Go to the documentation of this file.
123 #define IIR_CH(name, type, min, max, need_clipping) \
124 static int iir_ch_## name(AVFilterContext *ctx, void *arg, int ch, int nb_jobs) \
126 AudioIIRContext *s = ctx->priv; \
127 const double ig = s->dry_gain; \
128 const double og = s->wet_gain; \
129 const double mix = s->mix; \
130 ThreadData *td = arg; \
131 AVFrame *in = td->in, *out = td->out; \
132 const type *src = (const type *)in->extended_data[ch]; \
133 double *oc = (double *)s->iir[ch].cache[0]; \
134 double *ic = (double *)s->iir[ch].cache[1]; \
135 const int nb_a = s->iir[ch].nb_ab[0]; \
136 const int nb_b = s->iir[ch].nb_ab[1]; \
137 const double *a = s->iir[ch].ab[0]; \
138 const double *b = s->iir[ch].ab[1]; \
139 const double g = s->iir[ch].g; \
140 int *clippings = &s->iir[ch].clippings; \
141 type *dst = (type *)out->extended_data[ch]; \
144 for (n = 0; n < in->nb_samples; n++) { \
145 double sample = 0.; \
148 memmove(&ic[1], &ic[0], (nb_b - 1) * sizeof(*ic)); \
149 memmove(&oc[1], &oc[0], (nb_a - 1) * sizeof(*oc)); \
150 ic[0] = src[n] * ig; \
151 for (x = 0; x < nb_b; x++) \
152 sample += b[x] * ic[x]; \
154 for (x = 1; x < nb_a; x++) \
155 sample -= a[x] * oc[x]; \
159 sample = sample * mix + ic[0] * (1. - mix); \
160 if (need_clipping && sample < min) { \
163 } else if (need_clipping && sample > max) { \
174 IIR_CH(s16p, int16_t, INT16_MIN, INT16_MAX, 1)
176 IIR_CH(fltp,
float, -1., 1., 0)
177 IIR_CH(dblp,
double, -1., 1., 0)
179 #define SERIAL_IIR_CH(name, type, min, max, need_clipping) \
180 static int iir_ch_serial_## name(AVFilterContext *ctx, void *arg, int ch, int nb_jobs) \
182 AudioIIRContext *s = ctx->priv; \
183 const double ig = s->dry_gain; \
184 const double og = s->wet_gain; \
185 const double mix = s->mix; \
186 ThreadData *td = arg; \
187 AVFrame *in = td->in, *out = td->out; \
188 const type *src = (const type *)in->extended_data[ch]; \
189 type *dst = (type *)out->extended_data[ch]; \
190 IIRChannel *iir = &s->iir[ch]; \
191 const double g = iir->g; \
192 int *clippings = &iir->clippings; \
193 int nb_biquads = (FFMAX(iir->nb_ab[0], iir->nb_ab[1]) + 1) / 2; \
196 for (i = 0; i < nb_biquads; i++) { \
197 const double a1 = -iir->biquads[i].a[1]; \
198 const double a2 = -iir->biquads[i].a[2]; \
199 const double b0 = iir->biquads[i].b[0]; \
200 const double b1 = iir->biquads[i].b[1]; \
201 const double b2 = iir->biquads[i].b[2]; \
202 double i1 = iir->biquads[i].i1; \
203 double i2 = iir->biquads[i].i2; \
204 double o1 = iir->biquads[i].o1; \
205 double o2 = iir->biquads[i].o2; \
207 for (n = 0; n < in->nb_samples; n++) { \
208 double sample = ig * (i ? dst[n] : src[n]); \
209 double o0 = sample * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2; \
217 o0 = o0 * mix + (1. - mix) * sample; \
218 if (need_clipping && o0 < min) { \
221 } else if (need_clipping && o0 > max) { \
228 iir->biquads[i].i1 = i1; \
229 iir->biquads[i].i2 = i2; \
230 iir->biquads[i].o1 = o1; \
