57 #define NOISE_SPREAD_THRESHOLD 0.9f 
   61 #define NOISE_LAMBDA_REPLACE 1.948f 
   78                                      int win, 
int group_len, 
const float lambda)
 
   85     const int run_esc  = (1 << 
run_bits) - 1;
 
   87     int stackrun[120], stackcb[120], stack_len;
 
   98     for (swb = 0; swb < max_sfb; swb++) {
 
  100         if (sce->
zeroes[win*16 + swb]) {
 
  107             float minrd = next_minrd;
 
  108             int mincb = next_mincb;
 
  112                 float cost_stay_here, cost_get_here;
 
  121                 for (w = 0; w < group_len; w++) {
 
  124                                              &s->
scoefs[start + w*128], size,
 
  128                 cost_stay_here = path[swb][
cb].
cost + rd;
 
  129                 cost_get_here  = minrd              + rd + run_bits + 4;
 
  133                 if (cost_get_here < cost_stay_here) {
 
  135                     path[swb+1][
cb].
cost     = cost_get_here;
 
  136                     path[swb+1][
cb].
run      = 1;
 
  139                     path[swb+1][
cb].
cost     = cost_stay_here;
 
  142                 if (path[swb+1][cb].cost < next_minrd) {
 
  143                     next_minrd = path[swb+1][
cb].
cost;
 
  155         if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
 
  161         stackrun[stack_len] = path[ppos][
cb].
run;
 
  162         stackcb [stack_len] = 
cb;
 
  164         ppos -= path[ppos][
cb].
run;
 
  169     for (i = stack_len - 1; i >= 0; i--) {
 
  173         memset(sce->
zeroes + win*16 + start, !cb, count);
 
  175         for (j = 0; j < 
count; j++) {
 
  179         while (count >= run_esc) {
 
  193 #define TRELLIS_STAGES 121 
  194 #define TRELLIS_STATES (SCALE_MAX_DIFF+1) 
  199     int prevscaler_n = -255, prevscaler_i = 0;
 
  211                 if (prevscaler_n == -255)
 
  212                     prevscaler_n = sce->
sf_idx[w*16+
g];
 
  239     int q, w, w2, 
g, 
start = 0;
 
  246     float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
 
  247     int q0, 
q1, qcnt = 0;
 
  249     for (i = 0; i < 1024; i++) {
 
  250         float t = fabsf(sce->
coeffs[i]);
 
  279         } 
else if (q1 > q1high) {
 
  292         paths[0][i].
cost    = 0.0f;
 
  293         paths[0][i].
prev    = -1;
 
  298             paths[j][i].
prev    = -2;
 
  310             bandaddr[idx] = w * 16 + 
g;
 
  316                     sce->
zeroes[(w+w2)*16+g] = 1;
 
  319                 sce->
zeroes[(w+w2)*16+g] = 0;
 
  322                     float t = fabsf(coefs[w2*128+i]);
 
  324                         qmin = 
FFMIN(qmin, t);
 
  325                     qmax = 
FFMAX(qmax, t);
 
  329                 int minscale, maxscale;
 
  336                 minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
 
  337                 maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
 
  338                 if (minscale == maxscale) {
 
  339                     maxscale = av_clip(minscale+1, 1, TRELLIS_STATES);
 
  340                     minscale = av_clip(maxscale-1, 0, TRELLIS_STATES - 1);
 
  343                 for (q = minscale; q < maxscale; q++) {
 
  351                     minrd = 
FFMIN(minrd, dist);
 
  353                     for (i = 0; i < q1 - 
q0; i++) {
 
  355                         cost = paths[idx - 1][i].
cost + dist
 
  357                         if (cost < paths[idx][q].cost) {
 
  358                             paths[idx][q].
cost    = cost;
 
  359                             paths[idx][q].
prev    = i;
 
  364                 for (q = 0; q < q1 - 
q0; q++) {
 
  365                     paths[idx][q].
cost = paths[idx - 1][q].
cost + 1;
 
  366                     paths[idx][q].
prev = q;
 
  375     mincost = paths[idx][0].
cost;
 
  378         if (paths[idx][i].cost < mincost) {
 
  379             mincost = paths[idx][i].
cost;
 
  384         sce->
sf_idx[bandaddr[idx]] = minq + 
q0;
 
  385         minq = 
FFMAX(paths[idx][minq].prev, 0);
 
