85 { -1, -1, -1, -1, 2, 4, 6, 8 },
86 { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
90 -1, -1, -1, 1, 4, 7, 10, 12,
94 8, 6, 4, 2, -1, -1, -1, -1,
95 -1, -1, -1, -1, 2, 4, 6, 8,
109 unsigned int min_channels = 1;
110 unsigned int max_channels = 2;
152 c->status[0].step =
c->status[1].step = 511;
234 if ((nibble & 8) == 0)
235 pred = av_clip(
pred + (add >> 3), -32767, 32767);
237 pred = av_clip(
pred - (add >> 3), -32767, 32767);
244 c->step = av_clip(
c->step * 2, 127, 24576);
262 c->step = av_clip(
c->step, 127, 24576);
275 step_index = av_clip(step_index, 0, 88);
283 predictor =
c->predictor;
284 if (sign) predictor -=
diff;
285 else predictor +=
diff;
287 c->predictor = av_clip_int16(predictor);
288 c->step_index = step_index;
290 return (int16_t)
c->predictor;
301 step_index = av_clip(step_index, 0, 88);
306 predictor =
c->predictor;
307 if (sign) predictor -=
diff;
308 else predictor +=
diff;
310 c->predictor = av_clip_int16(predictor);
311 c->step_index = step_index;
313 return (int16_t)
c->predictor;
323 predictor =
c->predictor +
delta;
326 c->predictor = av_clip_int16(predictor >> 4);
327 c->step_index = av_clip(step_index, 0, 88);
329 return (int16_t)
c->predictor;
342 step_index = av_clip(step_index, 0, 60);
344 predictor =
c->predictor +
step * nibble;
346 c->predictor = av_clip_int16(predictor);
347 c->step_index = step_index;
360 step_index = av_clip(step_index, 0, 88);
362 sign = nibble & (1 <<
shift);
365 predictor =
c->predictor;
366 if (sign) predictor -=
diff;
367 else predictor +=
diff;
369 c->predictor = av_clip_int16(predictor);
370 c->step_index = step_index;
372 return (int16_t)
c->predictor;
383 step_index = av_clip(step_index, 0, 88);
391 predictor =
c->predictor -
diff;
393 predictor =
c->predictor +
diff;
395 c->predictor = av_clip_int16(predictor);
396 c->step_index = step_index;
405 predictor = (((
c->sample1) * (
c->coeff1)) + ((
c->sample2) * (
c->coeff2))) / 64;
406 predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) *
c->idelta;
408 c->sample2 =
c->sample1;
409 c->sample1 = av_clip_int16(predictor);
411 if (
c->idelta < 16)
c->idelta = 16;
412 if (
c->idelta > INT_MAX/768) {
414 c->idelta = INT_MAX/768;
426 step_index = av_clip(step_index, 0, 48);
431 predictor =
c->predictor;
432 if (sign) predictor -=
diff;
433 else predictor +=
diff;
435 c->predictor = av_clip_intp2(predictor, 11);
436 c->step_index = step_index;
438 return c->predictor * 16;
453 c->predictor = ((
c->predictor * 254) >> 8) + (sign ? -
diff :
diff);
454 c->predictor = av_clip_int16(
c->predictor);
457 c->step = av_clip(new_step, 511, 32767);
459 return (int16_t)
c->predictor;
466 sign = nibble & (1<<(
size-1));
471 c->predictor = av_clip(
c->predictor + (sign ? -
diff :
diff), -16384,16256);
476 else if (
delta == 0 &&
c->step > 0)
479 return (int16_t)
c->predictor;
490 c->predictor = av_clip_int16(
c->predictor);
492 c->step = av_clip(
c->step, 127, 24576);
499 c->predictor = av_clip_int16(
c->predictor);
501 c->step = av_clip_uintp2(
c->step, 5);
507 int16_t
index =
c->step_index;
514 sample += lookup_sample >> 1;
516 sample += lookup_sample >> 2;
518 sample += lookup_sample >> 3;
520 sample += lookup_sample >> 4;
522 sample += lookup_sample >> 5;
524 sample += lookup_sample >> 6;
549 out0 += sample_offset;
553 out1 += sample_offset;
576 s = t*(1<<
shift) + ((s_1*f0 + s_2*f1+32)>>6);
578 s_1 = av_clip_int16(
s);
607 s = t*(1<<
shift) + ((s_1*f0 + s_2*f1+32)>>6);
