FFmpeg
aacpsdsp_mips.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012
3  * MIPS Technologies, Inc., California.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
14  * contributors may be used to endorse or promote products derived from
15  * this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * Authors: Darko Laus (darko@mips.com)
30  * Djordje Pesut (djordje@mips.com)
31  * Mirjana Vulin (mvulin@mips.com)
32  *
33  * This file is part of FFmpeg.
34  *
35  * FFmpeg is free software; you can redistribute it and/or
36  * modify it under the terms of the GNU Lesser General Public
37  * License as published by the Free Software Foundation; either
38  * version 2.1 of the License, or (at your option) any later version.
39  *
40  * FFmpeg is distributed in the hope that it will be useful,
41  * but WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
43  * Lesser General Public License for more details.
44  *
45  * You should have received a copy of the GNU Lesser General Public
46  * License along with FFmpeg; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
48  */
49 
50 /**
51  * @file
52  * Reference: libavcodec/aacpsdsp.c
53  */
54 
55 #include "config.h"
56 #include "libavcodec/aacpsdsp.h"
57 #include "libavutil/mips/asmdefs.h"
58 
59 #if HAVE_INLINE_ASM
60 #if HAVE_MIPSFPU
61 static void ps_hybrid_analysis_ileave_mips(float (*out)[32][2], float L[2][38][64],
62  int i, int len)
63 {
64  int temp0, temp1, temp2, temp3;
65  int temp4, temp5, temp6, temp7;
66  float *out1=&out[i][0][0];
67  float *L1=&L[0][0][i];
68  float *j=out1+ len*2;
69 
70  for (; i < 64; i++) {
71 
72  /* loop unrolled 8 times */
73  __asm__ volatile (
74  "1: \n\t"
75  "lw %[temp0], 0(%[L1]) \n\t"
76  "lw %[temp1], 9728(%[L1]) \n\t"
77  "lw %[temp2], 256(%[L1]) \n\t"
78  "lw %[temp3], 9984(%[L1]) \n\t"
79  "lw %[temp4], 512(%[L1]) \n\t"
80  "lw %[temp5], 10240(%[L1]) \n\t"
81  "lw %[temp6], 768(%[L1]) \n\t"
82  "lw %[temp7], 10496(%[L1]) \n\t"
83  "sw %[temp0], 0(%[out1]) \n\t"
84  "sw %[temp1], 4(%[out1]) \n\t"
85  "sw %[temp2], 8(%[out1]) \n\t"
86  "sw %[temp3], 12(%[out1]) \n\t"
87  "sw %[temp4], 16(%[out1]) \n\t"
88  "sw %[temp5], 20(%[out1]) \n\t"
89  "sw %[temp6], 24(%[out1]) \n\t"
90  "sw %[temp7], 28(%[out1]) \n\t"
91  PTR_ADDIU "%[out1], %[out1], 32 \n\t"
92  PTR_ADDIU "%[L1], %[L1], 1024 \n\t"
93  "bne %[out1], %[j], 1b \n\t"
94 
95  : [out1]"+r"(out1), [L1]"+r"(L1), [j]"+r"(j),
96  [temp0]"=&r"(temp0), [temp1]"=&r"(temp1),
97  [temp2]"=&r"(temp2), [temp3]"=&r"(temp3),
98  [temp4]"=&r"(temp4), [temp5]"=&r"(temp5),
99  [temp6]"=&r"(temp6), [temp7]"=&r"(temp7)
100  : [len]"r"(len)
101  : "memory"
102  );
103  out1-=(len<<1)-64;
104  L1-=(len<<6)-1;
105  j+=len*2;
106  }
107 }
108 
109 static void ps_hybrid_synthesis_deint_mips(float out[2][38][64],
