Go to the documentation of this file.
50 #define MAX_REFERENCE_FRAMES 8
52 #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
54 #define MAX_BLOCKSIZE 32
59 #define DIRAC_REF_MASK_REF1 1
60 #define DIRAC_REF_MASK_REF2 2
61 #define DIRAC_REF_MASK_GLOBAL 4
67 #define DELAYED_PIC_REF 4
69 #define CALC_PADDING(size, depth) \
70 (((size + (1 << depth) - 1) >> depth) << depth)
72 #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
106 typedef struct Plane {
252 return (
int)((x+1
U)*21845 + 10922) >> 16;
258 int i, remove_idx = -1;
260 for (
i = 0; framelist[
i];
i++)
261 if (framelist[
i]->avframe->display_picture_number == picnum) {
262 remove_pic = framelist[
i];
267 for (
i = remove_idx; framelist[
i];
i++)
268 framelist[
i] = framelist[
i+1];
276 for (
i = 0;
i < maxframes;
i++)
287 int sbheight =
DIVRNDUP(
s->seq.height, 4);
288 int i,
w,
h, top_padding;
291 for (
i = 0;
i < 3;
i++) {
294 w =
s->seq.width >> (
i ?
s->chroma_x_shift : 0);
295 h =
s->seq.height >> (
i ?
s->chroma_y_shift : 0);
308 s->plane[
i].idwt.buf =
s->plane[
i].idwt.buf_base + (top_padding*
w)*(2 <<
s->pshift);
309 if (!
s->plane[
i].idwt.buf_base || !
s->plane[
i].idwt.tmp)
317 if (!
s->sbsplit || !
s->blmotion)
324 int w =
s->seq.width;
325 int h =
s->seq.height;
330 if (
s->buffer_stride >=
stride)
332 s->buffer_stride = 0;
335 memset(
s->edge_emu_buffer, 0,
sizeof(
s->edge_emu_buffer));
344 if (!
s->edge_emu_buffer_base || !
s->mctmp || !
s->mcscratch)
356 if (
s->all_frames[
i].avframe->data[0]) {
358 memset(
s->all_frames[
i].interpolated, 0,
sizeof(
s->all_frames[
i].interpolated));
361 for (j = 0; j < 3; j++)
362 for (k = 1; k < 4; k++)
366 memset(
s->ref_frames, 0,
sizeof(
s->ref_frames));
367 memset(
s->delay_frames, 0,
sizeof(
s->delay_frames));
369 for (
i = 0;
i < 3;
i++) {
374 s->buffer_stride = 0;
391 s->frame_number = -1;
393 s->thread_buf =
NULL;
394 s->threads_num_buf = -1;
395 s->thread_buf_size = -1;
403 if (!
s->all_frames[
i].avframe) {
420 s->seen_sequence_header = 0;
421 s->frame_number = -1;
444 coeff = sign*((sign *
coeff * qfactor + qoffset) >> 2);
448 #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
450 #define UNPACK_ARITH(n, type) \
451 static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
452 SubBand *b, type *buf, int x, int y) \
454 int sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
456 const int mstride = -(b->stride >> (1+b->pshift)); \
458 const type *pbuf = (type *)b->parent->ibuf; \
459 const int stride = b->parent->stride >> (1+b->parent->pshift); \
460 pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
462 if (b->orientation == subband_hl) \
463 sign_pred = buf[mstride]; \
465 pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
466 if (b->orientation == subband_lh) \
467 sign_pred = buf[-1]; \
469 pred_ctx += !buf[mstride]; \
471 coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
473 coeff = (coeff * qfactor + qoffset) >> 2; \
474 sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
475 coeff = (coeff ^ -sign) + sign; \
489 int left,
int right,
int top,
int bottom,
490 int blockcnt_one,
int is_arith)
492 int x, y, zero_block;
493 int qoffset, qfactor;
507 if (
s->codeblock_mode && !(
s->old_delta_quant && blockcnt_one)) {
513 if (
quant > INT_MAX -
b->quant ||
b->quant +
quant < 0) {
533 buf =
b->ibuf + top *
b->stride;
535 for (y = top; y < bottom; y++) {
538 for (x =
left; x < right; x++) {
540 coeff_unpack_arith_10(
c, qfactor, qoffset,
b, (
int32_t*)(buf)+x, x, y);
542 coeff_unpack_arith_8(
c, qfactor, qoffset,
b, (int16_t*)(buf)+x, x, y);
548 for (y = top; y < bottom; y++) {
551 for (x =
left; x < right; x++) {
569 #define INTRA_DC_PRED(n, type) \
570 static inline void intra_dc_prediction_##n(SubBand *b) \
572 type *buf = (type*)b->ibuf; \
575 for (x = 1; x < b->width; x++) \
576 buf[x] += buf[x-1]; \
577 buf += (b->stride >> (1+b->pshift)); \
579 for (y = 1; y < b->height; y++) { \
580 buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
582 for (x = 1; x < b->width; x++) { \
583 int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
584 buf[x] += divide3(pred); \
586 buf += (b->stride >> (1+b->pshift)); \
599 int cb_x, cb_y,
left, right, top, bottom;
604 int blockcnt_one = (cb_width + cb_height) == 2;
616 for (cb_y = 0; cb_y < cb_height; cb_y++) {
617 bottom = (
b->height * (cb_y+1LL)) / cb_height;
619 for (cb_x = 0; cb_x < cb_width; cb_x++) {
620 right = (
b->width * (cb_x+1LL)) / cb_width;
631 intra_dc_prediction_10(
b);
633 intra_dc_prediction_8(
b);
661 int level, num_bands = 0;
664 int damaged_count = 0;
668 for (orientation = !!