609 s_1 = av_clip_int16(
s);
633 int k0, signmask, nb_bits, count;
634 int size = buf_size*8;
642 k0 = 1 << (nb_bits-2);
643 signmask = 1 << (nb_bits-1);
669 if (
delta & signmask)
670 c->status[
i].predictor -= vpdiff;
672 c->status[
i].predictor += vpdiff;
676 c->status[
i].step_index = av_clip(
c->status[
i].step_index, 0, 88);
677 c->status[
i].predictor = av_clip_int16(
c->status[
i].predictor);
714 int buf_size,
int *coded_samples,
int *approx_nb_samples)
719 int has_coded_samples = 0;
723 *approx_nb_samples = 0;
731 if (buf_size < 76 * ch)
736 if (buf_size < 34 * ch)
741 if (buf_size < 17 * ch)
758 nb_samples = buf_size * 2 / ch;
775 return (buf_size - header_size) * 2 / ch;
780 has_coded_samples = 1;
781 *coded_samples = bytestream2_get_le32(gb);
782 *coded_samples -= *coded_samples % 28;
783 nb_samples = (buf_size - 12) / 30 * 28;
786 has_coded_samples = 1;
787 *coded_samples = bytestream2_get_le32(gb);
788 nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
791 nb_samples = (buf_size - ch) / ch * 2;
798 has_coded_samples = 1;
801 header_size = 4 + 9 * ch;
802 *coded_samples = bytestream2_get_le32(gb);
805 header_size = 4 + 5 * ch;
806 *coded_samples = bytestream2_get_le32(gb);
809 header_size = 4 + 5 * ch;
810 *coded_samples = bytestream2_get_be32(gb);
813 *coded_samples -= *coded_samples % 28;
814 nb_samples = (buf_size - header_size) * 2 / ch;
815 nb_samples -= nb_samples % 28;
816 *approx_nb_samples = 1;
821 nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
826 if (buf_size < 4 * ch)
828 nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
833 nb_samples = (buf_size - 4 * ch) * 2 / ch;
841 if (buf_size < 4 * ch)
843 nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
849 nb_samples = (buf_size - 6 * ch) * 2 / ch;
854 nb_samples = (buf_size - 16 * (ch / 2)) * 2 / ch;
860 int samples_per_byte;
866 if (!
s->status[0].step_index) {
872 nb_samples += buf_size * samples_per_byte / ch;
877 int buf_bits = buf_size * 8 - 2;
878 int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
879 int block_hdr_size = 22 * ch;
880 int block_size = block_hdr_size + nbits * ch * 4095;
881 int nblocks = buf_bits / block_size;
882 int bits_left = buf_bits - nblocks * block_size;
883 nb_samples = nblocks * 4096;
884 if (bits_left >= block_hdr_size)
885 nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
891 nb_samples = buf_size * 14 / (8 * ch);
894 has_coded_samples = 1;
897 bytestream2_get_le32(gb) :
898 bytestream2_get_be32(gb);
899 buf_size -= 8 + 36 * ch;
901 nb_samples = buf_size / 8 * 14;
902 if (buf_size % 8 > 1)
903 nb_samples += (buf_size % 8 - 1) * 2;
904 *approx_nb_samples = 1;
907 nb_samples = buf_size / (9 * ch) * 16;
910 nb_samples = (buf_size / 128) * 224 / ch;
914 nb_samples = buf_size / (16 * ch) * 28;
917 nb_samples = buf_size / ch;
922 if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
929 int *got_frame_ptr,
AVPacket *avpkt)
933 int buf_size = avpkt->
size;
941 int nb_samples, coded_samples, approx_nb_samples,
ret;
945 nb_samples =
get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
946 if (nb_samples <= 0) {
952 frame->nb_samples = nb_samples;
956 samples_p = (int16_t **)
frame->extended_data;
961 if (!approx_nb_samples && coded_samples != nb_samples)
963 frame->nb_samples = nb_samples = coded_samples;
979 predictor =
sign_extend(bytestream2_get_be16u(&gb), 16);
980 step_index = predictor & 0x7F;
1003 for (m = 0; m < 64; m += 2) {
1004 int byte = bytestream2_get_byteu(&gb);
