FFmpeg
vp8dsp_init.c
Go to the documentation of this file.
1 /*
2  * VP8 DSP functions x86-optimized
3  * Copyright (c) 2010 Ronald S. Bultje <rsbultje@gmail.com>
4  * Copyright (c) 2010 Fiona Glaser <fiona@x264.com>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include "libavutil/attributes.h"
24 #include "libavutil/cpu.h"
25 #include "libavutil/mem.h"
26 #include "libavutil/x86/cpu.h"
27 #include "libavcodec/vp8dsp.h"
28 
29 #if HAVE_X86ASM
30 
31 /*
32  * MC functions
33  */
34 void ff_put_vp8_epel4_h4_mmxext(uint8_t *dst, ptrdiff_t dststride,
35  uint8_t *src, ptrdiff_t srcstride,
36  int height, int mx, int my);
37 void ff_put_vp8_epel4_h6_mmxext(uint8_t *dst, ptrdiff_t dststride,
38  uint8_t *src, ptrdiff_t srcstride,
39  int height, int mx, int my);
40 void ff_put_vp8_epel4_v4_mmxext(uint8_t *dst, ptrdiff_t dststride,
41  uint8_t *src, ptrdiff_t srcstride,
42  int height, int mx, int my);
43 void ff_put_vp8_epel4_v6_mmxext(uint8_t *dst, ptrdiff_t dststride,
44  uint8_t *src, ptrdiff_t srcstride,
45  int height, int mx, int my);
46 
47 void ff_put_vp8_epel8_h4_sse2 (uint8_t *dst, ptrdiff_t dststride,
48  uint8_t *src, ptrdiff_t srcstride,
49  int height, int mx, int my);
50 void ff_put_vp8_epel8_h6_sse2 (uint8_t *dst, ptrdiff_t dststride,
51  uint8_t *src, ptrdiff_t srcstride,
52  int height, int mx, int my);
53 void ff_put_vp8_epel8_v4_sse2 (uint8_t *dst, ptrdiff_t dststride,
54  uint8_t *src, ptrdiff_t srcstride,
55  int height, int mx, int my);
56 void ff_put_vp8_epel8_v6_sse2 (uint8_t *dst, ptrdiff_t dststride,
57  uint8_t *src, ptrdiff_t srcstride,
58  int height, int mx, int my);
59 
60 void ff_put_vp8_epel4_h4_ssse3 (uint8_t *dst, ptrdiff_t dststride,
61  uint8_t *src, ptrdiff_t srcstride,
62  int height, int mx, int my);
63 void ff_put_vp8_epel4_h6_ssse3 (uint8_t *dst, ptrdiff_t dststride,
64  uint8_t *src, ptrdiff_t srcstride,
65  int height, int mx, int my);
66 void ff_put_vp8_epel4_v4_ssse3 (uint8_t *dst, ptrdiff_t dststride,
67  uint8_t *src, ptrdiff_t srcstride,
68  int height, int mx, int my);
69 void ff_put_vp8_epel4_v6_ssse3 (uint8_t *dst, ptrdiff_t dststride,
70  uint8_t *src, ptrdiff_t srcstride,
71  int height, int mx, int my);
72 void ff_put_vp8_epel8_h4_ssse3 (uint8_t *dst, ptrdiff_t dststride,
73  uint8_t *src, ptrdiff_t srcstride,
74  int height, int mx, int my);
75 void ff_put_vp8_epel8_h6_ssse3 (uint8_t *dst, ptrdiff_t dststride,
76  uint8_t *src, ptrdiff_t srcstride,