level; orientation < 4; orientation++) {
700 for (
i = 0;
i <
s->wavelet_depth * 3 + 1;
i++) {
704 if (damaged_count > (
s->wavelet_depth * 3 + 1) /2)
710 #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
711 type *buf = (type *)buf1; \
712 buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
713 if (get_bits_count(gb) >= ebits) \
716 buf = (type *)buf2; \
717 buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
718 if (get_bits_count(gb) >= ebits) \
723 int slice_x,
int slice_y,
int bits_end,
726 int left =
b1->width * slice_x /
s->num_x;
727 int right =
b1->width *(slice_x+1) /
s->num_x;
728 int top =
b1->height * slice_y /
s->num_y;
729 int bottom =
b1->height *(slice_y+1) /
s->num_y;
731 int qfactor, qoffset;
749 for (y = top; y < bottom; y++) {
750 for (x =
left; x < right; x++) {
759 for (y = top; y < bottom; y++) {
760 for (x =
left; x < right; x++) {
789 for (orientation = !!
level; orientation < 4; orientation++) {
798 chroma_bits = 8*slice->
bytes - 7 - length_bits - luma_bits;
802 for (orientation = !!
level; orientation < 4; orientation++) {
805 &
s->plane[1].band[
level][orientation],
806 &
s->plane[2].band[
level][orientation]);
827 o->
top =
b->height * y /
s->num_y;
828 o->
left =
b->width * x /
s->num_x;
829 o->
tot_h = ((
b->width * (x + 1)) /
s->num_x) - o->
left;
830 o->
tot_v = ((
b->height * (y + 1)) /
s->num_y) - o->
top;
843 int i,
level, orientation, quant_idx;
858 for (orientation = !!
level; orientation < 4; orientation++) {
859 const int quant =
FFMAX(quant_idx -
s->lowdelay.quant[
level][orientation], 0);
866 for (
i = 0;
i < 3;
i++) {
867 int coef_num, coef_par, off = 0;
868 int64_t length =
s->highquality.size_scaler*
get_bits(gb, 8);
886 if (coef_num > coef_par) {
887 const int start_b = coef_par * (1 << (
s->pshift + 1));
888 const int end_b = coef_num * (1 << (
s->pshift + 1));
889 memset(&tmp_buf[start_b], 0, end_b - start_b);
894 for (orientation = !!
level; orientation < 4; orientation++) {
896 uint8_t *buf =
b1->ibuf +
c->top *
b1->stride + (
c->left << (
s->pshift + 1));
899 const int qfunc =
s->pshift + 2*(
c->tot_h <= 2);
900 s->diracdsp.dequant_subband[qfunc](&tmp_buf[off], buf,
b1->stride,
901 qfactor[
level][orientation],
902 qoffset[
level][orientation],
905 off +=
c->tot << (
s->pshift + 1);
920 uint8_t *thread_buf = &
s->thread_buf[
s->thread_buf_size*threadnr];
921 for (
i = 0;
i <
s->num_x;
i++)
933 int slice_x, slice_y, bufsize;
934 int64_t coef_buf_size, bytes = 0;
940 if (
s->slice_params_num_buf != (
s->num_x *
s->num_y)) {
942 if (!
s->slice_params_buf) {
944 s->slice_params_num_buf = 0;
947 s->slice_params_num_buf =
s->num_x *
s->num_y;
949 slices =
s->slice_params_buf;
954 coef_buf_size = (coef_buf_size << (1 +
s->pshift)) + 512;
957 s->thread_buf_size != coef_buf_size) {
959 s->thread_buf_size = coef_buf_size;
961 if (!
