Go to the documentation of this file.
150 #define FULLPEL_MODE 1
151 #define HALFPEL_MODE 2
152 #define THIRDPEL_MODE 3
153 #define PREDICT_MODE 4
165 0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
166 2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
167 0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
168 0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
172 0 * 16 + 0 * 64, 1 * 16 + 0 * 64, 2 * 16 + 0 * 64, 0 * 16 + 2 * 64,
173 3 * 16 + 0 * 64, 0 * 16 + 1 * 64, 1 * 16 + 1 * 64, 2 * 16 + 1 * 64,
174 1 * 16 + 2 * 64, 2 * 16 + 2 * 64, 3 * 16 + 2 * 64, 0 * 16 + 3 * 64,
175 3 * 16 + 1 * 64, 1 * 16 + 3 * 64, 2 * 16 + 3 * 64, 3 * 16 + 3 * 64,
181 { 0, 2 }, { 1, 1 }, { 2, 0 },
182 { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
183 { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
184 { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
185 { 2, 4 }, { 3, 3 }, { 4, 2 },
191 { { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
192 { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
193 { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
194 { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
195 { { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
196 { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
197 { { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
198 { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
199 { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
200 { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
201 { { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
202 { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
205 static const struct {
209 { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
210 { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
211 { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
212 { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
216 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
217 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
218 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
219 61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
232 for (
i = 0;
i < 4;
i++) {
233 const int z0 = 13 * (
input[4 *
i + 0] +
input[4 *
i + 2]);
234 const int z1 = 13 * (
input[4 *
i + 0] -
input[4 *
i + 2]);
235 const int z2 = 7 *
input[4 *
i + 1] - 17 *
input[4 *
i + 3];
236 const int z3 = 17 *
input[4 *
i + 1] + 7 *
input[4 *
i + 3];
238 temp[4 *
i + 0] = z0 + z3;
239 temp[4 *
i + 1] = z1 + z2;
240 temp[4 *
i + 2] = z1 - z2;
241 temp[4 *
i + 3] = z0 - z3;
244 for (
i = 0;
i < 4;
i++) {
245 const int offset = x_offset[
i];
246 const int z0 = 13 * (
temp[4 * 0 +
i] +
temp[4 * 2 +
i]);
247 const int z1 = 13 * (
temp[4 * 0 +
i] -
temp[4 * 2 +
i]);
248 const int z2 = 7 *
temp[4 * 1 +
i] - 17 *
temp[4 * 3 +
i];
249 const int z3 = 17 *
temp[4 * 1 +
i] + 7 *
temp[4 * 3 +
i];
267 : qmul * (
block[0] >> 3) / 2);
271 for (
i = 0;
i < 4;
i++) {
272 const int z0 = 13 * (
block[0 + 4 *
i] +
block[2 + 4 *
i]);
273 const int z1 = 13 * (
block[0 + 4 *
i] -
block[2 + 4 *
i]);
274 const int z2 = 7 *
block[1 + 4 *
i] - 17 *
block[3 + 4 *
i];
275 const int z3 = 17 *
block[1 + 4 *
i] + 7 *
block[3 + 4 *
i];
277 block[0 + 4 *
i] = z0 + z3;
278 block[1 + 4 *
i] = z1 + z2;
279 block[2 + 4 *
i] = z1 - z2;
280 block[3 + 4 *
i] = z0 - z3;
283 for (
i = 0;
i < 4;
i++) {
284 const unsigned z0 = 13 * (