110  float (*in)[32][2],
111  int i, int len)
112 {
113  int n;
114  int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7;
115  float *out1 = (float*)out + i;
116  float *out2 = (float*)out + 2432 + i;
117  float *in1 = (float*)in + 64 * i;
118  float *in2 = (float*)in + 64 * i + 1;
119 
120  for (; i < 64; i++) {
121  for (n = 0; n < 7; n++) {
122 
123  /* loop unrolled 8 times */
124  __asm__ volatile (
125  "lw %[temp0], 0(%[in1]) \n\t"
126  "lw %[temp1], 0(%[in2]) \n\t"
127  "lw %[temp2], 8(%[in1]) \n\t"
128  "lw %[temp3], 8(%[in2]) \n\t"
129  "lw %[temp4], 16(%[in1]) \n\t"
130  "lw %[temp5], 16(%[in2]) \n\t"
131  "lw %[temp6], 24(%[in1]) \n\t"
132  "lw %[temp7], 24(%[in2]) \n\t"
133  PTR_ADDIU "%[out1], %[out1], 1024 \n\t"
134  PTR_ADDIU "%[out2], %[out2], 1024 \n\t"
135  PTR_ADDIU "%[in1], %[in1], 32 \n\t"
136  PTR_ADDIU "%[in2], %[in2], 32 \n\t"
137  "sw %[temp0], -1024(%[out1]) \n\t"
138  "sw %[temp1], -1024(%[out2]) \n\t"
139  "sw %[temp2], -768(%[out1]) \n\t"
140  "sw %[temp3], -768(%[out2]) \n\t"
141  "sw %[temp4], -512(%[out1]) \n\t"
142  "sw %[temp5], -512(%[out2]) \n\t"
143  "sw %[temp6], -256(%[out1]) \n\t"
144  "sw %[temp7], -256(%[out2]) \n\t"
145 
146  : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1),
147  [temp2]"=&r"(temp2), [temp3]"=&r"(temp3),
148  [temp4]"=&r"(temp4), [temp5]"=&r"(temp5),
149  [temp6]"=&r"(temp6), [temp7]"=&r"(temp7),
150  [out1]"+r"(out1), [out2]"+r"(out2),
151  [in1]"+r"(in1), [in2]"+r"(in2)
152  :
153  : "memory"
154  );
155  }
156  /* loop unrolled 8 times */
157  __asm__ volatile (
158  "lw %[temp0], 0(%[in1]) \n\t"
159  "lw %[temp1], 0(%[in2]) \n\t"
160  "lw %[temp2], 8(%[in1]) \n\t"
161  "lw %[temp3], 8(%[in2]) \n\t"
162  "lw %[temp4], 16(%[in1]) \n\t"
163  "lw %[temp5], 16(%[in2]) \n\t"
164  "lw %[temp6], 24(%[in1]) \n\t"
165  "lw %[temp7], 24(%[in2]) \n\t"
166  PTR_ADDIU "%[out1], %[out1], -7164 \n\t"
167  PTR_ADDIU "%[out2], %[out2], -7164 \n\t"
168  PTR_ADDIU "%[in1], %[in1], 32 \n\t"
169  PTR_ADDIU "%[in2], %[in2], 32 \n\t"
170  "sw %[temp0], 7164(%[out1]) \n\t"
171  "sw %[temp1], 7164(%[out2]) \n\t"
172  "sw %[temp2], 7420(%[out1]) \n\t"
173  "sw %[temp3], 7420(%[out2]) \n\t"
174  "sw %[temp4], 7676(%[out1]) \n\t"
175  "sw %[temp5], 7676(%[out2]) \n\t"
176  "sw %[temp6], 7932(%[out1]) \n\t"
177  "sw %[temp7], 7932(%[out2]) \n\t"
178 
179  : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1),
180  [temp2]"=&r"(temp2), [temp3]"=&r"(temp3),
181  [temp4]"=&r"(temp4), [temp5]"=&r"(temp5),
182  [temp6]"=&r"(temp6), [temp7]"=&r"(temp7),
183  [out1]"+r"(out1), [out2]"+r"(out2),
184  [in1]"+r"(in1), [in2]"+r"(in2)
185  :
186  : "memory"
187  );
188  }
189 }
190 
191 #if !HAVE_MIPS32R6 && !HAVE_MIPS64R6
192 static void ps_add_squares_mips(float *dst, const float (*src)[2], int n)