s->thread_buf) {
975 for (slice_y = 0; bufsize > 0 && slice_y <
s->num_y; slice_y++) {
976 for (slice_x = 0; bufsize > 0 && slice_x <
s->num_x; slice_x++) {
977 bytes =
s->highquality.prefix_bytes + 1;
978 for (
i = 0;
i < 3;
i++) {
979 if (bytes <= bufsize/8)
980 bytes += buf[bytes] *
s->highquality.size_scaler + 1;
982 if (bytes >= INT_MAX || bytes*8 > bufsize) {
987 slices[slice_num].
bytes = bytes;
988 slices[slice_num].
slice_x = slice_x;
989 slices[slice_num].
slice_y = slice_y;
994 if (bufsize/8 >= bytes)
1001 if (
s->num_x*
s->num_y != slice_num) {
1008 for (slice_y = 0; bufsize > 0 && slice_y <
s->num_y; slice_y++) {
1009 for (slice_x = 0; bufsize > 0 && slice_x <
s->num_x; slice_x++) {
1010 bytes = (slice_num+1) * (int64_t)
s->lowdelay.bytes.num /
s->lowdelay.bytes.den
1011 - slice_num * (int64_t)
s->lowdelay.bytes.num /
s->lowdelay.bytes.den;
1012 if (bytes >= INT_MAX || bytes*8 > bufsize) {
1016 slices[slice_num].
bytes = bytes;
1017 slices[slice_num].
slice_x = slice_x;
1018 slices[slice_num].
slice_y = slice_y;
1023 if (bufsize/8 >= bytes)
1033 if (
s->dc_prediction) {
1035 intra_dc_prediction_10(&
s->plane[0].band[0][0]);
1036 intra_dc_prediction_10(&
s->plane[1].band[0][0]);
1037 intra_dc_prediction_10(&
s->plane[2].band[0][0]);
1039 intra_dc_prediction_8(&
s->plane[0].band[0][0]);
1040 intra_dc_prediction_8(&
s->plane[1].band[0][0]);
1041 intra_dc_prediction_8(&
s->plane[2].band[0][0]);
1052 for (
i = 0;
i < 3;
i++) {
1055 p->
width =
s->seq.width >> (
i ?
s->chroma_x_shift : 0);
1056 p->
height =
s->seq.height >> (
i ?
s->chroma_y_shift : 0);
1064 for (orientation = !!
level; orientation < 4; orientation++) {
1067 b->pshift =
s->pshift;
1073 b->orientation = orientation;
1075 if (orientation & 1)
1076 b->ibuf +=
w << (1+
b->pshift);
1077 if (orientation > 1)
1078 b->ibuf += (
b->stride>>1);
1086 p->
xblen =
s->plane[0].xblen >>
s->chroma_x_shift;
1087 p->
yblen =
s->plane[0].yblen >>
s->chroma_y_shift;
1088 p->
xbsep =
s->plane[0].xbsep >>
s->chroma_x_shift;
1089 p->
ybsep =
s->plane[0].ybsep >>
s->chroma_y_shift;
1104 static const uint8_t default_blen[] = { 4, 12, 16, 24 };
1126 s->plane[0].xblen = default_blen[idx-1];
1127 s->plane[0].yblen = default_blen[idx-1];
1128 s->plane[0].xbsep = 4 * idx;
1129 s->plane[0].ybsep = 4 * idx;
1134 if (
s->plane[0].xblen % (1 <<
s->chroma_x_shift) != 0 ||
1135 s->plane[0].yblen % (1 <<
s->chroma_y_shift) != 0 ||
1136 !
s->plane[0].xblen || !
s->plane[0].yblen) {
1138 "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
1139 s->plane[0].xblen,
s->plane[0].yblen,
s->chroma_x_shift,
s->chroma_y_shift);
1142 if (!
s->plane[0].xbsep || !
s->plane[0].ybsep ||
s->plane[0].xbsep <
s->plane[0].xblen/2 ||
s->plane[0].ybsep <
s->plane[0].yblen/2) {
1146 if (
s->plane[0].xbsep >
s->plane[0].xblen ||
s->plane[0].ybsep >
s->plane[0].yblen) {
1158 if (
s->mv_precision > 3) {
1166 if (
s->globalmc_flag) {
1167 memset(
s->globalmc, 0,
sizeof(
s->globalmc));
1183 s->globalmc[
ref].zrs[0][0] = 1;
1184 s->globalmc[
ref].zrs[1][1] = 1;
1192 if (
s->globalmc[
ref].perspective_exp + (uint64_t)
s->globalmc[
ref].zrs_exp > 30) {
1208 s->weight_log2denom = 1;
1214 if (
s->weight_log2denom < 1 ||
s->weight_log2denom > 8) {
1216 s->weight_log2denom = 1;
1220 if (
s->num_refs == 2)
1236 #define CHECKEDREAD(dst, cond, errmsg) \
1237 tmp = get_interleaved_ue_golomb(gb); \
1239 av_log(s->avctx, AV_LOG_ERROR, errmsg); \
1240 return AVERROR_INVALIDDATA; \
1255 if (!
