29 #define LONG_BITSTREAM_READER
45 for (
i = 0;
i < 64;
i++)
46 dst[
i] = permutation[
src[
i]];
49 #define ALPHA_SHIFT_16_TO_10(alpha_val) (alpha_val >> 6)
50 #define ALPHA_SHIFT_8_TO_10(alpha_val) ((alpha_val << 2) | (alpha_val >> 6))
51 #define ALPHA_SHIFT_16_TO_12(alpha_val) (alpha_val >> 4)
52 #define ALPHA_SHIFT_8_TO_12(alpha_val) ((alpha_val << 4) | (alpha_val >> 4))
55 const int num_bits,
const int decode_precision) {
56 const int mask = (1 << num_bits) - 1;
57 int i, idx,
val, alpha_val;
73 alpha_val = (alpha_val +
val) &
mask;
75 if (decode_precision == 10) {
81 if (decode_precision == 10) {
87 if (idx >= num_coeffs)
93 if (idx +
val > num_coeffs)
94 val = num_coeffs - idx;
96 for (
i = 0;
i <
val;
i++) {
97 if (decode_precision == 10) {
104 for (
i = 0;
i <
val;
i++) {
105 if (decode_precision == 10) {
112 }
while (idx < num_coeffs);
118 if (num_bits == 16) {
128 if (num_bits == 16) {
144 case MKTAG(
'a',
'p',
'c',
'o'):
147 case MKTAG(
'a',
'p',
'c',
's'):
150 case MKTAG(
'a',
'p',
'c',
'n'):
153 case MKTAG(
'a',
'p',
'c',
'h'):
156 case MKTAG(
'a',
'p',
'4',
'h'):
160 case MKTAG(
'a',
'p',
'4',
'x'):
170 av_log(avctx,
AV_LOG_DEBUG,
"Auto bitdepth precision. Use 10b decoding based on codec tag.\n");
172 av_log(avctx,
AV_LOG_DEBUG,
"Auto bitdepth precision. Use 12b decoding based on codec tag.\n");
183 ctx->prodsp.idct_permutation_type);
207 ff_dlog(avctx,
"header size %d\n", hdr_size);
208 if (hdr_size > data_size) {
232 ctx->frame_type = (buf[12] >> 2) & 3;
233 ctx->alpha_info = buf[17] & 0xf;
235 if (
ctx->alpha_info > 2) {
241 ff_dlog(avctx,
"frame type %d\n",
ctx->frame_type);
243 if (
ctx->frame_type == 0) {
244 ctx->scan =
ctx->progressive_scan;
246 ctx->scan =
ctx->interlaced_scan;
247 ctx->frame->interlaced_frame = 1;
248 ctx->frame->top_field_first =
ctx->frame_type == 1;
251 if (
ctx->alpha_info) {
275 if(buf + data_size - ptr < 64) {
282 memset(
ctx->qmat_luma, 4, 64);
286 if(buf + data_size - ptr < 64) {
290 permute(
ctx->qmat_chroma,
ctx->prodsp.idct_permutation, ptr);
292 memset(
ctx->qmat_chroma, 4, 64);
301 int i, hdr_size, slice_count;
302 unsigned pic_data_size;
303 int log2_slice_mb_width, log2_slice_mb_height;
304 int slice_mb_count, mb_x, mb_y;
305 const uint8_t *data_ptr, *index_ptr;
307 hdr_size = buf[0] >> 3;
308 if (hdr_size < 8 || hdr_size > buf_size) {
313 pic_data_size =
AV_RB32(buf + 1);
314 if (pic_data_size > buf_size) {
319 log2_slice_mb_width = buf[7] >> 4;
320 log2_slice_mb_height = buf[7] & 0xF;
321 if (log2_slice_mb_width > 3 || log2_slice_mb_height) {
323 1 << log2_slice_mb_width, 1 << log2_slice_mb_height);
327 ctx->mb_width = (avctx->
width + 15) >> 4;
329 ctx->mb_height = (avctx->
height + 31) >> 5;
331 ctx->mb_height = (avctx->
height + 15) >> 4;
335 slice_count =
ctx->mb_height * ((
ctx->mb_width >> log2_slice_mb_width) +
336 av_popcount(
ctx->mb_width & (1 << log2_slice_mb_width) - 1));
338 if (
ctx->slice_count != slice_count || !