193 {
194  int i;
195  float temp0, temp1, temp2, temp3, temp4, temp5;
196  float temp6, temp7, temp8, temp9, temp10, temp11;
197  float *src0 = (float*)&src[0][0];
198  float *dst0 = &dst[0];
199 
200  for (i = 0; i < 8; i++) {
201  /* loop unrolled 4 times */
202  __asm__ volatile (
203  "lwc1 %[temp0], 0(%[src0]) \n\t"
204  "lwc1 %[temp1], 4(%[src0]) \n\t"
205  "lwc1 %[temp2], 8(%[src0]) \n\t"
206  "lwc1 %[temp3], 12(%[src0]) \n\t"
207  "lwc1 %[temp4], 16(%[src0]) \n\t"
208  "lwc1 %[temp5], 20(%[src0]) \n\t"
209  "lwc1 %[temp6], 24(%[src0]) \n\t"
210  "lwc1 %[temp7], 28(%[src0]) \n\t"
211  "lwc1 %[temp8], 0(%[dst0]) \n\t"
212  "lwc1 %[temp9], 4(%[dst0]) \n\t"
213  "lwc1 %[temp10], 8(%[dst0]) \n\t"
214  "lwc1 %[temp11], 12(%[dst0]) \n\t"
215  "mul.s %[temp1], %[temp1], %[temp1] \n\t"
216  "mul.s %[temp3], %[temp3], %[temp3] \n\t"
217  "mul.s %[temp5], %[temp5], %[temp5] \n\t"
218  "mul.s %[temp7], %[temp7], %[temp7] \n\t"
219  "madd.s %[temp0], %[temp1], %[temp0], %[temp0] \n\t"
220  "madd.s %[temp2], %[temp3], %[temp2], %[temp2] \n\t"
221  "madd.s %[temp4], %[temp5], %[temp4], %[temp4] \n\t"
222  "madd.s %[temp6], %[temp7], %[temp6], %[temp6] \n\t"
223  "add.s %[temp0], %[temp8], %[temp0] \n\t"
224  "add.s %[temp2], %[temp9], %[temp2] \n\t"
225  "add.s %[temp4], %[temp10], %[temp4] \n\t"
226  "add.s %[temp6], %[temp11], %[temp6] \n\t"
227  "swc1 %[temp0], 0(%[dst0]) \n\t"
228  "swc1 %[temp2], 4(%[dst0]) \n\t"
229  "swc1 %[temp4], 8(%[dst0]) \n\t"
230  "swc1 %[temp6], 12(%[dst0]) \n\t"
231  PTR_ADDIU "%[dst0], %[dst0], 16 \n\t"
232  PTR_ADDIU "%[src0], %[src0], 32 \n\t"
233 
234  : [temp0]"=&f"(temp0), [temp1]"=&f"(temp1), [temp2]"=&f"(temp2),
235  [temp3]"=&f"(temp3), [temp4]"=&f"(temp4), [temp5]"=&f"(temp5),
236  [temp6]"=&f"(temp6), [temp7]"=&f"(temp7), [temp8]"=&f"(temp8),
237  [temp9]"=&f"(temp9), [dst0]"+r"(dst0), [src0]"+r"(src0),
238  [temp10]"=&f"(temp10), [temp11]"=&f"(temp11)
239  :
240  : "memory"
241  );
242  }
243 }
244 
245 static void ps_mul_pair_single_mips(float (*dst)[2], float (*src0)[2], float *src1,
246  int n)
247 {
248  float temp0, temp1, temp2;
249  float *p_d, *p_s0, *p_s1, *end;
250  p_d = &dst[0][0];
251  p_s0 = &src0[0][0];
252  p_s1 = &src1[0];
253  end = p_s1 + n;
254 
255  __asm__ volatile(
256  ".set push \n\t"
257  ".set noreorder \n\t"
258  "1: \n\t"
259  "lwc1 %[temp2], 0(%[p_s1]) \n\t"
260  "lwc1 %[temp0], 0(%[p_s0]) \n\t"
261  "lwc1 %[temp1], 4(%[p_s0]) \n\t"
262  PTR_ADDIU "%[p_d], %[p_d], 8 \n\t"
263  "mul.s %[temp0], %[temp0], %[temp2] \n\t"
264  "mul.s %[temp1], %[temp1], %[temp2] \n\t"
265  PTR_ADDIU "%[p_s0], %[p_s0], 8 \n\t"
266  "swc1 %[temp0], -8(%[p_d]) \n\t"
267  "swc1 %[temp1], -4(%[p_d]) \n\t"
268  "bne %[p_s1], %[end], 1b \n\t"
269  PTR_ADDIU "%[p_s1], %[p_s1], 4 \n\t"
270  ".set pop \n\t"