s->low_delay) {
1258 for (
i = 0;
i <=
s->wavelet_depth;
i++) {
1259 CHECKEDREAD(
s->codeblock[
i].width , tmp < 1 || tmp > (
s->avctx->width >>
s->wavelet_depth-
i),
"codeblock width invalid\n")
1260 CHECKEDREAD(
s->codeblock[
i].height, tmp < 1 || tmp > (
s->avctx->height>>
s->wavelet_depth-
i),
"codeblock height invalid\n")
1266 for (
i = 0;
i <=
s->wavelet_depth;
i++)
1267 s->codeblock[
i].width =
s->codeblock[
i].height = 1;
1273 if (
s->num_x *
s->num_y == 0 ||
s->num_x * (uint64_t)
s->num_y > INT_MAX ||
1274 s->num_x * (uint64_t)
s->avctx->width > INT_MAX ||
1275 s->num_y * (uint64_t)
s->avctx->height > INT_MAX ||
1276 s->num_x >
s->avctx->width ||
1277 s->num_y >
s->avctx->height
1280 s->num_x =
s->num_y = 0;
1283 if (
s->ld_picture) {
1286 if (
s->lowdelay.bytes.den <= 0) {
1290 }
else if (
s->hq_picture) {
1293 if (
s->highquality.prefix_bytes >= INT_MAX / 8) {
1309 if (
s->wavelet_depth > 4) {
1310 av_log(
s->avctx,
AV_LOG_ERROR,
"Mandatory custom low delay matrix missing for depth %d\n",
s->wavelet_depth);
1315 for (
i = 0;
i < 4;
i++) {
1318 if (
s->wavelet_idx == 3)
1319 s->lowdelay.quant[
level][
i] += 4*(
s->wavelet_depth-1 -
level);
1328 static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
1337 return avgsplit[sbsplit[-1] + sbsplit[-
stride] + sbsplit[-
stride-1]];
1347 return block[-1].ref & refmask;
1353 return (
pred >> 1) & refmask;
1363 for (
i = 0;
i < 3;
i++)
1369 for (
i = 0;
i < 3;
i++)
1375 for (
i = 0;
i < 3;
i++)
1381 for (
i = 0;
i < 3;
i++)
1383 }
else if (n == 3) {
1384 for (
i = 0;
i < 3;
i++)
1392 int refmask =
ref+1;
1427 int ez =
s->globalmc[
ref].zrs_exp;
1428 int ep =
s->globalmc[
ref].perspective_exp;
1429 int (*
A)[2] =
s->globalmc[
ref].zrs;
1430 int *
b =
s->globalmc[
ref].pan_tilt;
1431 int *
c =
s->globalmc[
ref].perspective;
1433 int64_t m = (1<<ep) - (
c[0]*(int64_t)x +
c[1]*(int64_t)y);
1434 int64_t mx = m * (uint64_t)((
A[0][0] * (int64_t)x +
A[0][1]*(int64_t)y) + (1LL<<ez) *
b[0]);
1435 int64_t my = m * (uint64_t)((
A[1][0] * (int64_t)x +
A[1][1]*(int64_t)y) + (1LL<<ez) *
b[1]);
1437 block->u.mv[
ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
1438 block->u.mv[
ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
1442 int stride,
int x,
int y)
1449 if (
s->num_refs == 2) {
1456 for (
i = 0;
i < 3;
i++)
1461 if (
s->globalmc_flag) {
1466 for (
i = 0;
i <
s->num_refs;
i++)
1467 if (
block->ref & (
i+1)) {
1486 for (x = 1; x <
size; x++)
1489 for (y = 1; y <
size; y++) {
1491 for (x = 0; x <
size; x++)
1510 s->sbwidth =
DIVRNDUP(
s->seq.width, 4*
s->plane[0].xbsep);
1511 s->sbheight =
DIVRNDUP(
s->seq.height, 4*
s->plane[0].ybsep);
1512 s->blwidth = 4 *
s->sbwidth;
1513 s->blheight = 4 *
s->sbheight;
1518 for (y = 0; y <
s->sbheight; y++) {
1519 for (x = 0; x <
s->sbwidth; x++) {
1525 sbsplit +=
s->sbwidth;
1530 for (
i = 0;
i <
s->num_refs;
i++) {
1534 for (
i = 0;
i < 3;
i++)
1537 for (y = 0; y <
s->sbheight; y++)
1538 for (x = 0; x <
s->sbwidth; x++) {
1539 int blkcnt = 1 <<
s->sbsplit[y *
s->sbwidth + x];
1540 int step = 4 >>
s->sbsplit[y *
s->sbwidth + x];
1542 for (q = 0; q < blkcnt; q++)
1543 for (p = 0; p < blkcnt; p++) {
1544 int bx = 4 * x + p*
step;