block[
i + 4 * 0] +
block[
i + 4 * 2]);
285 const unsigned z1 = 13 * (
block[
i + 4 * 0] -
block[
i + 4 * 2]);
286 const unsigned z2 = 7 *
block[
i + 4 * 1] - 17 *
block[
i + 4 * 3];
287 const unsigned z3 = 17 *
block[
i + 4 * 1] + 7 *
block[
i + 4 * 3];
288 const int rr = (
dc + 0x80000
u);
290 dst[
i +
stride * 0] = av_clip_uint8(dst[
i +
stride * 0] + ((
int)((z0 + z3) * qmul + rr) >> 20));
291 dst[
i +
stride * 1] = av_clip_uint8(dst[
i +
stride * 1] + ((
int)((z1 + z2) * qmul + rr) >> 20));
292 dst[
i +
stride * 2] = av_clip_uint8(dst[
i +
stride * 2] + ((
int)((z1 - z2) * qmul + rr) >> 20));
293 dst[
i +
stride * 3] = av_clip_uint8(dst[
i +
stride * 3] + ((
int)((z0 - z3) * qmul + rr) >> 20));
296 memset(
block, 0, 16 *
sizeof(int16_t));
302 static const uint8_t *
const scan_patterns[4] = {
308 const int intra = 3 *
type >> 2;
311 for (limit = (16 >> intra);
index < 16;
index = limit, limit += 8) {
316 sign = (vlc & 1) ? 0 : -1;
323 }
else if (vlc < 4) {
336 level = (vlc >> 3) + ((
run == 0) ? 8 : ((
run < 2) ? 2 : ((
run < 5) ? 0 : -1)));
339 level = (vlc >> 4) + ((
run == 0) ? 4 : ((
run < 3) ? 2 : ((
run < 10) ? 1 : 0)));
360 int i,
int list,
int part_width)
362 const int topright_ref =
s->ref_cache[
list][
i - 8 + part_width];
365 *
C =
s->mv_cache[
list][
i - 8 + part_width];
368 *
C =
s->mv_cache[
list][
i - 8 - 1];
369 return s->ref_cache[
list][
i - 8 - 1];
381 int part_width,
int list,
382 int ref,
int *
const mx,
int *
const my)
384 const int index8 =
scan8[
n];
385 const int top_ref =
s->ref_cache[
list][index8 - 8];
386 const int left_ref =
s->ref_cache[
list][index8 - 1];
387 const int16_t *
const A =
s->mv_cache[
list][index8 - 1];
388 const int16_t *
const B =
s->mv_cache[
list][index8 - 8];
390 int diagonal_ref, match_count;
401 match_count = (diagonal_ref ==
ref) + (top_ref ==
ref) + (left_ref ==
ref);
402 if (match_count > 1) {
405 }
else if (match_count == 1) {
406 if (left_ref ==
ref) {
409 }
else if (top_ref ==
ref) {
431 int mx,
int my,
int dxy,
432 int thirdpel,
int dir,
int avg)
434 const SVQ3Frame *pic = (dir == 0) ?
s->last_pic :
s->next_pic;
437 int blocksize = 2 - (
width >> 3);
438 int linesize =
s->cur_pic->f->linesize[0];
439 int uvlinesize =
s->cur_pic->f->linesize[1];
444 if (mx < 0 || mx >=
s->h_edge_pos -
width - 1 ||
445 my < 0 || my >=
s->v_edge_pos -
height - 1) {
447 mx = av_clip(mx, -16,
s->h_edge_pos -
width + 15);
448 my = av_clip(my, -16,
s->v_edge_pos -
height + 15);
452 dest =
s->cur_pic->f->data[0] + x + y * linesize;
453 src = pic->
f->
data[0] + mx + my * linesize;
456 s->vdsp.emulated_edge_mc(
s->edge_emu_buffer,
src,
459 mx, my,
s->h_edge_pos,
s->v_edge_pos);
460 src =
s->edge_emu_buffer;
463 (
avg ?
s->tdsp.avg_tpel_pixels_tab
464 :
s->tdsp.put_tpel_pixels_tab)[dxy](dest,
src, linesize,
467 (
avg ?
s->hdsp.avg_pixels_tab
468 :
s->hdsp.put_pixels_tab)[blocksize][dxy](dest,
src, linesize,
472 mx = mx + (mx < (
int) x) >> 1;
473 my = my + (my < (
int) y) >> 1;
478 for (
i = 1;
i < 3;
i++) {
479 dest =
s->cur_pic->f->data[
i] + (x >> 1) + (y >> 1) * uvlinesize;
480 src = pic->
f->
data[
i] + mx + my * uvlinesize;
483 s->vdsp.emulated_edge_mc(
s->edge_emu_buffer,
src,
484 uvlinesize, uvlinesize,
486 mx, my, (
s->h_edge_pos >> 1),
488 src =
s->edge_emu_buffer;
491 (
avg ?
s->tdsp.avg_tpel_pixels_tab
492 :
s->tdsp.put_tpel_pixels_tab)[dxy](dest,
src,
496 (
avg ?