1012 cs = &(
c->status[
i]);
1029 for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
1034 samples = &samples_p[
i][1 + n * samples_per_block];
1035 for (j = 0; j < block_size; j++) {
1037 (j % 4) + (j / 4) * (avctx->
channels * 4) +
i * 4];
1042 for (m = 0; m < samples_per_block; m++) {
1050 for (n = 0; n < (nb_samples - 1) / 8; n++) {
1053 samples = &samples_p[
i][1 + n * 8];
1054 for (m = 0; m < 8; m += 2) {
1055 int v = bytestream2_get_byteu(&gb);
1065 c->status[
i].predictor =
sign_extend(bytestream2_get_le16u(&gb), 16);
1068 c->status[
i].step_index =
sign_extend(bytestream2_get_le16u(&gb), 16);
1069 if (
c->status[
i].step_index > 88
u) {
1071 i,
c->status[
i].step_index);
1079 for (n = nb_samples >> 1; n > 0; n--) {
1080 int v = bytestream2_get_byteu(&gb);
1088 c->status[
i].predictor =
sign_extend(bytestream2_get_le16u(&gb), 16);
1090 c->status[
i].step =
sign_extend(bytestream2_get_le16u(&gb), 16);
1092 for (n = 0; n < nb_samples >> (1 - st); n++) {
1093 int v = bytestream2_get_byteu(&gb);
1100 int block_predictor;
1105 block_predictor = bytestream2_get_byteu(&gb);
1106 if (block_predictor > 6) {
1118 for(n = (nb_samples - 2) >> 1; n > 0; n--) {
1119 int byte = bytestream2_get_byteu(&gb);
1125 block_predictor = bytestream2_get_byteu(&gb);
1126 if (block_predictor > 6) {
1134 block_predictor = bytestream2_get_byteu(&gb);
1135 if (block_predictor > 6) {
1143 c->status[0].idelta =
sign_extend(bytestream2_get_le16u(&gb), 16);
1145 c->status[1].idelta =
sign_extend(bytestream2_get_le16u(&gb), 16);
1148 c->status[0].sample1 =
sign_extend(bytestream2_get_le16u(&gb), 16);
1149 if (st)
c->status[1].sample1 =
sign_extend(bytestream2_get_le16u(&gb), 16);
1150 c->status[0].sample2 =
sign_extend(bytestream2_get_le16u(&gb), 16);
1151 if (st)
c->status[1].sample2 =
sign_extend(bytestream2_get_le16u(&gb), 16);
1154 if (st) *
samples++ =
c->status[1].sample2;
1156 if (st) *
samples++ =
c->status[1].sample1;
1157 for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
1158 int byte = bytestream2_get_byteu(&gb);
1168 c->status[
channel ].step = bytestream2_get_le16u(&gb) & 0x1f;
1169 c->status[
channel + 1].step = bytestream2_get_le16u(&gb) & 0x1f;
1174 for (n = 0; n < nb_samples; n+=2) {
1175 int v = bytestream2_get_byteu(&gb);
1179 for (n = 0; n < nb_samples; n+=2) {
1180 int v = bytestream2_get_byteu(&gb);
1197 for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
1198 int v = bytestream2_get_byteu(&gb);
1207 int decode_top_nibble_next = 0;
1212 c->status[0].predictor =
sign_extend(bytestream2_get_le16u(&gb), 16);
1213 c->status[1].predictor =
sign_extend(bytestream2_get_le16u(&gb), 16);
1214 c->status[0].step_index = bytestream2_get_byteu(&gb);
1215 c->status[1].step_index = bytestream2_get_byteu(&gb);
1216 if (
c->status[0].step_index > 88
u ||
c->status[1].step_index > 88
u){
1218 c->status[0].step_index,
c->status[1].step_index);
1222 diff_channel =
c->status[1].predictor;
1225 #define DK3_GET_NEXT_NIBBLE() \
1226 if (decode_top_nibble_next) { \
1227 nibble = last_byte >> 4; \
1228 decode_top_nibble_next = 0; \
1230 last_byte = bytestream2_get_byteu(&gb); \
1231 nibble = last_byte & 0x0F; \
1232 decode_top_nibble_next = 1; \
1235 while (
samples < samples_end) {
1249 diff_channel = (diff_channel +
c->status[1].predictor) / 2;
1250 *
samples++ =
c->status[0].predictor +
c->status[1].predictor;
1251 *
samples++ =
c->status[0].predictor -
c->status[1].predictor;
