uint64_t sums[32][MAX_PARTITIONS], int n, int pred_order, int max_param, int exact)
Definition: flacenc.c:633
static void frame_end(MpegEncContext *s)
#define AV_CH_LAYOUT_2_2
int type_code
Definition: flacenc.c:77
#define FLAC_SUBFRAME_FIXED
Definition: flacenc.c:39
static int encode_residual_ch(FlacEncodeContext *s, int ch)
Definition: flacenc.c:820
av_cold void ff_lpc_end(LPCContext *s)
Uninitialize LPCContext.
Definition: lpc.c:318
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
static uint64_t rice_count_exact(const int32_t *res, int n, int k)
Definition: flacenc.c:535
#define AV_CODEC_CAP_SMALL_LAST_FRAME
Codec can be fed a final frame with a smaller size.
Definition: avcodec.h:886
#define FFMIN(a, b)
Definition: common.h:96
int obits
Definition: flacenc.c:78
static int encode_frame(FlacEncodeContext *s)
Definition: flacenc.c:1055
#define FLAGS
Definition: flacenc.c:1461
int32_t
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:356
#define FLAC_STREAMINFO_SIZE
Definition: flac.h:34
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
int n
Definition: avisynth_c.h:547
#define AV_CH_FRONT_CENTER
int prediction_order_method
Definition: flacenc.c:61
#define AV_CH_LAYOUT_5POINT1_BACK
static int get_max_p_order(int max_porder, int n, int order)
Definition: flacenc.c:743
static int write_frame(FlacEncodeContext *s, AVPacket *avpkt)
Definition: flacenc.c:1311
static int find_optimal_param_exact(uint64_t sums[32][MAX_PARTITIONS], int i, int max_param)
Definition: flacenc.c:616
Not part of ABI.
Definition: lpc.h:49
PutBitContext pb
Definition: flacenc.c:103
int lpc_coeff_precision
Definition: flacenc.c:58
attribute_deprecated int max_prediction_order
Definition: avcodec.h:2631
static void set_sr_golomb_flac(PutBitContext *pb, int i, int k, int limit, int esc_len)
write signed golomb rice code (flac).
Definition: golomb.h:574
static const AVOption options[]
Definition: flacenc.c:1462
static void channel_decorrelation(FlacEncodeContext *s)
Perform stereo channel decorrelation.
Definition: flacenc.c:1151
int frame_size
Number of samples per channel in an audio frame.
Definition: avcodec.h:2307
int bs_code[2]
Definition: flacenc.c:95
const int ff_flac_sample_rate_table[16]
Definition: flacdata.c:24
Libavcodec external API header.
static void calc_sum_next(int level, uint64_t sums[32][MAX_PARTITIONS], int kmax)
Definition: flacenc.c:693
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:59
int compression_level
Definition: avcodec.h:1619
int sample_rate
samples per second
Definition: avcodec.h:2287
static void write_frame_header(FlacEncodeContext *s)
Definition: flacenc.c:1203
#define MIN_LPC_ORDER
Definition: lpc.h:37
static void calc_sum_top(int pmax, int kmax, const uint32_t *data, int n, int pred_order, uint64_t sums[32][MAX_PARTITIONS])
Definition: flacenc.c:663
main external API structure.
Definition: avcodec.h:1532
int ch_mode
Definition: flacenc.c:97
static int count_frame_header(FlacEncodeContext *s)
Definition: flacenc.c:1019
Levinson-Durbin recursion.
Definition: lpc.h:47
#define ORDER_METHOD_EST
Definition: lpc.h:30
void av_md5_init(AVMD5 *ctx)
Initialize MD5 hashing.
Definition: md5.c:138
void * buf
Definition: avisynth_c.h:553
int extradata_size
Definition: avcodec.h:1648
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:50
Describe the class of an AVClass context structure.
Definition: log.h:67
use the codec default LPC type
Definition: lpc.h:44
enum FFLPCType lpc_type
Definition: flacenc.c:56
int blocksize
Definition: flacenc.c:94
#define MAX_PARTITIONS
Definition: flacenc.c:44
#define AV_CH_LAYOUT_5POINT0_BACK
static uint64_t calc_rice_params(RiceContext *rc, uint32_t udata[FLAC_MAX_BLOCKSIZE], uint64_t sums[32][MAX_PARTITIONS], int pmin, int pmax, const int32_t *data, int n, int pred_order, int exact)
Definition: flacenc.c:703
uint8_t md5sum[16]
Definition: flacenc.c:114
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n, int order)
Definition: flacenc.c:769
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: utils.c:1621
void av_md5_final(AVMD5 *ctx, uint8_t *dst)
Finish hashing and output digest value.