s->hdsp.avg_pixels_tab
497 :
s->hdsp.put_pixels_tab)[blocksize][dxy](dest,
src,
507 int i, j, k, mx, my, dx, dy, x, y;
508 const int part_width = ((
size & 5) == 4) ? 4 : 16 >> (
size & 1);
509 const int part_height = 16 >> ((unsigned)(
size + 1) / 3);
511 const int h_edge_pos = 6 * (
s->h_edge_pos - part_width) - extra_width;
512 const int v_edge_pos = 6 * (
s->v_edge_pos - part_height) - extra_width;
514 for (
i = 0;
i < 16;
i += part_height)
515 for (j = 0; j < 16; j += part_width) {
516 const int b_xy = (4 *
s->mb_x + (j >> 2)) +
517 (4 *
s->mb_y + (
i >> 2)) *
s->b_stride;
519 x = 16 *
s->mb_x + j;
520 y = 16 *
s->mb_y +
i;
521 k = (j >> 2 & 1) + (
i >> 1 & 2) +
522 (j >> 1 & 4) + (
i & 8);
527 mx =
s->next_pic->motion_val[0][b_xy][0] * 2;
528 my =
s->next_pic->motion_val[0][b_xy][1] * 2;
531 mx = mx *
s->frame_num_offset /
532 s->prev_frame_num_offset + 1 >> 1;
533 my = my *
s->frame_num_offset /
534 s->prev_frame_num_offset + 1 >> 1;
536 mx = mx * (
s->frame_num_offset -
s->prev_frame_num_offset) /
537 s->prev_frame_num_offset + 1 >> 1;
538 my = my * (
s->frame_num_offset -
s->prev_frame_num_offset) /
539 s->prev_frame_num_offset + 1 >> 1;
544 mx = av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x);
545 my = av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y);
554 if (dx != (int16_t)dx || dy != (int16_t)dy) {
563 mx = (mx + 1 >> 1) + dx;
564 my = (my + 1 >> 1) + dy;
565 fx = (unsigned)(mx + 0x30000) / 3 - 0x10000;
566 fy = (unsigned)(my + 0x30000) / 3 - 0x10000;
567 dxy = (mx - 3 * fx) + 4 * (my - 3 * fy);
570 fx, fy, dxy, 1, dir,
avg);
574 mx = (unsigned)(mx + 1 + 0x30000) / 3 + dx - 0x10000;
575 my = (unsigned)(my + 1 + 0x30000) / 3 + dy - 0x10000;
576 dxy = (mx & 1) + 2 * (my & 1);
579 mx >> 1, my >> 1, dxy, 0, dir,
avg);
583 mx = (unsigned)(mx + 3 + 0x60000) / 6 + dx - 0x10000;
584 my = (unsigned)(my + 3 + 0x60000) / 6 + dy - 0x10000;
587 mx, my, 0, 0, dir,
avg);
596 if (part_height == 8 &&
i < 8) {
599 if (part_width == 8 && j < 8)
602 if (part_width == 8 && j < 8)
604 if (part_width == 4 || part_height == 4)
610 part_width >> 2, part_height >> 2,
s->b_stride,
618 int mb_type,
const int *block_offset,
623 for (
i = 0;
i < 16;
i++)
624 if (
s->non_zero_count_cache[
scan8[
i]] ||
s->mb[
i * 16]) {
625 uint8_t *
const ptr = dest_y + block_offset[
i];
634 const int *block_offset,
639 int qscale =
s->qscale;
642 for (
i = 0;
i < 16;
i++) {
643 uint8_t *
const ptr = dest_y + block_offset[
i];
644 const int dir =
s->intra4x4_pred_mode_cache[
scan8[
i]];
649 const int topright_avail = (
s->topright_samples_available <<
i) & 0x8000;
651 if (!topright_avail) {
652 tr = ptr[3 - linesize] * 0x01010101
u;
655 topright = ptr + 4 - linesize;
659 s->hpc.pred4x4[dir](ptr, topright, linesize);
660 nnz =
s->non_zero_count_cache[
scan8[
i]];
666 s->hpc.pred16x16[
s->intra16x16_pred_mode](dest_y, linesize);
673 const int mb_x =
s->mb_x;
674 const int mb_y =
s->mb_y;
675 const int mb_xy =
s->mb_xy;
676 const int mb_type =
s->cur_pic->mb_type[mb_xy];
677 uint8_t *dest_y, *dest_cb, *dest_cr;
678 int linesize, uvlinesize;
680 const int *block_offset = &
s->block_offset[0];
681 const int block_h = 16 >> 1;
683 linesize =
s->cur_pic->f->linesize[0];
684 uvlinesize =
s->cur_pic->f->linesize[1];
686 dest_y =