1258 diff_channel = (diff_channel +
c->status[1].predictor) / 2;
1259 *
samples++ =
c->status[0].predictor +
c->status[1].predictor;
1260 *
samples++ =
c->status[0].predictor -
c->status[1].predictor;
1279 for (n = nb_samples >> (1 - st); n > 0; n--) {
1281 int v = bytestream2_get_byteu(&gb);
1299 for (n = 0; n < nb_samples; n += 2) {
1300 int v = bytestream2_get_byteu(&gb);
1307 for (n = nb_samples >> (1 - st); n > 0; n--) {
1308 int v = bytestream2_get_byteu(&gb);
1314 for (n = nb_samples >> (1 - st); n > 0; n--) {
1315 int v = bytestream2_get_byteu(&gb);
1321 for (n = nb_samples / 2; n > 0; n--) {
1323 int v = bytestream2_get_byteu(&gb);
1331 for (n = nb_samples / 2; n > 0; n--) {
1333 int v = bytestream2_get_byteu(&gb);
1341 for (n = 0; n < nb_samples / 2; n++) {
1342 int v = bytestream2_get_byteu(&gb);
1348 for (n = nb_samples >> (1 - st); n > 0; n--) {
1349 int v = bytestream2_get_byteu(&gb);
1365 for (n = 0; n < nb_samples / 2; n++) {
1368 byte[0] = bytestream2_get_byteu(&gb);
1370 byte[1] = bytestream2_get_byteu(&gb);
1380 if (
c->vqa_version == 3) {
1382 int16_t *smp = samples_p[
channel];
1384 for (n = nb_samples / 2; n > 0; n--) {
1385 int v = bytestream2_get_byteu(&gb);
1391 for (n = nb_samples / 2; n > 0; n--) {
1393 int v = bytestream2_get_byteu(&gb);
1404 int16_t *out0 = samples_p[0];
1405 int16_t *out1 = samples_p[1];
1406 int samples_per_block = 28 * (3 - avctx->
channels) * 4;
1407 int sample_offset = 0;
1408 int bytes_remaining;
1411 &
c->status[0], &
c->status[1],
1412 avctx->
channels, sample_offset)) < 0)
1415 sample_offset += samples_per_block;
1420 if (bytes_remaining > 0) {
1426 for (
i=0;
i<=st;
i++) {
1427 c->status[
i].step_index = bytestream2_get_le32u(&gb);
1428 if (
c->status[
i].step_index > 88
u) {
1430 i,
c->status[
i].step_index);
1434 for (
i=0;
i<=st;
i++) {
1435 c->status[
i].predictor = bytestream2_get_le32u(&gb);
1436 if (
FFABS((int64_t)
c->status[
i].predictor) > (1<<16))
1440 for (n = nb_samples >> (1 - st); n > 0; n--) {
1441 int byte = bytestream2_get_byteu(&gb);
1447 for (n = nb_samples >> (1 - st); n > 0; n--) {
1448 int byte = bytestream2_get_byteu(&gb);
1455 int previous_left_sample, previous_right_sample;
1456 int current_left_sample, current_right_sample;
1457 int next_left_sample, next_right_sample;
1458 int coeff1l, coeff2l, coeff1r, coeff2r;
1459 int shift_left, shift_right;
1467 current_left_sample =
sign_extend(bytestream2_get_le16u(&gb), 16);
1468 previous_left_sample =
sign_extend(bytestream2_get_le16u(&gb), 16);
1469 current_right_sample =
sign_extend(bytestream2_get_le16u(&gb), 16);
1470 previous_right_sample =
sign_extend(bytestream2_get_le16u(&gb), 16);
1472 for (count1 = 0; count1 < nb_samples / 28; count1++) {
1473 int byte = bytestream2_get_byteu(&gb);
1479 byte = bytestream2_get_byteu(&gb);
1480 shift_left = 20 - (
byte >> 4);
1481 shift_right = 20 - (
byte & 0x0F);
1483 for (count2 = 0; count2 < 28; count2++) {
1484 byte = bytestream2_get_byteu(&gb);
1485 next_left_sample =
sign_extend(
byte >> 4, 4) * (1 << shift_left);
1486 next_right_sample =
sign_extend(
byte, 4) * (1 << shift_right);
1488 next_left_sample = (next_left_sample +
1489 (current_left_sample * coeff1l) +
1490 (previous_left_sample * coeff2l) + 0x80) >> 8;
1491 next_right_sample = (next_right_sample +
1492 (current_right_sample * coeff1r) +
1493 (previous_right_sample * coeff2r) + 0x80) >> 8;
1495 previous_left_sample = current_left_sample;
1496 current_left_sample = av_clip_int16(next_left_sample);