231 iir->biquads[i].o2 = o2; \
250 for (p = item_str; *p && *p !=
'|'; p++) {
259 char *p, *
arg, *old_str, *prev_arg =
NULL, *saveptr =
NULL;
265 for (
i = 0;
i < nb_items;
i++) {
275 if (sscanf(
arg,
"%lf", &
s->iir[
i].g) != 1) {
291 char *p, *
arg, *old_str, *saveptr =
NULL;
297 for (
i = 0;
i < nb_items;
i++) {
302 if (sscanf(
arg,
"%lf", &dst[
i]) != 1) {
316 char *p, *
arg, *old_str, *saveptr =
NULL;
322 for (
i = 0;
i < nb_items;
i++) {
327 if (sscanf(
arg,
format, &dst[
i*2], &dst[
i*2+1]) != 2) {
339 static const char *
format[] = {
"%lf",
"%lf %lfi",
"%lf %lfr",
"%lf %lfd",
"%lf %lfi" };
344 char *p, *
arg, *old_str, *prev_arg =
NULL, *saveptr =
NULL;
366 if (!iir->
ab[ab] || !iir->
cache[ab]) {
388 static void cmul(
double re,
double im,
double re2,
double im2,
double *
RE,
double *
IM)
390 *
RE =
re * re2 -
im * im2;
391 *
IM =
re * im2 + re2 *
im;
398 for (
int i = 1;
i <= n;
i++) {
399 for (
int j = n -
i; j < n; j++) {
402 cmul(coefs[2 * (j + 1)], coefs[2 * (j + 1) + 1],
403 pz[2 * (
i - 1)], pz[2 * (
i - 1) + 1], &
re, &
im);
406 coefs[2 * j + 1] -=
im;
410 for (
int i = 0;
i < n + 1;
i++) {
411 if (fabs(coefs[2 *
i + 1]) > FLT_EPSILON) {
412 av_log(
ctx,
AV_LOG_ERROR,
"coefs: %f of z^%d is not real; poles/zeros are not complex conjugates.\n",
413 coefs[2 *
i + 1],
i);
430 for (
int i = 0;
i < iir->
nb_ab[1];
i++) {
431 sum_den += iir->
ab[1][
i];
434 if (sum_den > 1e-6) {
435 double factor, sum_num = 0.;
437 for (
int i = 0;
i < iir->
nb_ab[0];
i++) {
438 sum_num += iir->
ab[0][
i];
441 factor = sum_num / sum_den;
443 for (
int i = 0;
i < iir->
nb_ab[1];
i++) {
452 int ch,
i, j,
ret = 0;
460 if (!topc || !botc) {
475 for (j = 0,
i = iir->
nb_ab[1];
i >= 0; j++,
i--) {
476 iir->
ab[1][j] = topc[2 *
i];
480 for (j = 0,
i = iir->
nb_ab[0];
i >= 0; j++,
i--) {
481 iir->
ab[0][j] = botc[2 *
i];
505 int current_biquad = 0;
511 while (nb_biquads--) {
512 Pair outmost_pole = { -1, -1 };
513 Pair nearest_zero = { -1, -1 };
514 double zeros[4] = { 0 };
515 double poles[4] = { 0 };
518 double min_distance = DBL_MAX;
523 for (
i = 0;
i < iir->
nb_ab[0];
i++) {
528 mag =
hypot(iir->
ab[0][2 *
i], iir->
ab[0][2 *
i + 1]);
536 for (
i = 0;
i < iir->
nb_ab[0];
i++) {
540 if (iir->
ab[0][2 *
i ] == iir->
ab[0][2 * outmost_pole.
a ] &&
541 iir->
ab[0][2 *
i + 1] == -iir->
ab[0][2 * outmost_pole.
a + 1]) {
549 if (outmost_pole.
a < 0 || outmost_pole.
b < 0)
552 for (
i = 0;
i < iir->
nb_ab[1];
i++) {
558 iir->
ab[0][2 * outmost_pole.
a + 1] - iir->
ab[1][2 *
i + 1]);
566 for (
i = 0;
i < iir->
nb_ab[1];
i++) {
570 if (iir->
ab[1][2 *
i ] == iir->
ab[1][2 * nearest_zero.
a ] &&
571 iir->
ab[1][2 *
i + 1] == -iir->
ab[1][2 * nearest_zero.
a + 1]) {
579 if (nearest_zero.
a < 0 || nearest_zero.
b < 0)
582 poles[0] = iir->
ab[0][2 * outmost_pole.
a ];
583 poles[1] = iir->
ab[0][2 * outmost_pole.
a + 1];
585 zeros[0] = iir->
ab[1][2 * nearest_zero.
a ];
586 zeros[1] = iir->
ab[1][2 * nearest_zero.
a + 1];
588 if (nearest_zero.