s->cur_pic->f->data[0] + (mb_x + mb_y * linesize) * 16;
687 dest_cb =
s->cur_pic->f->data[1] + mb_x * 8 + mb_y * uvlinesize * block_h;
688 dest_cr =
s->cur_pic->f->data[2] + mb_x * 8 + mb_y * uvlinesize * block_h;
690 s->vdsp.prefetch(dest_y + (
s->mb_x & 3) * 4 * linesize + 64, linesize, 4);
691 s->vdsp.prefetch(dest_cb + (
s->mb_x & 7) * uvlinesize + 64, dest_cr - dest_cb, 2);
694 s->hpc.pred8x8[
s->chroma_pred_mode](dest_cb, uvlinesize);
695 s->hpc.pred8x8[
s->chroma_pred_mode](dest_cr, uvlinesize);
703 uint8_t *dest[2] = { dest_cb, dest_cr };
704 s->h264dsp.h264_chroma_dc_dequant_idct(
s->mb + 16 * 16 * 1,
705 s->dequant4_coeff[4][0]);
706 s->h264dsp.h264_chroma_dc_dequant_idct(
s->mb + 16 * 16 * 2,
707 s->dequant4_coeff[4][0]);
708 for (j = 1; j < 3; j++) {
709 for (
i = j * 16;
i < j * 16 + 4;
i++)
710 if (
s->non_zero_count_cache[
scan8[
i]] ||
s->mb[
i * 16]) {
711 uint8_t *
const ptr = dest[j - 1] + block_offset[
i];
721 int i, j, k, m, dir,
mode;
725 const int mb_xy =
s->mb_xy;
726 const int b_xy = 4 *
s->mb_x + 4 *
s->mb_y *
s->b_stride;
728 s->top_samples_available = (
s->mb_y == 0) ? 0x33FF : 0xFFFF;
729 s->left_samples_available = (
s->mb_x == 0) ? 0x5F5F : 0xFFFF;
730 s->topright_samples_available = 0xFFFF;
734 s->next_pic->mb_type[mb_xy] == -1) {
744 mb_type =
FFMIN(
s->next_pic->mb_type[mb_xy], 6);
752 }
else if (mb_type < 8) {
753 if (
s->thirdpel_flag &&
s->halfpel_flag == !
get_bits1(&
s->gb_slice))
755 else if (
s->halfpel_flag &&
770 for (m = 0; m < 2; m++) {
771 if (
s->mb_x > 0 &&
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 1] + 6] != -1) {
772 for (
i = 0;
i < 4;
i++)
774 s->cur_pic->motion_val[m][b_xy - 1 +
i *
s->b_stride]);
776 for (
i = 0;
i < 4;
i++)
780 memcpy(
s->mv_cache[m][
scan8[0] - 1 * 8],
781 s->cur_pic->motion_val[m][b_xy -
s->b_stride],
782 4 * 2 *
sizeof(int16_t));
783 memset(&
s->ref_cache[m][
scan8[0] - 1 * 8],
786 if (
s->mb_x <
s->mb_width - 1) {
788 s->cur_pic->motion_val[m][b_xy -
s->b_stride + 4]);
789 s->ref_cache[m][
scan8[0] + 4 - 1 * 8] =
790 (
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride + 1] + 6] == -1 ||
796 s->cur_pic->motion_val[m][b_xy -
s->b_stride - 1]);
797 s->ref_cache[m][
scan8[0] - 1 - 1 * 8] =
802 memset(&
s->ref_cache[m][
scan8[0] - 1 * 8 - 1],
818 for (
i = 0;
i < 4;
i++)
819 memset(
s->cur_pic->motion_val[0][b_xy +
i *
s->b_stride],
820 0, 4 * 2 *
sizeof(int16_t));
826 for (
i = 0;
i < 4;
i++)
827 memset(
s->cur_pic->motion_val[1][b_xy +
i *
s->b_stride],
828 0, 4 * 2 *
sizeof(int16_t));
833 }
else if (mb_type == 8 || mb_type == 33) {
834 int8_t *i4x4 =
s->intra4x4_pred_mode +
s->mb2br_xy[
s->mb_xy];
835 int8_t *i4x4_cache =
s->intra4x4_pred_mode_cache;
837 memset(
s->intra4x4_pred_mode_cache, -1, 8 * 5 *
sizeof(int8_t));
841 for (
i = 0;
i < 4;
i++)
842 s->intra4x4_pred_mode_cache[
scan8[0] - 1 +
i * 8] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 1] + 6 -
i];
843 if (
s->intra4x4_pred_mode_cache[
scan8[0] - 1] == -1)
844 s->left_samples_available = 0x5F5F;
847 s->intra4x4_pred_mode_cache[4 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 0];
848 s->intra4x4_pred_mode_cache[5 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 1];
849 s->intra4x4_pred_mode_cache[6 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 2];