271 
272  : [temp0]"=&f"(temp0), [temp1]"=&f"(temp1),
273  [temp2]"=&f"(temp2), [p_d]"+r"(p_d),
274  [p_s0]"+r"(p_s0), [p_s1]"+r"(p_s1)
275  : [end]"r"(end)
276  : "memory"
277  );
278 }
279 
280 static void ps_decorrelate_mips(float (*out)[2], float (*delay)[2],
281  float (*ap_delay)[PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2],
282  const float phi_fract[2], const float (*Q_fract)[2],
283  const float *transient_gain,
284  float g_decay_slope,
285  int len)
286 {
287  float *p_delay = &delay[0][0];
288  float *p_out = &out[0][0];
289  float *p_ap_delay = &ap_delay[0][0][0];
290  const float *p_t_gain = transient_gain;
291  const float *p_Q_fract = &Q_fract[0][0];
292  float ag0, ag1, ag2;
293  float phi_fract0 = phi_fract[0];
294  float phi_fract1 = phi_fract[1];
295  float temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9;
296 
297  float *p_delay_end = (p_delay + (len << 1));
298 
299  /* merged 2 loops */
300  __asm__ volatile(
301  ".set push \n\t"
302  ".set noreorder \n\t"
303  "li.s %[ag0], 0.65143905753106 \n\t"
304  "li.s %[ag1], 0.56471812200776 \n\t"
305  "li.s %[ag2], 0.48954165955695 \n\t"
306  "mul.s %[ag0], %[ag0], %[g_decay_slope] \n\t"
307  "mul.s %[ag1], %[ag1], %[g_decay_slope] \n\t"
308  "mul.s %[ag2], %[ag2], %[g_decay_slope] \n\t"
309  "1: \n\t"
310  "lwc1 %[temp0], 0(%[p_delay]) \n\t"
311  "lwc1 %[temp1], 4(%[p_delay]) \n\t"
312  "lwc1 %[temp4], 16(%[p_ap_delay]) \n\t"
313  "lwc1 %[temp5], 20(%[p_ap_delay]) \n\t"
314  "mul.s %[temp3], %[temp0], %[phi_fract1] \n\t"
315  "lwc1 %[temp6], 0(%[p_Q_fract]) \n\t"
316  "mul.s %[temp2], %[temp1], %[phi_fract1] \n\t"
317  "lwc1 %[temp7], 4(%[p_Q_fract]) \n\t"
318  "madd.s %[temp3], %[temp3], %[temp1], %[phi_fract0] \n\t"
319  "msub.s %[temp2], %[temp2], %[temp0], %[phi_fract0] \n\t"
320  "mul.s %[temp8], %[temp5], %[temp7] \n\t"
321  "mul.s %[temp9], %[temp4], %[temp7] \n\t"
322  "lwc1 %[temp7], 12(%[p_Q_fract]) \n\t"
323  "mul.s %[temp0], %[ag0], %[temp2] \n\t"
324  "mul.s %[temp1], %[ag0], %[temp3] \n\t"
325  "msub.s %[temp8], %[temp8], %[temp4], %[temp6] \n\t"
326  "lwc1 %[temp4], 304(%[p_ap_delay]) \n\t"
327  "madd.s %[temp9], %[temp9], %[temp5], %[temp6] \n\t"
328  "lwc1 %[temp5], 308(%[p_ap_delay]) \n\t"
329  "sub.s %[temp0], %[temp8], %[temp0] \n\t"
330  "sub.s %[temp1], %[temp9], %[temp1] \n\t"
331  "madd.s %[temp2], %[temp2], %[ag0], %[temp0] \n\t"
332  "lwc1 %[temp6], 8(%[p_Q_fract]) \n\t"
333  "madd.s %[temp3], %[temp3], %[ag0], %[temp1] \n\t"
334  "mul.s %[temp8], %[temp5], %[temp7] \n\t"
335  "mul.s %[temp9], %[temp4], %[temp7] \n\t"
336  "lwc1 %[temp7], 20(%[p_Q_fract]) \n\t"
337  "msub.s %[temp8], %[temp8], %[temp4], %[temp6] \n\t"
338  "swc1 %[temp2], 40(%[p_ap_delay]) \n\t"
339  "mul.s %[temp2], %[ag1], %[temp0] \n\t"
340  "swc1 %[temp3], 44(%[p_ap_delay]) \n\t"