77  int height, int mx, int my);
78 void ff_put_vp8_epel8_v4_ssse3 (uint8_t *dst, ptrdiff_t dststride,
79  uint8_t *src, ptrdiff_t srcstride,
80  int height, int mx, int my);
81 void ff_put_vp8_epel8_v6_ssse3 (uint8_t *dst, ptrdiff_t dststride,
82  uint8_t *src, ptrdiff_t srcstride,
83  int height, int mx, int my);
84 
85 void ff_put_vp8_bilinear4_h_mmxext(uint8_t *dst, ptrdiff_t dststride,
86  uint8_t *src, ptrdiff_t srcstride,
87  int height, int mx, int my);
88 void ff_put_vp8_bilinear8_h_sse2 (uint8_t *dst, ptrdiff_t dststride,
89  uint8_t *src, ptrdiff_t srcstride,
90  int height, int mx, int my);
91 void ff_put_vp8_bilinear4_h_ssse3 (uint8_t *dst, ptrdiff_t dststride,
92  uint8_t *src, ptrdiff_t srcstride,
93  int height, int mx, int my);
94 void ff_put_vp8_bilinear8_h_ssse3 (uint8_t *dst, ptrdiff_t dststride,
95  uint8_t *src, ptrdiff_t srcstride,
96  int height, int mx, int my);
97 
98 void ff_put_vp8_bilinear4_v_mmxext(uint8_t *dst, ptrdiff_t dststride,
99  uint8_t *src, ptrdiff_t srcstride,
100  int height, int mx, int my);
101 void ff_put_vp8_bilinear8_v_sse2 (uint8_t *dst, ptrdiff_t dststride,
102  uint8_t *src, ptrdiff_t srcstride,
103  int height, int mx, int my);
104 void ff_put_vp8_bilinear4_v_ssse3 (uint8_t *dst, ptrdiff_t dststride,
105  uint8_t *src, ptrdiff_t srcstride,
106  int height, int mx, int my);
107 void ff_put_vp8_bilinear8_v_ssse3 (uint8_t *dst, ptrdiff_t dststride,
108  uint8_t *src, ptrdiff_t srcstride,
109  int height, int mx, int my);
110 
111 
112 void ff_put_vp8_pixels8_mmx (uint8_t *dst, ptrdiff_t dststride,
113  uint8_t *src, ptrdiff_t srcstride,
114  int height, int mx, int my);
115 void ff_put_vp8_pixels16_mmx(uint8_t *dst, ptrdiff_t dststride,
116  uint8_t *src, ptrdiff_t srcstride,
117  int height, int mx, int my);
118 void ff_put_vp8_pixels16_sse(uint8_t *dst, ptrdiff_t dststride,
119  uint8_t *src, ptrdiff_t srcstride,
120  int height, int mx, int my);
121 
122 #define TAP_W16(OPT, FILTERTYPE, TAPTYPE) \
123 static void ff_put_vp8_ ## FILTERTYPE ## 16_ ## TAPTYPE ## _ ## OPT( \
124  uint8_t *dst, ptrdiff_t dststride, uint8_t *src, \
125  ptrdiff_t srcstride, int height, int mx, int my) \
126 { \
127  ff_put_vp8_ ## FILTERTYPE ## 8_ ## TAPTYPE ## _ ## OPT( \
128  dst, dststride, src, srcstride, height, mx, my); \
129  ff_put_vp8_ ## FILTERTYPE ## 8_ ## TAPTYPE ## _ ## OPT( \
130  dst + 8, dststride, src + 8, srcstride, height, mx, my); \