1545 int by = 4 * y + q*
step;
1552 for (
i = 0;
i < 4 + 2*
s->num_refs;
i++) {
1562 #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
1563 (1 + (6*(i) + offset - 1) / (2*offset - 1))
1567 else if (
i > blen-1 - 2*
offset)
1573 int left,
int right,
int wy)
1576 for (x = 0;
left && x < p->
xblen >> 1; x++)
1577 obmc_weight[x] = wy*8;
1578 for (; x < p->
xblen >> right; x++)
1580 for (; x < p->
xblen; x++)
1581 obmc_weight[x] = wy*8;
1587 int left,
int right,
int top,
int bottom)
1590 for (y = 0; top && y < p->
yblen >> 1; y++) {
1594 for (; y < p->
yblen >> bottom; y++) {
1599 for (; y < p->
yblen; y++) {
1608 int bottom = by ==
s->blheight-1;
1611 if (top || bottom || by == 1) {
1646 int x,
int y,
int ref,
int plane)
1648 Plane *p = &
s->plane[plane];
1649 uint8_t **ref_hpel =
s->ref_pics[
ref]->hpel[plane];
1650 int motion_x =
block->u.mv[
ref][0];
1651 int motion_y =
block->u.mv[
ref][1];
1652 int mx, my,
i, epel, nplanes = 0;
1655 motion_x >>=
s->chroma_x_shift;
1656 motion_y >>=
s->chroma_y_shift;
1659 mx = motion_x & ~(-1
U <<
s->mv_precision);
1660 my = motion_y & ~(-1
U <<
s->mv_precision);
1661 motion_x >>=
s->mv_precision;
1662 motion_y >>=
s->mv_precision;
1665 mx <<= 3 -
s->mv_precision;
1666 my <<= 3 -
s->mv_precision;
1675 src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->
stride + x;
1679 for (
i = 0;
i < 4;
i++)
1704 src[!mx] =
src[2 + !!mx];
1706 }
else if (!(my&3)) {
1729 for (
i = 0;
i < nplanes;
i++) {
1730 s->vdsp.emulated_edge_mc(
s->edge_emu_buffer[
i],
src[
i],
1734 src[
i] =
s->edge_emu_buffer[
i];
1737 return (nplanes>>1) + epel;
1741 uint8_t *obmc_weight,
int xblen,
int yblen)
1746 for (y = 0; y < yblen; y++) {
1747 for (x = 0; x < xblen; x += 2) {
1748 dst[x ] +=
dc * obmc_weight[x ];
1749 dst[x+1] +=
dc * obmc_weight[x+1];
1757 uint16_t *mctmp,
uint8_t *obmc_weight,
1758 int plane,
int dstx,
int dsty)
1760 Plane *p = &
s->plane[plane];
1764 switch (
block->ref&3) {
1773 s->weight_func(
s->mcscratch, p->
stride,
s->weight_log2denom,
1774 s->weight[0] +
s->weight[1], p->
yblen);
1780 if (
s->biweight_func) {
1783 s->biweight_func(
s->mcscratch,
s->mcscratch+32, p->
stride,
s->weight_log2denom,
1784 s->weight[0],
s->weight[1], p->
yblen);
1789 s->add_obmc(mctmp,
s->mcscratch, p->
stride, obmc_weight, p->
yblen);
1794 Plane *p = &
s->plane[plane];
1800 for (x = 1; x <
s->blwidth-1; x++) {
1816 memcpy(
s->put_pixels_tab,
s->diracdsp.put_dirac_pixels_tab[idx],
sizeof(
s->put_pixels_tab));
1817 memcpy(
s->avg_pixels_tab,
s->diracdsp.avg_dirac_pixels_tab[idx],
sizeof(
s->avg_pixels_tab));
1818 s->add_obmc =
s->diracdsp.add_dirac_obmc[idx];
1819 if (
s->weight_log2denom > 1 ||
s->weight[0] != 1 ||
s->weight[1] != 1) {
1820 s->weight_func =
s->diracdsp.weight_dirac_pixels_tab[idx];
1821 s->biweight_func =
s->diracdsp.biweight_dirac_pixels_tab[idx];
1823 s->weight_func =
NULL;
1824 s->biweight_func =
NULL;
1835 ref->hpel[plane][0] =
ref->avframe->data[plane];
1839 if (!
s->mv_precision)
1842 for (
i = 1;
i < 4;
i++) {
1843 if (!
ref->hpel_base[plane][
i])
1845 if (!
ref->hpel_base[plane][
i]) {
1849 ref->hpel[plane][
i] =
ref->hpel_base[plane][
i] + edge*
ref->avframe->linesize[plane] + 16;
1852 if (!