341  "mul.s %[temp3], %[ag1], %[temp1] \n\t"
342  "lwc1 %[temp4], 592(%[p_ap_delay]) \n\t"
343  "madd.s %[temp9], %[temp9], %[temp5], %[temp6] \n\t"
344  "lwc1 %[temp5], 596(%[p_ap_delay]) \n\t"
345  "sub.s %[temp2], %[temp8], %[temp2] \n\t"
346  "sub.s %[temp3], %[temp9], %[temp3] \n\t"
347  "lwc1 %[temp6], 16(%[p_Q_fract]) \n\t"
348  "madd.s %[temp0], %[temp0], %[ag1], %[temp2] \n\t"
349  "madd.s %[temp1], %[temp1], %[ag1], %[temp3] \n\t"
350  "mul.s %[temp8], %[temp5], %[temp7] \n\t"
351  "mul.s %[temp9], %[temp4], %[temp7] \n\t"
352  "msub.s %[temp8], %[temp8], %[temp4], %[temp6] \n\t"
353  "madd.s %[temp9], %[temp9], %[temp5], %[temp6] \n\t"
354  "swc1 %[temp0], 336(%[p_ap_delay]) \n\t"
355  "mul.s %[temp0], %[ag2], %[temp2] \n\t"
356  "swc1 %[temp1], 340(%[p_ap_delay]) \n\t"
357  "mul.s %[temp1], %[ag2], %[temp3] \n\t"
358  "lwc1 %[temp4], 0(%[p_t_gain]) \n\t"
359  "sub.s %[temp0], %[temp8], %[temp0] \n\t"
360  PTR_ADDIU "%[p_ap_delay], %[p_ap_delay], 8 \n\t"
361  "sub.s %[temp1], %[temp9], %[temp1] \n\t"
362  PTR_ADDIU "%[p_t_gain], %[p_t_gain], 4 \n\t"
363  "madd.s %[temp2], %[temp2], %[ag2], %[temp0] \n\t"
364  PTR_ADDIU "%[p_delay], %[p_delay], 8 \n\t"
365  "madd.s %[temp3], %[temp3], %[ag2], %[temp1] \n\t"
366  PTR_ADDIU "%[p_out], %[p_out], 8 \n\t"
367  "mul.s %[temp5], %[temp4], %[temp0] \n\t"
368  "mul.s %[temp6], %[temp4], %[temp1] \n\t"
369  "swc1 %[temp2], 624(%[p_ap_delay]) \n\t"
370  "swc1 %[temp3], 628(%[p_ap_delay]) \n\t"
371  "swc1 %[temp5], -8(%[p_out]) \n\t"
372  "swc1 %[temp6], -4(%[p_out]) \n\t"
373  "bne %[p_delay], %[p_delay_end],1b \n\t"
374  " swc1 %[temp6], -4(%[p_out]) \n\t"
375  ".set pop \n\t"
376 
377  : [temp0]"=&f"(temp0), [temp1]"=&f"(temp1), [temp2]"=&f"(temp2),
378  [temp3]"=&f"(temp3), [temp4]"=&f"(temp4), [temp5]"=&f"(temp5),
379  [temp6]"=&f"(temp6), [temp7]"=&f"(temp7), [temp8]"=&f"(temp8),
380  [temp9]"=&f"(temp9), [p_delay]"+r"(p_delay), [p_ap_delay]"+r"(p_ap_delay),
381  [p_Q_fract]"+r"(p_Q_fract), [p_t_gain]"+r"(p_t_gain), [p_out]"+r"(p_out),
382  [ag0]"=&f"(ag0), [ag1]"=&f"(ag1), [ag2]"=&f"(ag2)
383  : [phi_fract0]"f"(phi_fract0), [phi_fract1]"f"(phi_fract1),
384  [p_delay_end]"r"(p_delay_end), [g_decay_slope]"f"(g_decay_slope)
385  : "memory"
386  );
387 }
388 
389 static void ps_stereo_interpolate_mips(float (*l)[2], float (*r)[2],
390  float h[2][4], float h_step[2][4],
391  int len)
392 {
393  float h0 = h[0][0];
394  float h1 = h[0][1];
395  float h2 = h[0][2];
396  float h3 = h[0][3];
397  float hs0 = h_step[0][0];
398  float hs1 = h_step[0][1];
399  float hs2 = h_step[0][2];
400  float hs3 = h_step[0][3];
401  float temp0, temp1, temp2, temp3;
402  float l_re, l_im, r_re, r_im;
403 
404  float *l_end = ((float *)l + (len << 1));
405 
406  __asm__ volatile(
407  ".set push \n\t"