  399     int start = 0, i, w, w2, 
g;
 
  401     float dists[128] = { 0 }, uplims[128] = { 0 };
 
  403     int fflag, minscaler;
 
  410     destbits = 
FFMIN(destbits, 5800);
 
  417             float uplim = 0.0f, energy = 0.0f;
 
  423                     sce->
zeroes[(w+w2)*16+g] = 1;
 
  428             uplims[w*16+
g] = uplim *512;
 
  432                 minthr = 
FFMIN(minthr, uplim);
 
  439             if (sce->
zeroes[w*16+g]) {
 
  465         minscaler = sce->
sf_idx[0];
 
  467         qstep = its ? 1 : 32;
 
  480                     if (sce->
zeroes[w*16+g] || sce->
sf_idx[w*16+g] >= 218) {
 
  497                     dists[w*16+
g] = dist - 
bits;
 
  506             if (tbits > destbits) {
 
  507                 for (i = 0; i < 128; i++)
 
  508                     if (sce->
sf_idx[i] < 218 - qstep)
 
  511                 for (i = 0; i < 128; i++)
 
  512                     if (sce->
sf_idx[i] > 60 - qstep)
 
  516             if (!qstep && tbits > destbits*1.02 && sce->
sf_idx[0] < 217)
 
  525                 int prevsc = sce->
sf_idx[w*16+
g];
 
  526                 if (dists[w*16+g] > uplims[w*16+g] && sce->
sf_idx[w*16+g] > 60) {
 
  534                 if (sce->
sf_idx[w*16+g] != prevsc)
 
  540     } 
while (fflag && its < 10);
 
  548     int bandwidth, cutoff;
 
  549     float *PNS = &s->
scoefs[0*128], *PNS34 = &s->
scoefs[1*128];
 
  550     float *NOR34 = &s->
scoefs[3*128];
 
  552     const float lambda = s->
lambda;
 
  553     const float freq_mult = avctx->
sample_rate*0.5f/wlen;
 
  556     const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f);
 
  557     const float pns_transient_energy_r = 
FFMIN(0.7f, lambda / 140.f);
 
  564     float rate_bandwidth_multiplier = 1.5f;
 
  565     int prev = -1000, prev_sf = -1;
 
  567         ? (refbits * rate_bandwidth_multiplier * avctx->
sample_rate / 1024)
 
  570     frame_bit_rate *= 1.15f;
 
  573         bandwidth = avctx->
cutoff;
 
  578     cutoff = bandwidth * 2 * wlen / avctx->
sample_rate;
 
  586             float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
 
  587             float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
 
  588             float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
 
  589             float min_energy = -1.0f, max_energy = 0.0f;
 
  591             const float freq = (start-wstart)*freq_mult;
 
  600                 sfb_energy += band->
energy;
 
  604                     min_energy = max_energy = band->
energy;
 
  612             dist_thresh = av_clipf(2.5f*
NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias;
 
  622                 ((sce->
zeroes[w*16+g] || !sce->
band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.0f/freq_boost)) || spread < spread_threshold ||
 
  623                 (!sce->
zeroes[w*16+g] && sce->
band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) ||
 
  624                 min_energy < pns_transient_energy_r * max_energy ) {
 
  631             pns_tgt_energy = sfb_energy*
FFMIN(1.0f, spread*spread);
 
  632             noise_sfi = av_clip(
roundf(
log2f(pns_tgt_energy)*2), -100, 155); 
 
  643                 float band_energy, scale, pns_senergy;
 
  651                 scale = noise_amp/sqrtf(band_energy);
 
  654                 pns_energy += pns_senergy;
 
  671             energy_ratio = pns_tgt_energy/pns_energy; 
 
  672             sce->
pns_ener[w*16+
g] = energy_ratio*pns_tgt_energy;
 
  673             if (sce->
zeroes[w*16+g] || !sce->
band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
 
  690     int bandwidth, cutoff;
 
  691     const float lambda = s->
lambda;
 
  692     const float freq_mult = avctx->
sample_rate*0.5f/wlen;
 
  694     const float pns_transient_energy_r = 
FFMIN(0.7f, lambda / 140.f);
 
  701     float rate_bandwidth_multiplier = 1.5f;
 
  703         ? (refbits * rate_bandwidth_multiplier * avctx->
sample_rate / 1024)
 
  706     frame_bit_rate *= 1.15f;
 