ref->interpolated[plane]) {
1853 s->diracdsp.dirac_hpel_filter(
ref->hpel[plane][1],
ref->hpel[plane][2],
1854 ref->hpel[plane][3],
ref->hpel[plane][0],
1860 ref->interpolated[plane] = 1;
1872 int y,
i,
comp, dsty;
1877 if (!
s->hq_picture) {
1894 for (
i = 0;
i < 4;
i++)
1897 if (!
s->zero_res && !
s->low_delay)
1905 s->wavelet_depth,
s->bit_depth);
1910 for (y = 0; y < p->
height; y += 16) {
1911 int idx = (
s->bit_depth - 8) >> 1;
1913 s->diracdsp.put_signed_rect_clamped[idx](
frame + y*p->
stride,
1923 for (
i = 0;
i <
s->num_refs;
i++) {
1932 for (y = 0; y <
s->blheight; y++) {
1934 start =
FFMAX(dsty, 0);
1935 uint16_t *mctmp =
s->mctmp + y*rowheight;
1943 h = p->
ybsep - (start - dsty);
1969 int chroma_x_shift, chroma_y_shift;
1981 for (
i = 0;
f->data[
i];
i++) {
1983 f->linesize[
i] + 32;
1998 unsigned retire, picnum;
2000 int64_t refdist, refnum;
2004 picnum =
s->current_picture->avframe->display_picture_number =
get_bits_long(gb, 32);
2011 if (
s->frame_number < 0)
2012 s->frame_number = picnum;
2014 s->ref_pics[0] =
s->ref_pics[1] =
NULL;
2015 for (
i = 0;
i <
s->num_refs;
i++) {
2017 refdist = INT64_MAX;
2022 if (
s->ref_frames[j]
2023 &&
FFABS(
s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
2024 s->ref_pics[
i] =
s->ref_frames[j];
2025 refdist =
FFABS(
s->ref_frames[j]->avframe->display_picture_number - refnum);
2028 if (!
s->ref_pics[
i] || refdist)
2032 if (!
s->ref_pics[
i])
2034 if (!
s->all_frames[j].avframe->data[0]) {
2035 s->ref_pics[
i] = &
s->all_frames[j];
2042 if (!
s->ref_pics[
i]) {
2050 if (
s->current_picture->reference) {
2052 if (retire != picnum) {
2091 for (
i = 1;
s->delay_frames[
i];
i++)
2092 if (
s->delay_frames[
i]->avframe->display_picture_number <
out->avframe->display_picture_number) {
2093 out =
s->delay_frames[
i];
2097 for (
i = out_idx;
s->delay_frames[
i];
i++)
2098 s->delay_frames[
i] =
s->delay_frames[
i+1];
2115 #define DATA_UNIT_HEADER_SIZE 13
2131 parse_code = buf[4];
2136 if (
s->seen_sequence_header)
2170 s->pshift =
s->bit_depth > 8;
2174 &
s->chroma_y_shift);
2182 s->seen_sequence_header = 1;
2185 s->seen_sequence_header = 0;
2191 if (sscanf(buf+14,
"Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
2192 if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
2193 s->old_delta_quant = 1;
2195 }
else if (parse_code & 0x8) {
2196 if (!
s->seen_sequence_header) {
2203 if (
s->all_frames[
i].avframe->data[0] ==
NULL)
2204 pic = &
s->all_frames[
i];
2213 tmp = parse_code & 0x03;
2219 s->is_arith = (parse_code & 0x48) == 0x08;
2220 s->low_delay = (parse_code & 0x88) == 0x88;
2221 s->core_syntax = (parse_code & 0x88) == 0x08;
2222 s->ld_picture = (parse_code & 0xF8) == 0xC8;
2223 s->hq_picture = (parse_code & 0xF8) == 0xE8;
2224 s->dc_prediction = (parse_code & 0x28) == 0x08;
2225 pic->
reference = (parse_code & 0x0C) == 0x0C;
2230 if (
s->version.minor == 2 && parse_code == 0x88)
2233 if (
s->low_delay && !(
s->ld_picture ||
s->hq_picture) ) {
2240 s->current_picture = pic;
2269 unsigned data_unit_size;
2273 if (
s->all_frames[
i].avframe->data[0] && !
s->all_frames[
i].reference) {
2275 memset(
s->all_frames[
i].interpolated, 0,
sizeof(
s->all_frames[
i].interpolated));
2278 s->current_picture =
NULL;
2290 if (buf[buf_idx ] ==
'B' && buf[buf_idx+1] ==
'B' &&
2291 buf[buf_idx+2] ==
'C' && buf[buf_idx+3] ==
'D')
2298 data_unit_size =
AV_RB32(buf+buf_idx+5);
2299 if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
2300 if(data_unit_size > buf_size - buf_idx)
2302 "Data unit with size %d is larger than input buffer, discarding\n",
2314 buf_idx += data_unit_size;
2317 if (!