131 }
132 #define TAP_W8(OPT, FILTERTYPE, TAPTYPE) \
133 static void ff_put_vp8_ ## FILTERTYPE ## 8_ ## TAPTYPE ## _ ## OPT( \
134  uint8_t *dst, ptrdiff_t dststride, uint8_t *src, \
135  ptrdiff_t srcstride, int height, int mx, int my) \
136 { \
137  ff_put_vp8_ ## FILTERTYPE ## 4_ ## TAPTYPE ## _ ## OPT( \
138  dst, dststride, src, srcstride, height, mx, my); \
139  ff_put_vp8_ ## FILTERTYPE ## 4_ ## TAPTYPE ## _ ## OPT( \
140  dst + 4, dststride, src + 4, srcstride, height, mx, my); \
141 }
142 
143 #if ARCH_X86_32
144 TAP_W8 (mmxext, epel, h4)
145 TAP_W8 (mmxext, epel, h6)
146 TAP_W16(mmxext, epel, h6)
147 TAP_W8 (mmxext, epel, v4)
148 TAP_W8 (mmxext, epel, v6)
149 TAP_W16(mmxext, epel, v6)
150 TAP_W8 (mmxext, bilinear, h)
151 TAP_W16(mmxext, bilinear, h)
152 TAP_W8 (mmxext, bilinear, v)
153 TAP_W16(mmxext, bilinear, v)
154 #endif
155 
156 TAP_W16(sse2, epel, h6)
157 TAP_W16(sse2, epel, v6)
158 TAP_W16(sse2, bilinear, h)
159 TAP_W16(sse2, bilinear, v)
160 
161 TAP_W16(ssse3, epel, h6)
162 TAP_W16(ssse3, epel, v6)
163 TAP_W16(ssse3, bilinear, h)
164 TAP_W16(ssse3, bilinear, v)
165 
166 #define HVTAP(OPT, ALIGN, TAPNUMX, TAPNUMY, SIZE, MAXHEIGHT) \
167 static void ff_put_vp8_epel ## SIZE ## _h ## TAPNUMX ## v ## TAPNUMY ## _ ## OPT( \
168  uint8_t *dst, ptrdiff_t dststride, uint8_t *src, \
169  ptrdiff_t srcstride, int height, int mx, int my) \
170 { \
171  LOCAL_ALIGNED(ALIGN, uint8_t, tmp, [SIZE * (MAXHEIGHT + TAPNUMY - 1)]); \
172  uint8_t *tmpptr = tmp + SIZE * (TAPNUMY / 2 - 1); \
173  src -= srcstride * (TAPNUMY / 2 - 1); \
174  ff_put_vp8_epel ## SIZE ## _h ## TAPNUMX ## _ ## OPT( \
175  tmp, SIZE, src, srcstride, height + TAPNUMY - 1, mx, my); \
176  ff_put_vp8_epel ## SIZE ## _v ## TAPNUMY ## _ ## OPT( \
177  dst, dststride, tmpptr, SIZE, height, mx, my); \
178 }
179 
180 #if ARCH_X86_32
181 #define HVTAPMMX(x, y) \
182 HVTAP(mmxext, 8, x, y, 4, 8) \
183 HVTAP(mmxext, 8, x, y, 8, 16)
184 
185 HVTAP(mmxext, 8, 6, 6, 16, 16)
186 #else
187 #define HVTAPMMX(x, y) \
188 HVTAP(mmxext, 8, x, y, 4, 8)
189 #endif
190 
191 HVTAPMMX(4, 4)
192 HVTAPMMX(4, 6)
193 HVTAPMMX(6, 4)
194 HVTAPMMX(6, 6)
195 
196 #define HVTAPSSE2(x, y, w) \
197 HVTAP(sse2, 16, x, y, w, 16) \
198 HVTAP(ssse3, 16, x, y, w, 16)
199 
200 HVTAPSSE2(4, 4, 8)
201 HVTAPSSE2(4, 6, 8)
202 HVTAPSSE2(6, 4, 8)
203 HVTAPSSE2(6, 6, 8)
204 HVTAPSSE2(6, 6, 16)
205 
206 HVTAP(ssse3, 16, 4, 4, 4, 8)
207 HVTAP(ssse3, 16, 4, 6, 4, 8)