a == nearest_zero.
b && outmost_pole.
a == outmost_pole.
b) {
595 poles[2] = iir->
ab[0][2 * outmost_pole.
b ];
596 poles[3] = iir->
ab[0][2 * outmost_pole.
b + 1];
598 zeros[2] = iir->
ab[1][2 * nearest_zero.
b ];
599 zeros[3] = iir->
ab[1][2 * nearest_zero.
b + 1];
610 iir->
ab[0][2 * outmost_pole.
a] = iir->
ab[0][2 * outmost_pole.
a + 1] =
NAN;
611 iir->
ab[0][2 * outmost_pole.
b] = iir->
ab[0][2 * outmost_pole.
b + 1] =
NAN;
612 iir->
ab[1][2 * nearest_zero.
a] = iir->
ab[1][2 * nearest_zero.
a + 1] =
NAN;
613 iir->
ab[1][2 * nearest_zero.
b] = iir->
ab[1][2 * nearest_zero.
b + 1] =
NAN;
615 iir->
biquads[current_biquad].
a[0] = 1.;
616 iir->
biquads[current_biquad].
a[1] =
a[2] /
a[4];
617 iir->
biquads[current_biquad].
a[2] =
a[0] /
a[4];
618 iir->
biquads[current_biquad].
b[0] =
b[4] /
a[4];
619 iir->
biquads[current_biquad].
b[1] =
b[2] /
a[4];
620 iir->
biquads[current_biquad].
b[2] =
b[0] /
a[4];
623 fabs(iir->
biquads[current_biquad].
b[0] +
625 iir->
biquads[current_biquad].
b[2]) > 1e-6) {
628 iir->
biquads[current_biquad].
a[2]) /
629 (iir->
biquads[current_biquad].
b[0] +
640 iir->
biquads[current_biquad].
b[0] *= (current_biquad ? 1.0 : iir->
g);
641 iir->
biquads[current_biquad].
b[1] *= (current_biquad ? 1.0 : iir->
g);
642 iir->
biquads[current_biquad].
b[2] *= (current_biquad ? 1.0 : iir->
g);
668 for (n = 0; n < iir->
nb_ab[0]; n++) {
669 double r = iir->
ab[0][2*n];
670 double angle = iir->
ab[0][2*n+1];
672 iir->
ab[0][2*n] =
r * cos(angle);
673 iir->
ab[0][2*n+1] =
r * sin(angle);
676 for (n = 0; n < iir->
nb_ab[1]; n++) {
677 double r = iir->
ab[1][2*n];
678 double angle = iir->
ab[1][2*n+1];
680 iir->
ab[1][2*n] =
r * cos(angle);
681 iir->
ab[1][2*n+1] =
r * sin(angle);
695 for (n = 0; n < iir->
nb_ab[0]; n++) {
696 double sr = iir->
ab[0][2*n];
697 double si = iir->
ab[0][2*n+1];
698 double snr = 1. + sr;
699 double sdr = 1. - sr;
700 double div = sdr * sdr + si * si;
702 iir->
ab[0][2*n] = (snr * sdr - si * si) / div;
703 iir->
ab[0][2*n+1] = (sdr * si + snr * si) / div;
706 for (n = 0; n < iir->
nb_ab[1]; n++) {
707 double sr = iir->
ab[1][2*n];
708 double si = iir->
ab[1][2*n+1];
709 double snr = 1. + sr;
710 double sdr = 1. - sr;
711 double div = sdr * sdr + si * si;
713 iir->
ab[1][2*n] = (snr * sdr - si * si) / div;
714 iir->
ab[1][2*n+1] = (sdr * si + snr * si) / div;
728 for (n = 0; n < iir->
nb_ab[0]; n++) {
729 double r = iir->
ab[0][2*n];
730 double angle =
M_PI*iir->
ab[0][2*n+1]/180.;
732 iir->
ab[0][2*n] =
r * cos(angle);
733 iir->
ab[0][2*n+1] =
r * sin(angle);
736 for (n = 0; n < iir->
nb_ab[1]; n++) {
737 double r = iir->
ab[1][2*n];
738 double angle =
M_PI*iir->
ab[1][2*n+1]/180.;
740 iir->
ab[1][2*n] =
r * cos(angle);
741 iir->
ab[1][2*n+1] =
r * sin(angle);
754 for (
int n = 0; n < iir->
nb_ab[0]; n++) {
755 double pr =
hypot(iir->
ab[0][2*n], iir->
ab[0][2*n+1]);
773 for (
i = 0; txt[
i];
i++) {