  709         bandwidth = avctx->
cutoff;
 
  714     cutoff = bandwidth * 2 * wlen / avctx->
sample_rate;
 
  719             float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
 
  720             float min_energy = -1.0f, max_energy = 0.0f;
 
  722             const float freq = start*freq_mult;
 
  724             if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
 
  730                 sfb_energy += band->
energy;
 
  734                     min_energy = max_energy = band->
energy;
 
  747             if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
 
  758     int start = 0, i, w, w2, 
g, sid_sf_boost, prev_mid, prev_side;
 
  759     uint8_t nextband0[128], nextband1[128];
 
  761     float *L34 = s->
scoefs + 128*2, *R34 = s->
scoefs + 128*3;
 
  762     float *M34 = s->
scoefs + 128*4, *S34 = s->
scoefs + 128*5;
 
  763     const float lambda = s->
lambda;
 
  764     const float mslambda = 
FFMIN(1.0f, lambda / 120.f);
 
  774     prev_mid = sce0->
sf_idx[0];
 
  775     prev_side = sce1->
sf_idx[0];
 
  783                 float Mmax = 0.0f, Smax = 0.0f;
 
  788                         M[i] = (sce0->
coeffs[start+(w+w2)*128+i]
 
  789                               + sce1->
coeffs[start+(w+w2)*128+i]) * 0.5;
 
  791                               - sce1->
coeffs[start+(w+w2)*128+i];
 
  796                         Mmax = 
FFMAX(Mmax, M34[i]);
 
  797                         Smax = 
FFMAX(Smax, S34[i]);
 
  801                 for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
 
  802                     float dist1 = 0.0f, dist2 = 0.0f;
 
  822                     midcb = 
FFMAX(1,midcb);
 
  823                     sidcb = 
FFMAX(1,sidcb);
 
  831                             M[i] = (sce0->
coeffs[start+(w+w2)*128+i]
 
  832                                   + sce1->
coeffs[start+(w+w2)*128+i]) * 0.5;
 
  834                                   - sce1->
coeffs[start+(w+w2)*128+i];
 
  882                     } 
else if (
B1 > B0) {
 
  889                 prev_mid = sce0->
sf_idx[w*16+
g];
 
  891                 prev_side = sce1->
sf_idx[w*16+
g];
 