208 HVTAP(ssse3, 16, 6, 4, 4, 8)
209 HVTAP(ssse3, 16, 6, 6, 4, 8)
210 
211 #define HVBILIN(OPT, ALIGN, SIZE, MAXHEIGHT) \
212 static void ff_put_vp8_bilinear ## SIZE ## _hv_ ## OPT( \
213  uint8_t *dst, ptrdiff_t dststride, uint8_t *src, \
214  ptrdiff_t srcstride, int height, int mx, int my) \
215 { \
216  LOCAL_ALIGNED(ALIGN, uint8_t, tmp, [SIZE * (MAXHEIGHT + 2)]); \
217  ff_put_vp8_bilinear ## SIZE ## _h_ ## OPT( \
218  tmp, SIZE, src, srcstride, height + 1, mx, my); \
219  ff_put_vp8_bilinear ## SIZE ## _v_ ## OPT( \
220  dst, dststride, tmp, SIZE, height, mx, my); \
221 }
222 
223 HVBILIN(mmxext, 8, 4, 8)
224 #if ARCH_X86_32
225 HVBILIN(mmxext, 8, 8, 16)
226 HVBILIN(mmxext, 8, 16, 16)
227 #endif
228 HVBILIN(sse2, 8, 8, 16)
229 HVBILIN(sse2, 8, 16, 16)
230 HVBILIN(ssse3, 8, 4, 8)
231 HVBILIN(ssse3, 8, 8, 16)
232 HVBILIN(ssse3, 8, 16, 16)
233 
234 void ff_vp8_idct_dc_add_mmx(uint8_t *dst, int16_t block[16],
235  ptrdiff_t stride);
236 void ff_vp8_idct_dc_add_sse2(uint8_t *dst, int16_t block[16],
237  ptrdiff_t stride);
238 void ff_vp8_idct_dc_add_sse4(uint8_t *dst, int16_t block[16],
239  ptrdiff_t stride);
240 void ff_vp8_idct_dc_add4y_mmx(uint8_t *dst, int16_t block[4][16],
241  ptrdiff_t stride);
242 void ff_vp8_idct_dc_add4y_sse2(uint8_t *dst, int16_t block[4][16],
243  ptrdiff_t stride);
244 void ff_vp8_idct_dc_add4uv_mmx(uint8_t *dst, int16_t block[2][16],
245  ptrdiff_t stride);
246 void ff_vp8_luma_dc_wht_mmx(int16_t block[4][4][16], int16_t dc[16]);
247 void ff_vp8_luma_dc_wht_sse(int16_t block[4][4][16], int16_t dc[16]);
248 void ff_vp8_idct_add_mmx(uint8_t *dst, int16_t block[16], ptrdiff_t stride);
249 void ff_vp8_idct_add_sse(uint8_t *dst, int16_t block[16], ptrdiff_t stride);
250 
251 #define DECLARE_LOOP_FILTER(NAME) \
252 void ff_vp8_v_loop_filter_simple_ ## NAME(uint8_t *dst, \
253  ptrdiff_t stride, \
254  int flim); \
255 void ff_vp8_h_loop_filter_simple_ ## NAME(uint8_t *dst, \
256  ptrdiff_t stride, \
257  int flim); \
258 void ff_vp8_v_loop_filter16y_inner_ ## NAME (uint8_t *dst, \
259  ptrdiff_t stride, \
260  int e, int i, int hvt); \
261 void ff_vp8_h_loop_filter16y_inner_ ## NAME (uint8_t *dst, \
262  ptrdiff_t stride, \
263  int e, int i, int hvt); \
264 void ff_vp8_v_loop_filter8uv_inner_ ## NAME (uint8_t *dstU, \
265  uint8_t *dstV, \
266  ptrdiff_t s, \
267  int e, int i, int hvt); \
268 void ff_vp8_h_loop_filter8uv_inner_ ## NAME (uint8_t *dstU, \