777 for (char_y = 0; char_y < font_height; char_y++) {
779 if (font[txt[
i] * font_height + char_y] &
mask)
790 int dx =
FFABS(x1-x0);
791 int dy =
FFABS(y1-y0), sy = y0 < y1 ? 1 : -1;
792 int err = (dx>dy ? dx : -dy) / 2, e2;
797 if (x0 == x1 && y0 == y1)
814 static double distance(
double x0,
double x1,
double y0,
double y1)
816 return hypot(x0 - x1, y0 - y1);
820 const double *
b,
const double *
a,
821 int nb_b,
int nb_a,
double *magnitude,
double *phase)
829 realz = 0., realp = 0.;
830 imagz = 0., imagp = 0.;
831 for (
int x = 0; x < nb_a; x++) {
832 realz += cos(-x *
w) *
a[x];
833 imagz += sin(-x *
w) *
a[x];
836 for (
int x = 0; x < nb_b; x++) {
837 realp += cos(-x *
w) *
b[x];
838 imagp += sin(-x *
w) *
b[x];
841 div = realp * realp + imagp * imagp;
842 real = (realz * realp + imagz * imagp) / div;
843 imag = (imagz * realp - imagp * realz) / div;
845 *magnitude =
hypot(real, imag);
846 *phase = atan2(imag, real);
848 double p = 1., z = 1.;
851 for (
int x = 0; x < nb_a; x++) {
853 acc += atan2(sin(
w) -
a[2 * x + 1], cos(
w) -
a[2 * x]);
856 for (
int x = 0; x < nb_b; x++) {
858 acc -= atan2(sin(
w) -
b[2 * x + 1], cos(
w) -
b[2 * x]);
869 double *mag, *phase, *
temp, *delay,
min = DBL_MAX,
max = -DBL_MAX;
870 double min_delay = DBL_MAX, max_delay = -DBL_MAX, min_phase, max_phase;
871 int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
875 memset(
out->data[0], 0,
s->h *
out->linesize[0]);
881 if (!mag || !phase || !delay || !
temp)
884 ch = av_clip(
s->ir_channel, 0,
s->channels - 1);
885 for (
i = 0;
i <
s->w;
i++) {
886 const double *
b =
s->iir[ch].ab[0];
887 const double *
a =
s->iir[ch].ab[1];
888 const int nb_b =
s->iir[ch].nb_ab[0];
889 const int nb_a =
s->iir[ch].nb_ab[1];
890 double w =
i *
M_PI / (
s->w - 1);
895 mag[
i] =
s->iir[ch].g * m;
902 for (
i = 0;
i <
s->w - 1;
i++) {
903 double d = phase[
i] - phase[
i + 1];
907 min_phase = phase[0];
908 max_phase = phase[0];
909 for (
i = 1;
i <
s->w;
i++) {
912 min_phase =
fmin(min_phase, phase[
i]);
913 max_phase =
fmax(max_phase, phase[
i]);
916 for (
i = 0;
i <
s->w - 1;
i++) {
919 delay[
i + 1] = -(phase[
i] - phase[
i + 1]) / div;
920 min_delay =
fmin(min_delay, delay[
i + 1]);
921 max_delay =
fmax(max_delay, delay[
i + 1]);
925 for (
i = 0;
i <
s->w;
i++) {
926 int ymag = mag[
i] /
max * (
s->h - 1);
927 int ydelay = (delay[
i] - min_delay) / (max_delay - min_delay) * (
s->h - 1);
928 int yphase = (phase[
i] - min_phase) / (max_phase - min_phase) * (
s->h - 1);
930 ymag =
s->h - 1 - av_clip(ymag, 0,
s->h - 1);
931 yphase =
s->h - 1 - av_clip(yphase, 0,
s->h - 1);
932 ydelay =
s->h - 1 - av_clip(ydelay, 0,
s->h - 1);
937 prev_yphase = yphase;
939 prev_ydelay = ydelay;
946 prev_yphase = yphase;
947 prev_ydelay = ydelay;
950 if (
s->w > 400 &&
s->h > 100) {
955 drawtext(
out, 2, 12,
"Min Magnitude:", 0xDDDDDDDD);
960 snprintf(text,
sizeof(text),
"%.2f", max_phase);
964 snprintf(text,