1497 previous_right_sample = current_right_sample;
1498 current_right_sample = av_clip_int16(next_right_sample);
1499 *
samples++ = current_left_sample;
1500 *
samples++ = current_right_sample;
1513 int byte = bytestream2_get_byteu(&gb);
1518 for (count1 = 0; count1 < nb_samples / 2; count1++) {
1521 byte[0] = bytestream2_get_byteu(&gb);
1522 if (st)
byte[1] = bytestream2_get_byteu(&gb);
1523 for(
i = 4;
i >= 0;
i-=4) {
1546 int previous_sample, current_sample, next_sample;
1555 offsets[
channel] = (big_endian ? bytestream2_get_be32(&gb) :
1556 bytestream2_get_le32(&gb)) +
1561 samplesC = samples_p[
channel];
1564 current_sample =
sign_extend(bytestream2_get_le16(&gb), 16);
1565 previous_sample =
sign_extend(bytestream2_get_le16(&gb), 16);
1567 current_sample =
c->status[
channel].predictor;
1568 previous_sample =
c->status[
channel].prev_sample;
1571 for (count1 = 0; count1 < nb_samples / 28; count1++) {
1572 int byte = bytestream2_get_byte(&gb);
1574 current_sample =
sign_extend(bytestream2_get_be16(&gb), 16);
1575 previous_sample =
sign_extend(bytestream2_get_be16(&gb), 16);
1577 for (count2=0; count2<28; count2++)
1578 *samplesC++ =
sign_extend(bytestream2_get_be16(&gb), 16);
1582 shift = 20 - (
byte & 0x0F);
1584 for (count2=0; count2<28; count2++) {
1588 byte = bytestream2_get_byte(&gb);
1592 next_sample += (current_sample * coeff1) +
1593 (previous_sample * coeff2);
1594 next_sample = av_clip_int16(next_sample >> 8);
1596 previous_sample = current_sample;
1597 current_sample = next_sample;
1598 *samplesC++ = current_sample;
1604 }
else if (count != count1) {
1606 count =
FFMAX(count, count1);
1610 c->status[
channel].predictor = current_sample;
1611 c->status[
channel].prev_sample = previous_sample;
1615 frame->nb_samples = count * 28;
1623 for (n = 0; n < 4; n++,
s += 32) {
1634 for (m=2; m<32; m+=2) {
1636 for (n = 0; n < 4; n++,
s += 32) {
1638 int byte = bytestream2_get_byteu(&gb);
1642 s[0] = av_clip_int16((
level +
pred + 0x80) >> 8);
1646 s[1] = av_clip_int16((
level +
pred + 0x80) >> 8);
1652 c->status[0].predictor =
sign_extend(bytestream2_get_le16u(&gb), 16);
1653 c->status[0].step_index = bytestream2_get_byteu(&gb);
1655 if (
c->status[0].step_index > 88
u) {
1657 c->status[0].step_index);
1661 for (n = nb_samples >> (1 - st); n > 0; n--) {
1662 int v = bytestream2_get_byteu(&gb);
1670 c->status[
i].predictor =
sign_extend(bytestream2_get_be16u(&gb), 16);
1671 c->status[
i].step_index = bytestream2_get_byteu(&gb);
1673 if (
c->status[
i].step_index > 88
u) {
1675 c->status[
i].step_index);
1680 for (n = nb_samples >> (1 - st); n > 0; n--) {
1681 int v = bytestream2_get_byteu(&gb);
1688 for (n = nb_samples >> (1 - st); n > 0; n--) {
1689 int v = bytestream2_get_byteu(&gb);
1697 if (!
c->status[0].step_index) {
1699 *
samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1701 *
samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1702 c->status[0].step_index = 1;
1706 for (n = nb_samples >> (1 - st); n > 0; n--) {
1707 int byte = bytestream2_get_byteu(&gb);
1714 for (n = (nb_samples<<st) / 3; n > 0; n--) {
1715 int byte = bytestream2_get_byteu(&gb);
1719 (
byte >> 2) & 0x07, 3, 0);
1724 for (n = nb_samples >> (2 - st); n > 0; n--) {
1725 int byte = bytestream2_get_byteu(&gb);
1729 (
byte >> 4) & 0x03, 2, 2);
1731 (
byte >> 2) & 0x03, 2, 2);
1742 for (n = nb_samples >> (1 - st); n > 0; n--) {
1743 int v = bytestream2_get_byteu(&gb);
1749 if (!