269  uint8_t *dstV, \
270  ptrdiff_t s, \
271  int e, int i, int hvt); \
272 void ff_vp8_v_loop_filter16y_mbedge_ ## NAME(uint8_t *dst, \
273  ptrdiff_t stride, \
274  int e, int i, int hvt); \
275 void ff_vp8_h_loop_filter16y_mbedge_ ## NAME(uint8_t *dst, \
276  ptrdiff_t stride, \
277  int e, int i, int hvt); \
278 void ff_vp8_v_loop_filter8uv_mbedge_ ## NAME(uint8_t *dstU, \
279  uint8_t *dstV, \
280  ptrdiff_t s, \
281  int e, int i, int hvt); \
282 void ff_vp8_h_loop_filter8uv_mbedge_ ## NAME(uint8_t *dstU, \
283  uint8_t *dstV, \
284  ptrdiff_t s, \
285  int e, int i, int hvt);
286 
287 DECLARE_LOOP_FILTER(mmx)
288 DECLARE_LOOP_FILTER(mmxext)
289 DECLARE_LOOP_FILTER(sse2)
290 DECLARE_LOOP_FILTER(ssse3)
291 DECLARE_LOOP_FILTER(sse4)
292 
293 #endif /* HAVE_X86ASM */
294 
295 #define VP8_LUMA_MC_FUNC(IDX, SIZE, OPT) \
296  c->put_vp8_epel_pixels_tab[IDX][0][2] = ff_put_vp8_epel ## SIZE ## _h6_ ## OPT; \
297  c->put_vp8_epel_pixels_tab[IDX][2][0] = ff_put_vp8_epel ## SIZE ## _v6_ ## OPT; \
298  c->put_vp8_epel_pixels_tab[IDX][2][2] = ff_put_vp8_epel ## SIZE ## _h6v6_ ## OPT
299 
300 #define VP8_MC_FUNC(IDX, SIZE, OPT) \
301  c->put_vp8_epel_pixels_tab[IDX][0][1] = ff_put_vp8_epel ## SIZE ## _h4_ ## OPT; \
302  c->put_vp8_epel_pixels_tab[IDX][1][0] = ff_put_vp8_epel ## SIZE ## _v4_ ## OPT; \
303  c->put_vp8_epel_pixels_tab[IDX][1][1] = ff_put_vp8_epel ## SIZE ## _h4v4_ ## OPT; \
304  c->put_vp8_epel_pixels_tab[IDX][1][2] = ff_put_vp8_epel ## SIZE ## _h6v4_ ## OPT; \
305  c->put_vp8_epel_pixels_tab[IDX][2][1] = ff_put_vp8_epel ## SIZE ## _h4v6_ ## OPT; \
306  VP8_LUMA_MC_FUNC(IDX, SIZE, OPT)
307 
308 #define VP8_BILINEAR_MC_FUNC(IDX, SIZE, OPT) \
309  c->put_vp8_bilinear_pixels_tab[IDX][0][1] = ff_put_vp8_bilinear ## SIZE ## _h_ ## OPT; \
310  c->put_vp8_bilinear_pixels_tab[IDX][0][2] = ff_put_vp8_bilinear ## SIZE ## _h_ ## OPT; \
311  c->put_vp8_bilinear_pixels_tab[IDX][1][0] = ff_put_vp8_bilinear ## SIZE ## _v_ ## OPT; \
312  c->put_vp8_bilinear_pixels_tab[IDX][1][1] = ff_put_vp8_bilinear ## SIZE ## _hv_ ## OPT; \
313  c->put_vp8_bilinear_pixels_tab[IDX][1][2] = ff_put_vp8_bilinear ## SIZE ## _hv_ ## OPT; \
314  c->put_vp8_bilinear_pixels_tab[IDX][2][0] = ff_put_vp8_bilinear ## SIZE ## _v_ ## OPT; \
315  c->put_vp8_bilinear_pixels_tab[IDX][2][1] = ff_put_vp8_bilinear ## SIZE ## _hv_ ## OPT; \
316  c->put_vp8_bilinear_pixels_tab[IDX][2][2] = ff_put_vp8_bilinear ## SIZE ## _hv_ ## OPT
317 
318 
320 {