ctx->slices) {
340 ctx->slice_count = 0;
344 ctx->slice_count = slice_count;
350 if (hdr_size + slice_count*2 > buf_size) {
356 index_ptr = buf + hdr_size;
357 data_ptr = index_ptr + slice_count*2;
359 slice_mb_count = 1 << log2_slice_mb_width;
363 for (
i = 0;
i < slice_count;
i++) {
366 slice->
data = data_ptr;
367 data_ptr +=
AV_RB16(index_ptr +
i*2);
369 while (
ctx->mb_width - mb_x < slice_mb_count)
370 slice_mb_count >>= 1;
382 mb_x += slice_mb_count;
383 if (mb_x ==
ctx->mb_width) {
384 slice_mb_count = 1 << log2_slice_mb_width;
388 if (data_ptr > buf + buf_size) {
394 if (mb_x || mb_y !=
ctx->mb_height) {
396 mb_y,
ctx->mb_height);
400 return pic_data_size;
403 #define DECODE_CODEWORD(val, codebook, SKIP) \
405 unsigned int rice_order, exp_order, switch_bits; \
406 unsigned int q, buf, bits; \
408 UPDATE_CACHE(re, gb); \
409 buf = GET_CACHE(re, gb); \
412 switch_bits = codebook & 3; \
413 rice_order = codebook >> 5; \
414 exp_order = (codebook >> 2) & 7; \
416 q = 31 - av_log2(buf); \
418 if (q > switch_bits) { \
419 bits = exp_order - switch_bits + (q<<1); \
420 if (bits > FFMIN(MIN_CACHE_BITS, 31)) \
421 return AVERROR_INVALIDDATA; \
422 val = SHOW_UBITS(re, gb, bits) - (1 << exp_order) + \
423 ((switch_bits + 1) << rice_order); \
424 SKIP(re, gb, bits); \
425 } else if (rice_order) { \
426 SKIP_BITS(re, gb, q+1); \
427 val = (q << rice_order) + SHOW_UBITS(re, gb, rice_order); \
428 SKIP(re, gb, rice_order); \
435 #define TOSIGNED(x) (((x) >> 1) ^ (-((x) & 1)))
437 #define FIRST_DC_CB 0xB8
442 int blocks_per_slice)
457 for (
i = 1;
i < blocks_per_slice;
i++,
out += 64) {
461 prev_dc += (((
code + 1) >> 1) ^ sign) - sign;
469 static const uint8_t run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C };
470 static const uint8_t lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28, 0x28, 0x28, 0x28, 0x4C };
473 int16_t *
out,
int blocks_per_slice)
476 int block_mask, sign;
478 int max_coeffs,
i, bits_left;
479 int log2_block_count =
av_log2(blocks_per_slice);
486 max_coeffs = 64 << log2_block_count;
487 block_mask = blocks_per_slice - 1;
489 for (
pos = block_mask;;) {
491 if (!bits_left || (bits_left < 32 && !
SHOW_UBITS(
re, gb, bits_left)))
496 if (
pos >= max_coeffs) {
504 i =
pos >> log2_block_count;
508 out[((
pos & block_mask) << 6) +
ctx->scan[
i]] = ((
level ^ sign) - sign);
516 uint16_t *dst,
int dst_stride,
517 const uint8_t *buf,
unsigned buf_size,
524 int i, blocks_per_slice = slice->
mb_count<<2;
527 for (
i = 0;
i < blocks_per_slice;
i++)
528 ctx->bdsp.clear_block(blocks+(
i<<6));
539 ctx->prodsp.idct_put(dst, dst_stride,
block+(0<<6), qmat);
540 ctx->prodsp.idct_put(dst +8, dst_stride,
block+(1<<6), qmat);
541 ctx->prodsp.idct_put(dst+4*dst_stride , dst_stride,
block+(2<<6), qmat);
542 ctx->prodsp.idct_put(dst+4*dst_stride+8, dst_stride,
block+(3<<6), qmat);
550 uint16_t *dst,
int dst_stride,
551 const uint8_t *buf,
unsigned buf_size,
552 const int16_t *qmat,
int log2_blocks_per_mb)
558 int i, j, blocks_per_slice = slice->
mb_count << log2_blocks_per_mb;
561 for (
i = 0;
i < blocks_per_slice;
i++)
562 ctx->bdsp.clear_block(blocks+(
i<<6));
573 for (j = 0; j < log2_blocks_per_mb; j++) {
574 ctx->prodsp.idct_put(dst, dst_stride,
block+(0<<6), qmat);
575 ctx->prodsp.idct_put(dst+4*dst_stride, dst_stride,