s->current_picture)
2320 if (
s->current_picture->avframe->display_picture_number >
s->frame_number) {
2326 int min_num =
s->delay_frames[0]->avframe->display_picture_number;
2330 for (
i = 1;
s->delay_frames[
i];
i++)
2331 if (
s->delay_frames[
i]->avframe->display_picture_number < min_num)
2332 min_num =
s->delay_frames[
i]->avframe->display_picture_number;
2338 if (delayed_frame) {
2344 }
else if (
s->current_picture->avframe->display_picture_number ==
s->frame_number) {
static void error(const char *err)
#define DATA_UNIT_HEADER_SIZE
Dirac Specification -> 9.6 Parse Info Header Syntax.
void(* put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
int av_dirac_parse_sequence_header(AVDiracSeqHeader **pdsh, const uint8_t *buf, size_t buf_size, void *log_ctx)
Parse a Dirac sequence header.
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
static av_cold int init(AVCodecContext *avctx)
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
enum AVColorSpace colorspace
YUV colorspace type.
#define FFSWAP(type, a, b)
static void comp(unsigned char *dst, ptrdiff_t dst_stride, unsigned char *src, ptrdiff_t src_stride, int add)
#define u(width, name, range_min, range_max)
#define MAX_DWT_LEVELS
The spec limits the number of wavelet decompositions to 4 for both level 1 (VC-2) and 128 (long-gop d...
static void free_sequence_buffers(DiracContext *s)
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
static const uint8_t epel_weights[4][4][4]
static int dirac_decode_picture_header(DiracContext *s)
Dirac Specification -> 11.1.1 Picture Header.
static const int8_t mv[256][2]
static int get_bits_count(const GetBitContext *s)
static int dirac_unpack_prediction_parameters(DiracContext *s)
Unpack the motion compensation parameters Dirac Specification -> 11.2 Picture prediction data.
#define DIRAC_REF_MASK_REF1
DiracBlock->ref flags, if set then the block does MC from the given ref.
static unsigned get_interleaved_ue_golomb(GetBitContext *gb)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
dirac_biweight_func biweight_func
static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
Dirac Specification -> 13.5.2 Slices.
MpegvideoEncDSPContext mpvencdsp
void * av_mallocz_array(size_t nmemb, size_t size)
void(* dirac_biweight_func)(uint8_t *dst, const uint8_t *src, int stride, int log2_denom, int weightd, int weights, int h)
static void init_planes(DiracContext *s)
#define DIRAC_REF_MASK_GLOBAL
static AVOnce dirac_arith_init
DiracFrame * delay_frames[MAX_DELAY+1]
#define AVERROR_UNKNOWN
Unknown error, typically from an external library.
const int32_t ff_dirac_qscale_tab[116]
static int dirac_get_arith_int(DiracArith *c, int follow_ctx, int data_ctx)
static int codeblock(DiracContext *s, SubBand *b, GetBitContext *gb, DiracArith *c, int left, int right, int top, int bottom, int blockcnt_one, int is_arith)
Decode the coeffs in the rectangle defined by left, right, top, bottom [DIRAC_STD] 13....
#define CHECKEDREAD(dst, cond, errmsg)
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
DiracFrame * current_picture
static int alloc_buffers(DiracContext *s, int stride)
const uint8_t ff_dirac_default_qmat[7][4][4]
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
static int decode_subband_arith(AVCodecContext *avctx, void *b)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static double b1(void *priv, double x, double y)
uint8_t * edge_emu_buffer[4]
int ff_spatial_idwt_init(DWTContext *d, DWTPlane *p, enum dwt_type type, int decomposition_count, int bit_depth)
int thread_count
thread count is used to decide how many independent tasks should be passed to execute()
int key_frame
1 -> keyframe, 0-> not
SubBand band[DWT_LEVELS][4]
static double val(void *priv, double ch)
static int dirac_unpack_block_motion_data(DiracContext *s)
Dirac Specification ->
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
static int decode_component(DiracContext *s, int comp)
Dirac Specification -> [DIRAC_STD] 13.4.1 core_transform_data()
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
static int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
static void pred_block_dc(DiracBlock *block, int stride, int x, int y)
static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
void(* dirac_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int h)
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
static int ff_thread_once(char *control, void(*routine)(void))
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
static const uint16_t mask[17]
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
#define MAX_REFERENCE_FRAMES
The spec limits this to 3 for frame coding, but in practice can be as high as 6.
void ff_dirac_init_arith_decoder(DiracArith *c, GetBitContext *gb, int length)
static av_always_inline int decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
Dirac Specification -> 13.4.2 Non-skipped subbands.