Definition: md5.c:183
int max_encoded_framesize
Definition: flacenc.c:111
static void write_utf8(PutBitContext *pb, uint32_t val)
Definition: flacenc.c:1196
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order, enum FFLPCType lpc_type)
Initialize LPCContext.
Definition: lpc.c:296
#define MAX_LPC_PRECISION
Definition: flacenc.c:45
int max_prediction_order
Definition: flacenc.c:60
static void copy_samples(FlacEncodeContext *s, const void *samples)
Copy channel-interleaved input samples into separate subframes.
Definition: flacenc.c:513
int compression_level
Definition: flacenc.c:54
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:192
uint8_t level
Definition: svq3.c:150
RiceContext rc
Definition: flacenc.c:84
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:104
AVCodecContext * avctx
Definition: flacenc.c:117
static void write_frame_footer(FlacEncodeContext *s)
Definition: flacenc.c:1300
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:342
FlacSubframe subframes[FLAC_MAX_CHANNELS]
Definition: flacenc.c:93
CompressionOptions options
Definition: flacenc.c:116
FFLPCType
LPC analysis type.
Definition: lpc.h:43
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:499
Cholesky factorization.
Definition: lpc.h:48
#define FF_DISABLE_DEPRECATION_WARNINGS
Definition: internal.h:80
static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n, int max_rice_param)
Definition: flacenc.c:1107
common internal api header.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:101
if(ret< 0)
Definition: vf_mcdeint.c:282
int32_t residual[FLAC_MAX_BLOCKSIZE+11]
Definition: flacenc.c:89
const int32_t ff_flac_blocksize_table[16]
Definition: flacdata.c:30
signed 16 bits
Definition: samplefmt.h:62
static double c[64]
#define AV_CODEC_CAP_LOSSLESS
Codec is lossless.
Definition: avcodec.h:943
LPCContext lpc_ctx
Definition: flacenc.c:118
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:48
static av_cold int flac_encode_close(AVCodecContext *avctx)
Definition: flacenc.c:1448
static av_cold void dprint_compression_options(FlacEncodeContext *s)
Definition: flacenc.c:179
fixed LPC coefficients
Definition: lpc.h:46
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1574
static int find_optimal_param(uint64_t sum, int n, int max_param)
Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
Definition: flacenc.c:604
static av_always_inline int diff(const uint32_t a, const uint32_t b)
#define FF_ENABLE_DEPRECATION_WARNINGS
Definition: internal.h:81
attribute_deprecated int min_prediction_order
Definition: avcodec.h:2627
int channels
number of audio channels
Definition: avcodec.h:2288
static uint64_t subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub, int pred_order)
Definition: flacenc.c:549
static const AVClass flac_encoder_class
Definition: flacenc.c:1493
BswapDSPContext bdsp
Definition: flacenc.c:122
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:701
CodingMode
Definition: flacenc.c:48
#define av_freep(p)
static void init_frame(FlacEncodeContext *s, int nb_samples)
Definition: flacenc.c:468
static av_always_inline int64_t ff_samples_to_time_base(AVCodecContext *avctx, int64_t samples)
Rescale from sample rate to AVCodecContext.time_base.
Definition: internal.h:235
static int update_md5_sum(FlacEncodeContext *s, const void *samples)
Definition: flacenc.c:1321
uint8_t * av_packet_new_side_data(AVPacket *pkt, enum AVPacketSideDataType type, int size)
Allocate new information of a packet.
Definition: avpacket.c:299
exp golomb vlc stuff
This structure stores compressed data.
Definition: avcodec.h:1444
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:235
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
Definition: avcodec.h:1460
static av_cold int flac_encode_init(AVCodecContext *avctx)
Definition: flacenc.c:237
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
Write streaminfo metadata block to byte array.
Definition: flacenc.c:133
#define FLAC_MAX_CHANNELS
Definition: flac.h:35
#define av_unused
Definition: attributes.h:126
int verbatim_only
Definition: flacenc.c:98
uint32_t frame_count
Definition: flacenc.c:112
bitstream writer API