850 s->intra4x4_pred_mode_cache[7 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 3];
852 if (
s->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
853 s->top_samples_available = 0x33FF;
857 for (
i = 0;
i < 16;
i += 2) {
862 "luma prediction:%"PRIu32
"\n", vlc);
867 top = &
s->intra4x4_pred_mode_cache[
scan8[
i] - 8];
872 if (
left[1] == -1 ||
left[2] == -1) {
878 for (
i = 0;
i < 4;
i++)
879 memset(&
s->intra4x4_pred_mode_cache[
scan8[0] + 8 *
i],
DC_PRED, 4);
883 i4x4[4] = i4x4_cache[7 + 8 * 3];
884 i4x4[5] = i4x4_cache[7 + 8 * 2];
885 i4x4[6] = i4x4_cache[7 + 8 * 1];
889 s->avctx,
s->top_samples_available,
890 s->left_samples_available);
892 s->top_samples_available = (
s->mb_y == 0) ? 0x33FF : 0xFFFF;
893 s->left_samples_available = (
s->mb_x == 0) ? 0x5F5F : 0xFFFF;
895 for (
i = 0;
i < 4;
i++)
898 s->top_samples_available = 0x33FF;
899 s->left_samples_available = 0x5F5F;
905 dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
908 s->left_samples_available, dir, 0)) < 0) {
910 return s->intra16x16_pred_mode;
918 for (
i = 0;
i < 4;
i++)
919 memset(
s->cur_pic->motion_val[0][b_xy +
i *
s->b_stride],
920 0, 4 * 2 *
sizeof(int16_t));
922 for (
i = 0;
i < 4;
i++)
923 memset(
s->cur_pic->motion_val[1][b_xy +
i *
s->b_stride],
924 0, 4 * 2 *
sizeof(int16_t));
928 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy],
DC_PRED, 8);
931 memset(
s->non_zero_count_cache + 8, 0, 14 * 8 *
sizeof(
uint8_t));
948 if (
s->qscale > 31
u) {
958 "error while decoding intra luma dc\n");
967 for (
i = 0;
i < 4;
i++)
968 if ((cbp & (1 <<
i))) {
969 for (j = 0; j < 4; j++) {
970 k =
index ? (1 * (j & 1) + 2 * (
i & 1) +
971 2 * (j & 2) + 4 * (
i & 2))
973 s->non_zero_count_cache[
scan8[k]] = 1;
977 "error while decoding block\n");
984 for (
i = 1;
i < 3; ++
i)
987 "error while decoding chroma dc block\n");
992 for (
i = 1;
i < 3;
i++) {
993 for (j = 0; j < 4; j++) {
995 s->non_zero_count_cache[
scan8[k]] = 1;
999 "error while decoding chroma ac block\n");
1009 s->cur_pic->mb_type[mb_xy] = mb_type;
1021 const int mb_xy =
s->mb_xy;
1032 int slice_bits, slice_bytes, slice_length;
1036 slice_bits = slice_length * 8;
1037 slice_bytes = slice_length +
length - 1;
1049 memcpy(
s->slice_buf,
s->gb.buffer +
s->gb.index / 8, slice_bytes);
1051 if (
s->watermark_key) {
1058 memmove(
s->slice_buf, &
s->slice_buf[slice_length],
length - 1);
1070 if ((
header & 0x9F) == 2) {
1071 i = (
s->mb_num < 64) ? 6 : (1 +
av_log2(
s->mb_num - 1));
1085 if (
s->has_watermark)
1096 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy - 1] + 3,
1097 -1, 4 *
sizeof(int8_t));
1098 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy -
s->mb_x],
1099 -1, 8 *
sizeof(int8_t) *
s->mb_x);
1102 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy -
s->mb_stride],
1103 -1, 8 *
sizeof(int8_t) * (
s->mb_width -
s->mb_x));
1106 s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride - 1] + 3] = -1;
1115 const int max_qp = 51;
1117 for (q = 0; q < max_qp + 1; q++) {
1120 for (x = 0; x < 16; x++)
1121 s->dequant4_coeff[q][(x >> 2) | ((x << 2) & 0xF)] =
1130 unsigned char *extradata;
1131 unsigned char *extradata_end;
1133 int marker_found = 0;
1139 if (!
s->next_pic || !
s->last_pic || !
s->cur_pic) {
1147 if (!
