Go to the documentation of this file.
43 int jobnr,
int nb_jobs);
51 for (
i = 0;
i < 9; ++
i) {
52 du = (
int)
u[
i] -
ctx->chromakey_uv[0];
53 dv = (
int)v[
i] -
ctx->chromakey_uv[1];
55 diff += sqrt((du * du + dv * dv) / (255.0 * 255.0));
60 if (
ctx->blend > 0.0001) {
61 return av_clipd((
diff -
ctx->similarity) /
ctx->blend, 0.0, 1.0) * 255.0;
63 return (
diff >
ctx->similarity) ? 255 : 0;
69 if (x < 0 || x >=
frame->width || y < 0 || y >=
frame->height)
76 *v =
frame->data[2][
frame->linesize[2] * y + x];
83 const int slice_start = (
frame->height * jobnr) / nb_jobs;
91 memset(
u,
ctx->chromakey_uv[0],
sizeof(
u));
92 memset(v,
ctx->chromakey_uv[1],
sizeof(v));
94 for (y = slice_start; y <
slice_end; ++y) {
95 for (x = 0; x <
frame->width; ++x) {
96 for (yo = 0; yo < 3; ++yo) {
97 for (xo = 0; xo < 3; ++xo) {
113 const int slice_start = ((
frame->height >>
ctx->vsub_log2) * jobnr) / nb_jobs;
114 const int slice_end = ((
frame->height >>
ctx->vsub_log2) * (jobnr + 1)) / nb_jobs;
118 for (y = slice_start; y <
slice_end; ++y) {
119 for (x = 0; x <
frame->width >>
ctx->hsub_log2; ++x) {
120 int u =
frame->data[1][
frame->linesize[1] * y + x];
121 int v =
frame->data[2][
frame->linesize[2] * y + x];
125 du =
u -
ctx->chromakey_uv[0];
126 dv = v -
ctx->chromakey_uv[1];
128 diff = sqrt((du * du + dv * dv) / (255.0 * 255.0));
131 if (
ctx->blend > 0.0001) {
132 double f = 1. - av_clipd((
diff -
ctx->similarity) /
ctx->blend, 0.0, 1.0);
134 frame->data[1][
frame->linesize[1] * y + x] = 128 + (
u - 128) *
f;
135 frame->data[2][
frame->linesize[2] * y + x] = 128 + (v - 128) *
f;
137 frame->data[1][
frame->linesize[1] * y + x] = 128;
138 frame->data[2][
frame->linesize[2] * y + x] = 128;
158 #define FIXNUM(x) lrint((x) * (1 << 10))
159 #define RGB_TO_U(rgb) (((- FIXNUM(0.16874) * rgb[0] - FIXNUM(0.33126) * rgb[1] + FIXNUM(0.50000) * rgb[2] + (1 << 9) - 1) >> 10) + 128)
160 #define RGB_TO_V(rgb) ((( FIXNUM(0.50000) * rgb[0] - FIXNUM(0.41869) * rgb[1] - FIXNUM(0.08131) * rgb[2] + (1 << 9) - 1) >> 10) + 128)
167 ctx->chromakey_uv[0] =
ctx->chromakey_rgba[1];
168 ctx->chromakey_uv[1] =
ctx->chromakey_rgba[2];
174 if (!strcmp(avctx->
filter->
name,
"chromakey")) {
217 ctx->hsub_log2 =
desc->log2_chroma_w;
218 ctx->vsub_log2 =
desc->log2_chroma_h;
242 #define OFFSET(x) offsetof(ChromakeyContext, x)
243 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
257 .description =
NULL_IF_CONFIG_SMALL(
"Turns a certain color into transparency. Operates on YUV colors."),
259 .priv_class = &chromakey_class,
297 .
name =
"chromahold",
300 .priv_class = &chromahold_class,
AVPixelFormat
Pixel format.
static av_cold int config_input(AVFilterLink *inlink)
int(* do_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static av_cold int init(AVCodecContext *avctx)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
#define u(width, name, range_min, range_max)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static const AVFilterPad chromakey_outputs[]
This structure describes decoded (raw) audio or video data.
static const AVFilterPad chromahold_inputs[]
const char * name
Filter name.
A link between two filters.
static uint8_t do_chromakey_pixel(ChromakeyContext *ctx, uint8_t u[9], uint8_t v[9])
static const AVOption chromahold_options[]
void * priv
private data for use by the filter
A filter pad used for either input or output.
AVFILTER_DEFINE_CLASS(chromakey)
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
static av_cold int initialize_chromakey(AVFilterContext *avctx)
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
static const AVFilterPad outputs[]
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a link
AVFilter ff_vf_chromahold
static const AVOption chromakey_options[]
Describe the class of an AVClass context structure.
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
static const AVFilterPad chromahold_outputs[]
static int filter_frame(AVFilterLink *link, AVFrame *frame)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
uint8_t chromakey_rgba[4]
static const AVFilterPad chromakey_inputs[]
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
#define i(width, name, range_min, range_max)
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
const char * name
Pad name.
static av_always_inline void get_pixel_uv(AVFrame *frame, int hsub_log2, int vsub_log2, int x, int y, uint8_t *u, uint8_t *v)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int do_chromakey_slice(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
avfilter_execute_func * execute
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static av_always_inline int diff(const uint32_t a, const uint32_t b)
static const int16_t alpha[]
static int do_chromahold_slice(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
#define flags(name, subs,...)
static av_cold int query_formats(AVFilterContext *avctx)
const AVFilter * filter
the AVFilter of which this is an instance
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
AVFilterLink ** outputs
array of pointers to output links