321 #if HAVE_X86ASM
322  int cpu_flags = av_get_cpu_flags();
323 
324  if (EXTERNAL_MMX(cpu_flags)) {
325 #if ARCH_X86_32
326  c->put_vp8_epel_pixels_tab[0][0][0] =
327  c->put_vp8_bilinear_pixels_tab[0][0][0] = ff_put_vp8_pixels16_mmx;
328 #endif
329  c->put_vp8_epel_pixels_tab[1][0][0] =
330  c->put_vp8_bilinear_pixels_tab[1][0][0] = ff_put_vp8_pixels8_mmx;
331  }
332 
333  /* note that 4-tap width=16 functions are missing because w=16
334  * is only used for luma, and luma is always a copy or sixtap. */
335  if (EXTERNAL_MMXEXT(cpu_flags)) {
336  VP8_MC_FUNC(2, 4, mmxext);
337  VP8_BILINEAR_MC_FUNC(2, 4, mmxext);
338 #if ARCH_X86_32
339  VP8_LUMA_MC_FUNC(0, 16, mmxext);
340  VP8_MC_FUNC(1, 8, mmxext);
341  VP8_BILINEAR_MC_FUNC(0, 16, mmxext);
342  VP8_BILINEAR_MC_FUNC(1, 8, mmxext);
343 #endif
344  }
345 
346  if (EXTERNAL_SSE(cpu_flags)) {
347  c->put_vp8_epel_pixels_tab[0][0][0] =
348  c->put_vp8_bilinear_pixels_tab[0][0][0] = ff_put_vp8_pixels16_sse;
349  }
350 
352  VP8_LUMA_MC_FUNC(0, 16, sse2);
353  VP8_MC_FUNC(1, 8, sse2);
354  VP8_BILINEAR_MC_FUNC(0, 16, sse2);
355  VP8_BILINEAR_MC_FUNC(1, 8, sse2);
356  }
357 
358  if (EXTERNAL_SSSE3(cpu_flags)) {
359  VP8_LUMA_MC_FUNC(0, 16, ssse3);
360  VP8_MC_FUNC(1, 8, ssse3);
361  VP8_MC_FUNC(2, 4, ssse3);
362  VP8_BILINEAR_MC_FUNC(0, 16, ssse3);
363  VP8_BILINEAR_MC_FUNC(1, 8, ssse3);
364  VP8_BILINEAR_MC_FUNC(2, 4, ssse3);
365  }
366 #endif /* HAVE_X86ASM */
367 }
368 
370 {
371 #if HAVE_X86ASM
372  int cpu_flags = av_get_cpu_flags();
373 
374  if (EXTERNAL_MMX(cpu_flags)) {
375  c->vp8_idct_dc_add4uv = ff_vp8_idct_dc_add4uv_mmx;
376 #if ARCH_X86_32
377  c->vp8_idct_dc_add = ff_vp8_idct_dc_add_mmx;
378  c->vp8_idct_dc_add4y = ff_vp8_idct_dc_add4y_mmx;
379  c->vp8_idct_add = ff_vp8_idct_add_mmx;
380  c->vp8_luma_dc_wht = ff_vp8_luma_dc_wht_mmx;
381 
382  c->vp8_v_loop_filter_simple = ff_vp8_v_loop_filter_simple_mmx;
383  c->vp8_h_loop_filter_simple = ff_vp8_h_loop_filter_simple_mmx;
384 
385  c->vp8_v_loop_filter16y_inner = ff_vp8_v_loop_filter16y_inner_mmx;
386  c->vp8_h_loop_filter16y_inner = ff_vp8_h_loop_filter16y_inner_mmx;
387  c->vp8_v_loop_filter8uv_inner = ff_vp8_v_loop_filter8uv_inner_mmx;
388  c->vp8_h_loop_filter8uv_inner = ff_vp8_h_loop_filter8uv_inner_mmx;
389 
390  c->vp8_v_loop_filter16y = ff_vp8_v_loop_filter16y_mbedge_mmx;
391  c->vp8_h_loop_filter16y = ff_vp8_h_loop_filter16y_mbedge_mmx;