s->cur_pic->f || !
s->last_pic->f || !
s->next_pic->f)
1164 s->halfpel_flag = 1;
1165 s->thirdpel_flag = 1;
1166 s->has_watermark = 0;
1169 extradata = (
unsigned char *)avctx->
extradata;
1173 if (!memcmp(extradata,
"SEQH", 4)) {
1184 int frame_size_code;
1185 int unk0, unk1, unk2, unk3, unk4;
1189 if (
size > extradata_end - extradata - 8) {
1196 frame_size_code =
get_bits(&gb, 3);
1197 switch (frame_size_code) {
1250 unk0, unk1, unk2, unk3, unk4);
1259 if (
s->has_watermark) {
1267 unsigned long buf_len = watermark_width *
1268 watermark_height * 4;
1272 if (watermark_height <= 0 ||
1273 (uint64_t)watermark_width * 4 > UINT_MAX / watermark_height) {
1284 watermark_width, watermark_height);
1286 "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
1288 if (uncompress(
buf, &buf_len, extradata + 8 +
offset,
1291 "could not uncompress watermark logo\n");
1297 s->watermark_key =
s->watermark_key << 16 |
s->watermark_key;
1299 "watermark key %#"PRIx32
"\n",
s->watermark_key);
1303 "this svq3 file contains watermark which need zlib support compiled in\n");
1310 s->mb_width = (avctx->
width + 15) / 16;
1311 s->mb_height = (avctx->
height + 15) / 16;
1312 s->mb_stride =
s->mb_width + 1;
1313 s->mb_num =
s->mb_width *
s->mb_height;
1314 s->b_stride = 4 *
s->mb_width;
1315 s->h_edge_pos =
s->mb_width * 16;
1316 s->v_edge_pos =
s->mb_height * 16;
1318 s->intra4x4_pred_mode =
av_mallocz(
s->mb_stride * 2 * 8);
1319 if (!
s->intra4x4_pred_mode)
1322 s->mb2br_xy =
av_mallocz(
s->mb_stride * (
s->mb_height + 1) *
1323 sizeof(*
s->mb2br_xy));
1327 for (y = 0; y <
s->mb_height; y++)
1328 for (x = 0; x <
s->mb_width; x++) {
1329 const int mb_xy = x + y *
s->mb_stride;
1331 s->mb2br_xy[mb_xy] = 8 * (mb_xy % (2 *
s->mb_stride));
1345 for (
i = 0;
i < 2;
i++) {
1357 const int big_mb_num =
s->mb_stride * (
s->mb_height + 1) + 1;
1358 const int mb_array_size =
s->mb_stride *
s->mb_height;
1359 const int b4_stride =
s->mb_width * 4 + 1;
1360 const int b4_array_size = b4_stride *
s->mb_height * 4;
1371 for (
i = 0;
i < 2;
i++) {
1390 if (!
s->edge_emu_buffer) {
1392 if (!
s->edge_emu_buffer)
1406 int buf_size = avpkt->
size;
1412 if (buf_size == 0) {
1413 if (
s->next_pic->f->data[0] && !
s->low_delay && !
s->last_frame_output) {
1417 s->last_frame_output = 1;
1423 s->mb_x =
s->mb_y =
s->mb_xy = 0;
1425 if (
s->watermark_key) {
1429 memcpy(
s->buf, avpkt->
data, buf_size);
1442 s->pict_type =
s->slice_type;
1450 s->cur_pic->f->pict_type =
s->pict_type;
1457 for (
i = 0;
i < 16;
i++) {
1459 s->block_offset[48 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 8 *
s->cur_pic->f->linesize[0] * ((
scan8[
i] -
scan8[0]) >> 3);
1461 for (
i = 0;
i < 16;
i++) {
1462 s->block_offset[16 +
i] =
1463 s->block_offset[32 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 4 *
s->cur_pic->f->linesize[1] * ((
scan8[
i] -
scan8[0]) >> 3);
1464 s->block_offset[48 + 16 +
i] =
1465 s->block_offset[48 + 32 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 8 *
s->cur_pic->f->linesize[1] * ((
scan8[
i] -
scan8[0]) >> 3);
1469 if (!