c->has_status) {
1756 for (n = nb_samples >> 1; n > 0; n--) {
1757 int v = bytestream2_get_byteu(&gb);
1765 int samples_per_block;
1769 samples_per_block = avctx->
extradata[0] / 16;
1770 blocks = nb_samples / avctx->
extradata[0];
1772 samples_per_block = nb_samples / 16;
1776 for (m = 0; m < blocks; m++) {
1778 int prev1 =
c->status[
channel].sample1;
1779 int prev2 =
c->status[
channel].sample2;
1783 for (
i = 0;
i < samples_per_block;
i++) {
1784 int byte = bytestream2_get_byteu(&gb);
1785 int scale = 1 << (
byte >> 4);
1786 int index =
byte & 0xf;
1791 for (n = 0; n < 16; n++) {
1797 byte = bytestream2_get_byteu(&gb);
1801 sampledat = ((prev1 * factor1 + prev2 * factor2) >> 11) +
1803 *
samples = av_clip_int16(sampledat);
1809 c->status[
channel].sample1 = prev1;
1810 c->status[
channel].sample2 = prev2;
1822 #define THP_GET16(g) \
1824 avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE ? \
1825 bytestream2_get_le16u(&(g)) : \
1826 bytestream2_get_be16u(&(g)), 16)
1837 for (n = 0; n < 16; n++)
1841 for (n = 0; n < 16; n++)
1844 if (!
c->has_status) {
1856 for (ch = 0; ch < avctx->
channels; ch++) {
1860 for (
i = 0;
i < (nb_samples + 13) / 14;
i++) {
1861 int byte = bytestream2_get_byteu(&gb);
1862 int index = (
byte >> 4) & 7;
1863 unsigned int exp =
byte & 0x0F;
1868 for (n = 0; n < 14 && (
i * 14 + n < nb_samples); n++) {
1874 byte = bytestream2_get_byteu(&gb);
1878 sampledat = ((
c->status[ch].sample1 * factor1
1879 +
c->status[ch].sample2 * factor2) >> 11) + sampledat * (1 <<
exp);
1880 *
samples = av_clip_int16(sampledat);
1881 c->status[ch].sample2 =
c->status[ch].sample1;
1882 c->status[ch].sample1 = *
samples++;
1893 for (
i = 0;
i < nb_samples / 28;
i++) {
1897 header = bytestream2_get_byteu(&gb);
1901 for (n = 0; n < 28; n++) {
1906 prev = (
c->status[
channel].sample1 * 0x3c);
1909 prev = (
c->status[
channel].sample1 * 0x73) - (
c->status[
channel].sample2 * 0x34);
1912 prev = (
c->status[
channel].sample1 * 0x62) - (
c->status[
channel].sample2 * 0x37);
1918 prev = av_clip_intp2((prev + 0x20) >> 6, 21);
1920 byte = bytestream2_get_byteu(&gb);
1926 sampledat = ((sampledat * (1 << 12)) >> (
header & 0xf)) * (1 << 6) + prev;
1927 *
samples++ = av_clip_int16(sampledat >> 6);
1929 c->status[
channel].sample1 = sampledat;
1941 for (
i = 0;
i < nb_samples / 28;
i++) {
1944 filter = bytestream2_get_byteu(&gb);
1949 flag = bytestream2_get_byteu(&gb);
1952 for (n = 0; n < 28; n++) {
1959 byte = bytestream2_get_byteu(&gb);
1963 scale = scale * (1 << 12);
1998 control = bytestream2_get_byteu(&gb);
1999 shift = (control >> 4) + 2;
2001 for (n = 0; n < nb_samples / 2; n++) {
2002 int sample = bytestream2_get_byteu(&gb);
2009 if (!
c->has_status) {
2016 for (n = 0; n < nb_samples * avctx->
channels; n++) {
2017 int v = bytestream2_get_byteu(&gb);
2022 for (n = nb_samples / 2; n > 0; n--) {
2024 int v = bytestream2_get_byteu(&gb);
2065 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
2066 AVCodec ff_ ## name_ ## _decoder = { \
2068 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
2069 .type = AVMEDIA_TYPE_AUDIO, \
2071 .priv_data_size = sizeof(ADPCMDecodeContext), \
2072 .init = adpcm_decode_init, \
2073 .decode = adpcm_decode_frame, \
2074 .flush = adpcm_flush, \
2075 .capabilities = AV_CODEC_CAP_DR1, \
2076 .sample_fmts = sample_fmts_, \