408  ".set noreorder \n\t"
409  "1: \n\t"
410  "add.s %[h0], %[h0], %[hs0] \n\t"
411  "lwc1 %[l_re], 0(%[l]) \n\t"
412  "add.s %[h1], %[h1], %[hs1] \n\t"
413  "lwc1 %[r_re], 0(%[r]) \n\t"
414  "add.s %[h2], %[h2], %[hs2] \n\t"
415  "lwc1 %[l_im], 4(%[l]) \n\t"
416  "add.s %[h3], %[h3], %[hs3] \n\t"
417  "lwc1 %[r_im], 4(%[r]) \n\t"
418  "mul.s %[temp0], %[h0], %[l_re] \n\t"
419  PTR_ADDIU "%[l], %[l], 8 \n\t"
420  "mul.s %[temp2], %[h1], %[l_re] \n\t"
421  PTR_ADDIU "%[r], %[r], 8 \n\t"
422  "madd.s %[temp0], %[temp0], %[h2], %[r_re] \n\t"
423  "madd.s %[temp2], %[temp2], %[h3], %[r_re] \n\t"
424  "mul.s %[temp1], %[h0], %[l_im] \n\t"
425  "mul.s %[temp3], %[h1], %[l_im] \n\t"
426  "madd.s %[temp1], %[temp1], %[h2], %[r_im] \n\t"
427  "madd.s %[temp3], %[temp3], %[h3], %[r_im] \n\t"
428  "swc1 %[temp0], -8(%[l]) \n\t"
429  "swc1 %[temp2], -8(%[r]) \n\t"
430  "swc1 %[temp1], -4(%[l]) \n\t"
431  "bne %[l], %[l_end], 1b \n\t"
432  " swc1 %[temp3], -4(%[r]) \n\t"
433  ".set pop \n\t"
434 
435  : [temp0]"=&f"(temp0), [temp1]"=&f"(temp1),
436  [temp2]"=&f"(temp2), [temp3]"=&f"(temp3),
437  [h0]"+f"(h0), [h1]"+f"(h1), [h2]"+f"(h2),
438  [h3]"+f"(h3), [l]"+r"(l), [r]"+r"(r),
439  [l_re]"=&f"(l_re), [l_im]"=&f"(l_im),
440  [r_re]"=&f"(r_re), [r_im]"=&f"(r_im)
441  : [hs0]"f"(hs0), [hs1]"f"(hs1), [hs2]"f"(hs2),
442  [hs3]"f"(hs3), [l_end]"r"(l_end)
443  : "memory"
444  );
445 }
446 #endif /* !HAVE_MIPS32R6 && !HAVE_MIPS64R6 */
447 #endif /* HAVE_MIPSFPU */
448 #endif /* HAVE_INLINE_ASM */
449 
451 {
452 #if HAVE_INLINE_ASM
453 #if HAVE_MIPSFPU
454  s->hybrid_analysis_ileave = ps_hybrid_analysis_ileave_mips;
455  s->hybrid_synthesis_deint = ps_hybrid_synthesis_deint_mips;
456 #if !HAVE_MIPS32R6 && !HAVE_MIPS64R6
457  s->add_squares = ps_add_squares_mips;
458  s->mul_pair_single = ps_mul_pair_single_mips;
459  s->decorrelate = ps_decorrelate_mips;
460  s->stereo_interpolate[0] = ps_stereo_interpolate_mips;
461 #endif /* !HAVE_MIPS32R6 && !HAVE_MIPS64R6 */
462 #endif /* HAVE_MIPSFPU */
463 #endif /* HAVE_INLINE_ASM */
464 }
L1
F H1 F F H1 F F F F H1<-F-------F-------F v v v H2 H3 H2 ^ ^ ^ F-------F-------F-> H1<-F-------F-------F|||||||||F H1 F|||||||||F H1 Funavailable fullpel samples(outside the picture for example) shall be equalto the closest available fullpel sampleSmaller pel interpolation:--------------------------if diag_mc is set then points which lie on a line between 2 vertically, horizontally or diagonally adjacent halfpel points shall be interpolatedlinearly with rounding to nearest and halfway values rounded up.points which lie on 2 diagonals at the same time should only use the onediagonal not containing the fullpel point F--> O q O<--h1-> O q O<--F v \/v \/v O O O O O O O|/|\|q q q q q|/|\|O O O O O O O ^/\ ^/\ ^ h2--> O q O<--h3-> O q