s->last_pic->f->data[0]) {
1475 memset(
s->last_pic->f->data[0], 0, avctx->
height *
s->last_pic->f->linesize[0]);
1476 memset(
s->last_pic->f->data[1], 0x80, (avctx->
height / 2) *
1477 s->last_pic->f->linesize[1]);
1478 memset(
s->last_pic->f->data[2], 0x80, (avctx->
height / 2) *
1479 s->last_pic->f->linesize[2]);
1488 memset(
s->next_pic->f->data[0], 0, avctx->
height *
s->next_pic->f->linesize[0]);
1489 memset(
s->next_pic->f->data[1], 0x80, (avctx->
height / 2) *
1490 s->next_pic->f->linesize[1]);
1491 memset(
s->next_pic->f->data[2], 0x80, (avctx->
height / 2) *
1492 s->next_pic->f->linesize[2]);
1498 "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
1500 s->halfpel_flag,
s->thirdpel_flag,
1501 s->adaptive_quant,
s->qscale,
s->slice_num);
1508 if (
s->next_p_frame_damaged) {
1512 s->next_p_frame_damaged = 0;
1516 s->frame_num_offset =
s->slice_num -
s->prev_frame_num;
1518 if (
s->frame_num_offset < 0)
1519 s->frame_num_offset += 256;
1520 if (
s->frame_num_offset == 0 ||
1521 s->frame_num_offset >=
s->prev_frame_num_offset) {
1526 s->prev_frame_num =
s->frame_num;
1527 s->frame_num =
s->slice_num;
1528 s->prev_frame_num_offset =
s->frame_num -
s->prev_frame_num;
1530 if (
s->prev_frame_num_offset < 0)
1531 s->prev_frame_num_offset += 256;
1534 for (m = 0; m < 2; m++) {
1536 for (
i = 0;
i < 4;
i++) {
1538 for (j = -1; j < 4; j++)
1539 s->ref_cache[m][
scan8[0] + 8 *
i + j] = 1;
1545 for (
s->mb_y = 0;
s->mb_y <
s->mb_height;
s->mb_y++) {
1546 for (
s->mb_x = 0;
s->mb_x <
s->mb_width;
s->mb_x++) {
1548 s->mb_xy =
s->mb_x +
s->mb_y *
s->mb_stride;
1557 if (
s->slice_type !=
s->pict_type) {
1571 "error while decoding MB %d %d\n",
s->mb_x,
s->mb_y);
1575 if (mb_type != 0 ||
s->cbp)
1579 s->cur_pic->mb_type[
s->mb_x +
s->mb_y *
s->mb_stride] =
1584 s->last_pic->f->data[0] ?
s->last_pic->f :
NULL,
1591 if (
s->mb_y !=
s->mb_height ||
s->mb_x !=
s->mb_width) {
1603 else if (
s->last_pic->f->data[0])
1609 if (
s->last_pic->f->data[0] ||
s->low_delay)
uint8_t * edge_emu_buffer
static const uint32_t svq3_dequant_coeff[32]
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
enum AVPictureType slice_type
AVPixelFormat
Pixel format.
static av_cold int init(AVCodecContext *avctx)
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int svq3_decode_slice_header(AVCodecContext *avctx)
#define FFSWAP(type, a, b)
#define u(width, name, range_min, range_max)
uint8_t * data
The data buffer.
const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM+1]
static const int8_t mv[256][2]
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce output
unsigned int left_samples_available
static int get_bits_count(const GetBitContext *s)
static const struct @148 svq3_dct_tables[2][16]
static unsigned get_interleaved_ue_golomb(GetBitContext *gb)
const uint8_t ff_h264_golomb_to_inter_cbp[48]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
@ AVCOL_RANGE_JPEG
the normal 2^n-1 "JPEG" YUV ranges
void * av_mallocz_array(size_t nmemb, size_t size)
static void free_picture(AVCodecContext *avctx, SVQ3Frame *pic)
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
const uint8_t ff_h264_golomb_to_intra4x4_cbp[48]
#define MB_TYPE_INTRA16x16
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static int get_buffer(AVCodecContext *avctx, SVQ3Frame *pic)
static void skip_bits(GetBitContext *s, int n)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
unsigned int topright_samples_available
enum AVDiscard skip_frame
Skip decoding for selected frames.
int flags
AV_CODEC_FLAG_*.
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
const uint8_t ff_h264_golomb_to_pict_type[5]
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
int8_t intra4x4_pred_mode_cache[5 *8]
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
int has_b_frames
Size of the frame reordering buffer in the decoder.
enum AVPictureType pict_type
static int svq3_mc_dir(SVQ3Context *s, int size, int mode, int dir, int avg)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
av_cold void ff_tpeldsp_init(TpelDSPContext *c)
static enum AVPixelFormat pix_fmts[]
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static av_always_inline void svq3_pred_motion(const SVQ3Context *s, int n, int part_width, int list, int ref, int *const mx, int *const my)
Get the predicted MV.
unsigned int top_samples_available
AVBufferRef * motion_val_buf[2]
int prev_frame_num_offset
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
int16_t(*[2] motion_val)[2]
@ AVDISCARD_ALL
discard all
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
enum AVColorRange color_range
MPEG vs JPEG YUV range.