#define av_assert0(cond)
assert() equivalent, that is always enabled.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
int64_t max_pixels
The number of pixels per image to maximally accept.
static const float bands[]
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
#define av_realloc_f(p, o, n)
DiracSlice * slice_params_buf
uint8_t * edge_emu_buffer_base
static int dirac_get_arith_bit(DiracArith *c, int ctx)
static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
const int ff_dirac_qoffset_inter_tab[122]
static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
dirac_weight_func weight_func
static void flush(AVCodecContext *avctx)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static int dirac_decode_frame_internal(DiracContext *s)
Dirac Specification -> 13.0 Transform data syntax.
enum AVColorRange color_range
MPEG vs JPEG YUV range.
static int decode_lowdelay(DiracContext *s)
Dirac Specification -> 13.5.1 low_delay_transform_data()
Rational number (pair of numerator and denominator).
DiracFrame * ref_frames[MAX_REFERENCE_FRAMES+1]
static unsigned int get_bits1(GetBitContext *s)
unsigned old_delta_quant
schroedinger older than 1.0.8 doesn't store quant delta if only one codebook exists in a band
static int dirac_get_arith_uint(DiracArith *c, int follow_ctx, int data_ctx)
struct DiracContext::@55 lowdelay
static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
#define DIRAC_MAX_QUANT_INDEX
struct DiracContext::@56 highquality
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static int weight(int i, int blen, int offset)
void ff_spatial_idwt_slice2(DWTContext *d, int y)
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output.
static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
#define INTRA_DC_PRED(n, type)
Dirac Specification -> 13.3 intra_dc_prediction(band)
struct DiracContext::@57 globalmc[2]
static av_cold int dirac_decode_end(AVCodecContext *avctx)
enum AVPictureType pict_type
Picture type of the frame.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int wy)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
unsigned weight_log2denom
static char * split(char *message, char delim)
static double b2(void *priv, double x, double y)
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
static int dirac_get_se_golomb(GetBitContext *gb)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static void add_dc(uint16_t *dst, int dc, int stride, uint8_t *obmc_weight, int xblen, int yblen)
static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
static int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
VC-2 Specification -> 13.5.3 hq_slice(sx,sy)
static int subband_coeffs(DiracContext *s, int x, int y, int p, SliceCoeffs c[MAX_DWT_LEVELS])
static void init_obmc_weights(DiracContext *s, Plane *p, int by)
#define DECLARE_ALIGNED(n, t, v)
#define i(width, name, range_min, range_max)
static void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
#define UNPACK_ARITH(n, type)
static int alloc_sequence_buffers(DiracContext *s)
#define DIRAC_REF_MASK_REF2
#define PARSE_VALUES(type, x, gb, ebits, buf1, buf2)
static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block, int stride, int x, int y)
int ff_dirac_golomb_read_16bit(const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
#define av_malloc_array(a, b)
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
av_cold void ff_dirac_init_arith_tables(void)
const char * name
Name of the codec implementation.
static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5], int x, int y, int ref, int plane)
For block x,y, determine which of the hpel planes to do bilinear interpolation from and set src[] to ...
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
const uint8_t * coeff_data
static const float pred[4]
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static const uint8_t * align_get_bits(GetBitContext *s)
static DiracFrame * remove_frame(DiracFrame *framelist[], int picnum)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
int ff_dirac_golomb_read_32bit(const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
const int32_t ff_dirac_qoffset_intra_tab[120]
void(* add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
main external API structure.
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
DiracFrame all_frames[MAX_FRAMES]
#define CALC_PADDING(size, depth)
static int ref[MAX_W *MAX_W]
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static int divide3(int x)
uint8_t quant[MAX_DWT_LEVELS][4]
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static void propagate_block_data(DiracBlock *block, int stride, int size)
Copies the current block to the other blocks covered by the current superblock split mode.
This structure stores compressed data.
static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
static void decode_subband(DiracContext *s, GetBitContext *gb, int quant, int slice_x, int slice_y, int bits_end, SubBand *b1, SubBand *b2)
struct DiracContext::@54 codeblock[MAX_DWT_LEVELS+1]
void(* avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
int width
picture width / height.
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
The exact code depends on how similar the blocks are and how related they are to the block
static const double coeff[2][5]
static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static av_cold int dirac_decode_init(AVCodecContext *avctx)
av_cold void ff_diracdsp_init(DiracDSPContext *c)
static int dirac_unpack_idwt_params(DiracContext *s)
Dirac Specification -> 11.3 Wavelet transform data.
uint8_t obmc_weight[3][MAX_BLOCKSIZE *MAX_BLOCKSIZE]
static void dirac_decode_flush(AVCodecContext *avctx)
int display_picture_number
picture number in display order
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int top, int bottom)
static void block_mc(DiracContext *s, DiracBlock *block, uint16_t *mctmp, uint8_t *obmc_weight, int plane, int dstx, int dsty)