sizeof(text),
"%.2f", min_phase);
968 snprintf(text,
sizeof(text),
"%.2f", max_delay);
972 snprintf(text,
sizeof(text),
"%.2f", min_delay);
990 s->channels =
inlink->channels;
1007 if (
s->format == 2) {
1009 }
else if (
s->format == 3) {
1011 }
else if (
s->format == 4) {
1014 if (
s->format > 0) {
1028 av_log(
ctx,
AV_LOG_WARNING,
"tf coefficients format is not recommended for too high number of zeros/poles.\n");
1030 if (
s->format > 0 &&
s->process == 0) {
1036 }
else if (
s->format == 0 &&
s->process == 1) {
1039 }
else if (
s->format > 0 &&
s->process == 1) {
1048 for (ch = 0;
s->format == 0 && ch <
inlink->channels; ch++) {
1051 for (
i = 1;
i < iir->
nb_ab[0];
i++) {
1052 iir->
ab[0][
i] /= iir->
ab[0][0];
1055 iir->
ab[0][0] = 1.0;
1056 for (
i = 0;
i < iir->
nb_ab[1];
i++) {
1057 iir->
ab[1][
i] *= iir->
g;
1063 switch (
inlink->format) {
1064 case AV_SAMPLE_FMT_DBLP:
s->iir_channel =
s->process == 1 ? iir_ch_serial_dblp : iir_ch_dblp;
break;
1065 case AV_SAMPLE_FMT_FLTP:
s->iir_channel =
s->process == 1 ? iir_ch_serial_fltp : iir_ch_fltp;
break;
1066 case AV_SAMPLE_FMT_S32P:
s->iir_channel =
s->process == 1 ? iir_ch_serial_s32p : iir_ch_s32p;
break;
1067 case AV_SAMPLE_FMT_S16P:
s->iir_channel =
s->process == 1 ? iir_ch_serial_s16p : iir_ch_s16p;
break;
1097 for (ch = 0; ch < outlink->
channels; ch++) {
1098 if (
s->iir[ch].clippings > 0)
1100 ch,
s->iir[ch].clippings);
1101 s->iir[ch].clippings = 0;
1109 int64_t old_pts =
s->video->pts;
1112 if (new_pts > old_pts) {
1115 s->video->pts = new_pts;
1148 if (!
s->a_str || !
s->b_str || !
s->g_str) {
1153 switch (
s->precision) {
1173 .
name =
"filter_response",
1192 for (ch = 0; ch <
s->channels; ch++) {
1215 #define OFFSET(x) offsetof(AudioIIRContext, x)
1216 #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
1217 #define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
1230 {
"tf",
"digital transfer function", 0,
AV_OPT_TYPE_CONST, {.i64=0}, 0, 0,
AF,
"format" },
1232 {
"pr",
"Z-plane zeros/poles (polar radians)", 0,
AV_OPT_TYPE_CONST, {.i64=2}, 0, 0,
AF,
"format" },
1233 {
"pd",
"Z-plane zeros/poles (polar degrees)", 0,
AV_OPT_TYPE_CONST, {.i64=3}, 0, 0,
AF,
"format" },
1239 {
"precision",
"set filtering precision",
OFFSET(precision),
AV_OPT_TYPE_INT, {.i64=0}, 0, 3,
AF,
"precision" },
1241 {
"dbl",
"double-precision floating-point", 0,
AV_OPT_TYPE_CONST, {.i64=0}, 0, 0,
AF,
"precision" },
1242 {
"flt",
"single-precision floating-point", 0,
AV_OPT_TYPE_CONST, {.i64=1}, 0, 0,
AF,
"precision" },
1249 {
"channel",
"set IR channel to display frequency response",
OFFSET(ir_channel),
AV_OPT_TYPE_INT, {.i64=0}, 0, 1024,
VF },
1259 .description =
NULL_IF_CONFIG_SMALL(
"Apply Infinite Impulse Response filter with supplied coefficients."),
1261 .priv_class = &aiir_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
@ AV_SAMPLE_FMT_FLTP
float, planar
A list of supported channel layouts.