block+(1<<6), qmat);
587 uint16_t *dst,
int dst_stride,
588 const uint8_t *buf,
int buf_size,
589 int blocks_per_slice)
596 for (
i = 0;
i < blocks_per_slice<<2;
i++)
597 ctx->bdsp.clear_block(blocks+(
i<<6));
601 if (
ctx->alpha_info == 2) {
602 ctx->unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 16);
604 ctx->unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 8);
609 for (
i = 0;
i < 16;
i++) {
610 memcpy(dst,
block, 16 * blocks_per_slice *
sizeof(*dst));
611 dst += dst_stride >> 1;
612 block += 16 * blocks_per_slice;
622 int i, hdr_size, qscale, log2_chroma_blocks_per_mb;
623 int luma_stride, chroma_stride;
624 int y_data_size, u_data_size, v_data_size, a_data_size;
625 uint8_t *dest_y, *dest_u, *dest_v, *dest_a;
630 uint16_t val_no_chroma;
637 hdr_size = buf[0] >> 3;
638 qscale = av_clip(buf[1], 1, 224);
639 qscale = qscale > 128 ? qscale - 96 << 2: qscale;
640 y_data_size =
AV_RB16(buf + 2);
641 u_data_size =
AV_RB16(buf + 4);
642 v_data_size = slice->
data_size - y_data_size - u_data_size - hdr_size;
643 if (hdr_size > 7) v_data_size =
AV_RB16(buf + 6);
644 a_data_size = slice->
data_size - y_data_size - u_data_size -
645 v_data_size - hdr_size;
647 if (y_data_size < 0 || u_data_size < 0 || v_data_size < 0
648 || hdr_size+y_data_size+u_data_size+v_data_size > slice->
data_size){
655 for (
i = 0;
i < 64;
i++) {
656 qmat_luma_scaled [
i] =
ctx->qmat_luma [
i] * qscale;
657 qmat_chroma_scaled[
i] =
ctx->qmat_chroma[
i] * qscale;
660 if (
ctx->frame_type == 0) {
664 luma_stride = pic->
linesize[0] << 1;
665 chroma_stride = pic->
linesize[1] << 1;
671 log2_chroma_blocks_per_mb = 2;
674 log2_chroma_blocks_per_mb = 1;
677 dest_y = pic->
data[0] + (slice->
mb_y << 4) * luma_stride + (slice->
mb_x << 5);
678 dest_u = pic->
data[1] + (slice->
mb_y << 4) * chroma_stride + (slice->
mb_x << mb_x_shift);
679 dest_v = pic->
data[2] + (slice->
mb_y << 4) * chroma_stride + (slice->
mb_x << mb_x_shift);
680 dest_a = pic->
data[3] + (slice->
mb_y << 4) * luma_stride + (slice->
mb_x << 5);
682 if (
ctx->frame_type &&
ctx->first_field ^
ctx->frame->top_field_first) {
690 buf, y_data_size, qmat_luma_scaled);
696 buf + y_data_size, u_data_size,
697 qmat_chroma_scaled, log2_chroma_blocks_per_mb);
702 buf + y_data_size + u_data_size, v_data_size,
703 qmat_chroma_scaled, log2_chroma_blocks_per_mb);
708 size_t mb_max_x = slice->
mb_count << (mb_x_shift - 1);
713 val_no_chroma = 511 * 4;
715 for (
i = 0;
i < 16; ++
i)
716 for (j = 0; j < mb_max_x; ++j) {
717 *(uint16_t*)(dest_u + (
i * chroma_stride) + (j << 1)) = val_no_chroma;
718 *(uint16_t*)(dest_v + (
i * chroma_stride) + (j << 1)) = val_no_chroma;
723 if (
ctx->alpha_info && pic->
data[3] && a_data_size)
725 buf + y_data_size + u_data_size + v_data_size,
740 for (
i = 0;
i <
ctx->slice_count;
i++)
745 if (error < ctx->slice_count)
748 return ctx->slices[0].ret;
758 int buf_size = avpkt->
size;
759 int frame_hdr_size, pic_size,
ret;
768 ctx->frame->key_frame = 1;
769 ctx->first_field = 1;
775 if (frame_hdr_size < 0)
776 return frame_hdr_size;
778 buf += frame_hdr_size;
779 buf_size -= frame_hdr_size;
788 if (
ctx->first_field)
798 buf_size -= pic_size;
800 if (
ctx->frame_type && buf_size > 0 &&
ctx->first_field) {
801 ctx->first_field = 0;