392  c->vp8_v_loop_filter8uv = ff_vp8_v_loop_filter8uv_mbedge_mmx;
393  c->vp8_h_loop_filter8uv = ff_vp8_h_loop_filter8uv_mbedge_mmx;
394 #endif
395  }
396 
397  /* note that 4-tap width=16 functions are missing because w=16
398  * is only used for luma, and luma is always a copy or sixtap. */
399  if (EXTERNAL_MMXEXT(cpu_flags)) {
400 #if ARCH_X86_32
401  c->vp8_v_loop_filter_simple = ff_vp8_v_loop_filter_simple_mmxext;
402  c->vp8_h_loop_filter_simple = ff_vp8_h_loop_filter_simple_mmxext;
403 
404  c->vp8_v_loop_filter16y_inner = ff_vp8_v_loop_filter16y_inner_mmxext;
405  c->vp8_h_loop_filter16y_inner = ff_vp8_h_loop_filter16y_inner_mmxext;
406  c->vp8_v_loop_filter8uv_inner = ff_vp8_v_loop_filter8uv_inner_mmxext;
407  c->vp8_h_loop_filter8uv_inner = ff_vp8_h_loop_filter8uv_inner_mmxext;
408 
409  c->vp8_v_loop_filter16y = ff_vp8_v_loop_filter16y_mbedge_mmxext;
410  c->vp8_h_loop_filter16y = ff_vp8_h_loop_filter16y_mbedge_mmxext;
411  c->vp8_v_loop_filter8uv = ff_vp8_v_loop_filter8uv_mbedge_mmxext;
412  c->vp8_h_loop_filter8uv = ff_vp8_h_loop_filter8uv_mbedge_mmxext;
413 #endif
414  }
415 
416  if (EXTERNAL_SSE(cpu_flags)) {
417  c->vp8_idct_add = ff_vp8_idct_add_sse;
418  c->vp8_luma_dc_wht = ff_vp8_luma_dc_wht_sse;
419  }
420 
422  c->vp8_v_loop_filter_simple = ff_vp8_v_loop_filter_simple_sse2;
423 
424  c->vp8_v_loop_filter16y_inner = ff_vp8_v_loop_filter16y_inner_sse2;
425  c->vp8_v_loop_filter8uv_inner = ff_vp8_v_loop_filter8uv_inner_sse2;
426 
427  c->vp8_v_loop_filter16y = ff_vp8_v_loop_filter16y_mbedge_sse2;
428  c->vp8_v_loop_filter8uv = ff_vp8_v_loop_filter8uv_mbedge_sse2;
429  }
430 
431  if (EXTERNAL_SSE2(cpu_flags)) {
432  c->vp8_idct_dc_add = ff_vp8_idct_dc_add_sse2;
433  c->vp8_idct_dc_add4y = ff_vp8_idct_dc_add4y_sse2;
434 
435  c->vp8_h_loop_filter_simple = ff_vp8_h_loop_filter_simple_sse2;
436 
437  c->vp8_h_loop_filter16y_inner = ff_vp8_h_loop_filter16y_inner_sse2;
438  c->vp8_h_loop_filter8uv_inner = ff_vp8_h_loop_filter8uv_inner_sse2;
439 
440  c->vp8_h_loop_filter16y = ff_vp8_h_loop_filter16y_mbedge_sse2;
441  c->vp8_h_loop_filter8uv = ff_vp8_h_loop_filter8uv_mbedge_sse2;
442  }
443 
444  if (EXTERNAL_SSSE3(cpu_flags)) {
445  c->vp8_v_loop_filter_simple = ff_vp8_v_loop_filter_simple_ssse3;
446  c->vp8_h_loop_filter_simple = ff_vp8_h_loop_filter_simple_ssse3;
447 
448  c->vp8_v_loop_filter16y_inner = ff_vp8_v_loop_filter16y_inner_ssse3;
449  c->vp8_h_loop_filter16y_inner = ff_vp8_h_loop_filter16y_inner_ssse3;