AAC encoder long term prediction extension. 
static const uint8_t *const run_value_bits[2]
void ff_quantize_band_cost_cache_init(struct AACEncContext *s)
Band types following are encoded differently from others. 
float pns_ener[128]
Noise energy values (used by encoder) 
AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB]
void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce, int common_window)
Encode LTP data. 
AAC encoder trellis codebook selector. 
static const uint8_t aac_cb_out_map[CB_TOT_ALL]
Map to convert values from BandCodingPath index to a codebook index. 
void ff_aac_ltp_insert_new_frame(AACEncContext *s)
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce, int win, int group_len, const float lambda)
Encode band info for single window group bands. 
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit 
int64_t bit_rate
the average bitrate 
#define SCALE_DIFF_ZERO
codebook index corresponding to zero scalefactor indices difference 
#define AAC_CUTOFF_FROM_BITRATE(bit_rate, channels, sample_rate)
FFPsyBand psy_bands[PSY_MAX_BANDS]
channel bands information 
void ff_aac_encode_tns_info(AACEncContext *s, SingleChannelElement *sce)
Encode TNS data. 
#define SCALE_MAX_POS
scalefactor index maximum value 
#define SCALE_MAX_DIFF
maximum scalefactor difference allowed by standard 
float(* scalarproduct_float)(const float *v1, const float *v2, int len)
Calculate the scalar product of two vectors of floats. 
static av_always_inline float bval2bmax(float b)
approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f))) 
static int ff_sfdelta_can_remove_band(const SingleChannelElement *sce, const uint8_t *nextband, int prev_sf, int band)
int common_window
Set if channels share a common 'IndividualChannelStream' in bitstream. 
int prev_idx
pointer to the previous path point 
uint8_t ms_mask[128]
Set if mid/side stereo is used for each scalefactor window band. 
#define NOISE_LAMBDA_REPLACE
static const uint8_t q1[256]
static uint8_t coef2maxsf(float coef)
Return the maximum scalefactor where the quantized coef is not zero. 
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda)
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
Spectral data are scaled white noise not coded in the bitstream. 
static av_always_inline int lcg_random(unsigned previous_val)
linear congruential pseudorandom number generator 
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, int win, int group_len, const float lambda)
const uint16_t * swb_offset
table of offsets to the lowest spectral coefficient of a scalefactor band, sfb, for a particular wind...
static int ff_sfdelta_can_replace(const SingleChannelElement *sce, const uint8_t *nextband, int prev_sf, int new_sf, int band)
static double cb(void *priv, double x, double y)
SingleChannelElement ch[2]
const uint8_t ff_aac_scalefactor_bits[121]
AAC encoder main-type prediction. 
static const uint8_t run_bits[7][16]
void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce)
Encoder predictors data. 
Scalefactor data are intensity stereo positions (in phase). 
single band psychoacoustic information 
void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce)
Process LTP parameters. 
static const uint8_t aac_cb_in_map[CB_TOT_ALL+1]
Inverse map to convert from codebooks to BandCodingPath indices. 
void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce)
float is_ener[128]
Intensity stereo pos (used by encoder) 
void ff_aac_apply_tns(AACEncContext *s, SingleChannelElement *sce)
int flags
AV_CODEC_FLAG_*. 
#define CODEC_FLAG_QSCALE
uint8_t max_sfb
number of scalefactor bands per group 
int num_swb
number of scalefactor window bands 
static const uint8_t q0[256]
void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce)
float ff_aac_pow2sf_tab[428]
#define SCALE_DIV_512
scalefactor difference that corresponds to scale difference in 512 times 
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda)
void(* abs_pow34)(float *out, const float *in, const int size)
enum BandType band_alt[128]
alternative band type (used by encoder) 
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code. 
void ff_aac_adjust_common_pred(AACEncContext *s, ChannelElement *cpe)
static uint8_t coef2minsf(float coef)
Return the minimum scalefactor where the quantized coef does not clip. 
int cur_channel
current channel for coder context 
void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce)
static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
uint8_t can_pns[128]
band is allowed to PNS (informative) 
static void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
void(* vector_fmul_scalar)(float *dst, const float *src, float mul, int len)
Multiply a vector of floats by a scalar float. 
AAC encoder Intensity Stereo. 
AAC definitions and structures. 
AAC encoder twoloop coder. 
void ff_aac_search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElement *cpe)
Libavcodec external API header. 
static int find_min_book(float maxval, int sf)
int sample_rate
samples per second 
main external API structure. 
IndividualChannelStream ics
structure used in optimal codebook search 
Replacements for frequently missing libm functions. 
const uint8_t * swb_sizes
table of scalefactor band sizes for a particular window 
#define NOISE_SPREAD_THRESHOLD
static av_always_inline av_const float roundf(float x)
#define CB_TOT_ALL
Total number of codebooks, including special ones. 
uint8_t zeroes[128]
band is not coded (used by encoder) 
int sf_idx[128]
scalefactor indices (used by encoder) 
INTFLOAT coeffs[1024]
coefficients for IMDCT, maybe processed 
Scalefactor data are intensity stereo positions (out of phase). 
#define SCALE_ONE_POS
scalefactor index that corresponds to scale=1.0 
static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda)
two-loop quantizers search taken from ISO 13818-7 Appendix C 
Single Channel Element - used for both SCE and LFE elements. 
channel element - generic struct for SCE/CPE/CCE/LFE 
int cutoff
Audio cutoff bandwidth (0 means "automatic") 
int channels
number of audio channels 
FFPsyChannel * ch
single channel information 
enum BandType band_type[128]
band types 
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, const float *in, float *out, int size, int scale_idx, int cb, const float lambda, int rtz)
AAC encoder temporal noise shaping. 
#define POW_SF2_ZERO
ff_aac_pow2sf_tab index corresponding to pow(2, 0); 
static float find_max_val(int group_len, int swb_size, const float *scaled)
void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe)
void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce, int common_window)
Mark LTP sfb's. 
static float quantize_band_cost(struct AACEncContext *s, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits, float *energy, int rtz)
static float quantize_band_cost_cached(struct AACEncContext *s, int w, int g, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits, float *energy, int rtz)
uint8_t is_mask[128]
Set if intensity stereo is used (used by encoder) 
float scoefs[1024]
scaled coefficients 
static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
#define NOISE_LOW_LIMIT
This file contains a template for the twoloop coder function.