O<--h2 v \/v \/v O O O O O O O|\|/|q q q q q|\|/|O O O O O O O ^/\ ^/\ ^ F--> O q O<--h1-> O q O<--Fthe remaining points shall be bilinearly interpolated from theup to 4 surrounding halfpel and fullpel points, again rounding should be tonearest and halfway values rounded upcompliant Snow decoders MUST support 1-1/8 pel luma and 1/2-1/16 pel chromainterpolation at leastOverlapped block motion compensation:-------------------------------------FIXMELL band prediction:===================Each sample in the LL0 subband is predicted by the median of the left, top andleft+top-topleft samples, samples outside the subband shall be considered tobe 0. To reverse this prediction in the decoder apply the following.for(y=0;y< height;y++){ for(x=0;x< width;x++){ sample[y][x]+=median(sample[y-1][x], sample[y][x-1], sample[y-1][x]+sample[y][x-1]-sample[y-1][x-1]);}}sample[-1][ *]=sample[ *][-1]=0;width, height here are the width and height of the LL0 subband not of the finalvideoDequantization:===============FIXMEWavelet Transform:==================Snow supports 2 wavelet transforms, the symmetric biorthogonal 5/3 integertransform and an integer approximation of the symmetric biorthogonal 9/7daubechies wavelet.2D IDWT(inverse discrete wavelet transform) --------------------------------------------The 2D IDWT applies a 2D filter recursively, each time combining the4 lowest frequency subbands into a single subband until only 1 subbandremains.The 2D filter is done by first applying a 1D filter in the vertical directionand then applying it in the horizontal one. --------------- --------------- --------------- ---------------|LL0|HL0|||||||||||||---+---|HL1||L0|H0|HL1||LL1|HL1|||||LH0|HH0|||||||||||||-------+-------|-> L1 H1 LH1 HH1 LH1 HH1 LH1 HH1 L1
Definition: snow.txt:554
r
const char * r
Definition: vf_curves.c:114
out
FILE * out
Definition: movenc.c:54
end
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:92
PS_QMF_TIME_SLOTS
#define PS_QMF_TIME_SLOTS
Definition: aacps.h:36
asmdefs.h
aacpsdsp.h
s
#define s(width, name)
Definition: cbs_vp9.c:257
src
#define src
Definition: vp8dsp.c:254
ff_psdsp_init_mips
void ff_psdsp_init_mips(PSDSPContext *s)
Definition: aacpsdsp_mips.c:450
PS_MAX_AP_DELAY
#define PS_MAX_AP_DELAY
Definition: aacps.h:39
src0
#define src0
Definition: h264pred.c:138
src1
#define src1
Definition: h264pred.c:139
in
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
Definition: audio_convert.c:326
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
len
int len
Definition: vorbis_enc_data.h:452
L
#define L(x)
Definition: vp56_arith.h:36
phi_fract
static int phi_fract[2][50][2]
Definition: aacps_fixed_tablegen.h:56
PSDSPContext
Definition: aacpsdsp.h:32
PTR_ADDIU
#define PTR_ADDIU
Definition: asmdefs.h:48
h
h
Definition: vp9dsp_template.c:2038