450  c->vp8_v_loop_filter8uv_inner = ff_vp8_v_loop_filter8uv_inner_ssse3;
451  c->vp8_h_loop_filter8uv_inner = ff_vp8_h_loop_filter8uv_inner_ssse3;
452 
453  c->vp8_v_loop_filter16y = ff_vp8_v_loop_filter16y_mbedge_ssse3;
454  c->vp8_h_loop_filter16y = ff_vp8_h_loop_filter16y_mbedge_ssse3;
455  c->vp8_v_loop_filter8uv = ff_vp8_v_loop_filter8uv_mbedge_ssse3;
456  c->vp8_h_loop_filter8uv = ff_vp8_h_loop_filter8uv_mbedge_ssse3;
457  }
458 
459  if (EXTERNAL_SSE4(cpu_flags)) {
460  c->vp8_idct_dc_add = ff_vp8_idct_dc_add_sse4;
461 
462  c->vp8_h_loop_filter_simple = ff_vp8_h_loop_filter_simple_sse4;
463  c->vp8_h_loop_filter16y = ff_vp8_h_loop_filter16y_mbedge_sse4;
464  c->vp8_h_loop_filter8uv = ff_vp8_h_loop_filter8uv_mbedge_sse4;
465  }
466 #endif /* HAVE_X86ASM */
467 }
stride
int stride
Definition: mace.c:144
cpu.h
av_get_cpu_flags
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:93
VP8_BILINEAR_MC_FUNC
#define VP8_BILINEAR_MC_FUNC(IDX, SIZE, OPT)
Definition: vp8dsp_init.c:308
cpu_flags
static atomic_int cpu_flags
Definition: cpu.c:50
ff_vp8dsp_init_x86
av_cold void ff_vp8dsp_init_x86(VP8DSPContext *c)
Definition: vp8dsp_init.c:369
src
#define src
Definition: vp8dsp.c:254
av_cold
#define av_cold
Definition: attributes.h:84
vp8dsp.h
EXTERNAL_SSE
#define EXTERNAL_SSE(flags)
Definition: cpu.h:58
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
VP8DSPContext
Definition: vp8dsp.h:37
dc
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
Definition: snow.txt:400
cpu.h
height
#define height
attributes.h
EXTERNAL_SSE2
#define EXTERNAL_SSE2(flags)
Definition: cpu.h:59
VP8_MC_FUNC
#define VP8_MC_FUNC(IDX, SIZE, OPT)
Definition: vp8dsp_init.c:300
uint8_t
uint8_t
Definition: audio_convert.c:194
EXTERNAL_SSE4
#define EXTERNAL_SSE4(flags)
Definition: cpu.h:68
mem.h
block
The exact code depends on how similar the blocks are and how related they are to the block
Definition: filter_design.txt:207
h
h
Definition: vp9dsp_template.c:2038
EXTERNAL_SSSE3
#define EXTERNAL_SSSE3(flags)
Definition: cpu.h:65
EXTERNAL_MMX
#define EXTERNAL_MMX(flags)
Definition: cpu.h:56
EXTERNAL_SSE2_SLOW
#define EXTERNAL_SSE2_SLOW(flags)
Definition: cpu.h:61
EXTERNAL_MMXEXT
#define EXTERNAL_MMXEXT(flags)
Definition: cpu.h:57
ff_vp78dsp_init_x86
av_cold void ff_vp78dsp_init_x86(VP8DSPContext *c)
Definition: vp8dsp_init.c:319
VP8_LUMA_MC_FUNC
#define VP8_LUMA_MC_FUNC(IDX, SIZE, OPT)
Definition: vp8dsp_init.c:295