#define AV_LOG_WARNING
Something somehow does not look correct.
static void process(NormalizeContext *s, AVFrame *in, AVFrame *out)
AVPixelFormat
Pixel format.
static int mix(int c0, int c1)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
AVFILTER_DEFINE_CLASS(aiir)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static enum AVSampleFormat sample_fmts[]
enum MovChannelLayoutTag * layouts
@ AV_OPT_TYPE_VIDEO_RATE
offset must point to AVRational
static const AVFilterPad inputs[]
AVFilterFormats * in_formats
Lists of formats and channel layouts supported by the input and output filters respectively.
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static const AVOption aiir_options[]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static av_cold int end(AVCodecContext *avctx)
static int read_channels(AVFilterContext *ctx, int channels, uint8_t *item_str, int ab)
This structure describes decoded (raw) audio or video data.
#define IIR_CH(name, type, min, max, need_clipping)
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
static int read_tf_coefficients(AVFilterContext *ctx, char *item_str, int nb_items, double *dst)
int(* iir_channel)(AVFilterContext *ctx, void *arg, int ch, int nb_jobs)
static void check_stability(AVFilterContext *ctx, int channels)
#define AV_LOG_VERBOSE
Detailed information.
static int config_output(AVFilterLink *outlink)
const char * name
Filter name.
static int config_video(AVFilterLink *outlink)
AVFormatInternal * internal
An opaque field for libavformat internal usage.
A link between two filters.
int channels
Number of channels.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static int query_formats(AVFilterContext *ctx)
A filter pad used for either input or output.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
static int convert_zp2tf(AVFilterContext *ctx, int channels)
static const uint16_t mask[17]
char * av_strtok(char *s, const char *delim, char **saveptr)
Split the string into several tokens which can be accessed by successive calls to av_strtok().
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
AVRational frame_rate
Frame rate of the stream on the link, or 1/0 if unknown or variable; if left to 0/0,...
static enum AVPixelFormat pix_fmts[]
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
#define SERIAL_IIR_CH(name, type, min, max, need_clipping)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Describe the class of an AVClass context structure.
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
static const char * format[]
Rational number (pair of numerator and denominator).
@ AV_OPT_TYPE_IMAGE_SIZE
offset must point to two consecutive integers
static void normalize_coeffs(AVFilterContext *ctx, int ch)
static av_cold int init(AVFilterContext *ctx)
static void convert_sp2zp(AVFilterContext *ctx, int channels)
#define AVFILTER_FLAG_DYNAMIC_OUTPUTS
The number of the filter outputs is not determined just by AVFilter.outputs.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static void draw_line(AVFrame *out, int x0, int y0, int x1, int y1, uint32_t color)
double fmin(double, double)
static av_const double hypot(double x, double y)
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
static int read_zp_coefficients(AVFilterContext *ctx, char *item_str, int nb_items, double *dst, const char *format)
AVFilterContext * src
source filter
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
enum AVSampleFormat sample_format
#define i(width, name, range_min, range_max)
int w
agreed upon image width
#define av_malloc_array(a, b)
AVSampleFormat
Audio sample formats.
Used for passing data between threads.
static av_always_inline AVRational av_inv_q(AVRational q)
Invert a rational.
const char * name
Pad name.
static void get_response(int channel, int format, double w, const double *b, const double *a, int nb_b, int nb_a, double *magnitude, double *phase)
static void cmul(double re, double im, double re2, double im2, double *RE, double *IM)
double fmax(double, double)
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
static void convert_pr2zp(AVFilterContext *ctx, int channels)
int h
agreed upon image height
static void draw_response(AVFilterContext *ctx, AVFrame *out, int sample_rate)
static int ff_insert_outpad(AVFilterContext *f, unsigned index, AVFilterPad *p)
Insert a new output pad for the filter.
static double distance(double x0, double x1, double y0, double y1)
@ AV_SAMPLE_FMT_DBLP
double, planar
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
static int decompose_zp2biquads(AVFilterContext *ctx, int channels)
static const int factor[16]
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
char * av_strdup(const char *s)
Duplicate a string.
static void count_coefficients(char *item_str, int *nb_items)
static int expand(AVFilterContext *ctx, double *pz, int n, double *coefs)
const uint8_t avpriv_cga_font[2048]
#define flags(name, subs,...)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
static av_cold void uninit(AVFilterContext *ctx)
static int read_gains(AVFilterContext *ctx, char *item_str, int nb_items)
static void convert_pd2zp(AVFilterContext *ctx, int channels)
static void drawtext(AVFrame *pic, int x, int y, const char *txt, uint32_t color)