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
AVBufferRef * ref_index_buf[2]
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining list
const uint8_t ff_h264_chroma_dc_scan[4]
AVBufferRef * mb_type_buf
int16_t mb_luma_dc[3][16 *2]
static av_always_inline void hl_decode_mb_idct_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y)
Context for storing H.264 DSP functions.
@ AVDISCARD_NONKEY
discard all frames except keyframes
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
static void init_dequant4_coeff_table(SVQ3Context *s)
const uint8_t ff_zigzag_scan[16+1]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
static av_always_inline int svq3_fetch_diagonal_mv(const SVQ3Context *s, const int16_t **C, int i, int list, int part_width)
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
void ff_draw_horiz_band(AVCodecContext *avctx, AVFrame *cur, AVFrame *last, int y, int h, int picture_structure, int first_field, int low_delay)
Draw a horizontal band if supported.
static void hl_decode_mb(SVQ3Context *s)
static int get_interleaved_se_golomb(GetBitContext *gb)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static const uint8_t header[24]
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
const uint8_t ff_h264_quant_rem6[QP_MAX_NUM+1]
static void skip_bits1(GetBitContext *s)
static av_always_inline void hl_decode_mb_predict_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
#define AV_LOG_INFO
Standard information.
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
static void svq3_add_idct_c(uint8_t *dst, int16_t *block, int stride, int qp, int dc)
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
#define DECLARE_ALIGNED(n, t, v)
static int svq3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
static void svq3_luma_dc_dequant_idct_c(int16_t *output, int16_t *input, int qp)
#define i(width, name, range_min, range_max)
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
int16_t mv_cache[2][5 *8][2]
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
uint8_t non_zero_count_cache[15 *8]
#define PART_NOT_AVAILABLE
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static int svq3_decode_mb(SVQ3Context *s, unsigned int mb_type)
static const uint8_t svq3_scan[16]
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
static const int8_t svq3_pred_1[6][6][5]
#define AV_INPUT_BUFFER_PADDING_SIZE
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
static int svq3_decode_block(GetBitContext *gb, int16_t *block, int index, const int type)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
static int skip_1stop_8data_bits(GetBitContext *gb)
main external API structure.
const uint8_t ff_h264_dequant4_coeff_init[6][3]
int block_offset[2 *(16 *3)]
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
int ff_h264_check_intra4x4_pred_mode(int8_t *pred_mode_cache, void *logctx, int top_samples_available, int left_samples_available)
Check if the top & left blocks are available if needed and change the dc mode so it only uses the ava...
const IMbInfo ff_h264_i_mb_type_info[26]
static void fill_rectangle(int x, int y, int w, int h)
static const uint8_t scan8[16 *3+3]
static int ref[MAX_W *MAX_W]
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static const uint8_t luma_dc_zigzag_scan[16]
const uint8_t ff_h264_quant_div6[QP_MAX_NUM+1]
Context for storing H.264 prediction functions.
static int shift(int a, int b)
static void svq3_mc_dir_part(SVQ3Context *s, int x, int y, int width, int height, int mx, int my, int dxy, int thirdpel, int dir, int avg)
@ AV_PICTURE_TYPE_P
Predicted.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
A reference to a data buffer.
static int svq3_decode_end(AVCodecContext *avctx)
int frame_number
Frame counter, set by libavcodec.
#define avpriv_request_sample(...)
uint32_t dequant4_coeff[QP_MAX_NUM+1][16]
int8_t ref_cache[2][5 *8]
This structure stores compressed data.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
int width
picture width / height.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
#define AV_CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
uint16_t ff_svq1_packet_checksum(const uint8_t *data, const int length, int value)
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static av_cold int svq3_decode_init(AVCodecContext *avctx)
@ AVDISCARD_NONREF
discard all non reference
int8_t * intra4x4_pred_mode
static const uint8_t svq3_pred_0[25][2]
int ff_h264_check_intra_pred_mode(void *logctx, int top_samples_available, int left_samples_available, int mode, int is_chroma)
Check if the top & left blocks are available if needed and change the dc mode so it only uses the ava...