FFmpeg
alacenc.c
Go to the documentation of this file.
1 /*
2  * ALAC audio encoder
3  * Copyright (c) 2008 Jaikrishnan Menon <realityman@gmx.net>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include "libavutil/opt.h"
23 
24 #include "avcodec.h"
25 #include "put_bits.h"
26 #include "internal.h"
27 #include "lpc.h"
28 #include "mathops.h"
29 #include "alac_data.h"
30 
31 #define DEFAULT_FRAME_SIZE 4096
32 #define ALAC_EXTRADATA_SIZE 36
33 #define ALAC_FRAME_HEADER_SIZE 55
34 #define ALAC_FRAME_FOOTER_SIZE 3
35 
36 #define ALAC_ESCAPE_CODE 0x1FF
37 #define ALAC_MAX_LPC_ORDER 30
38 #define DEFAULT_MAX_PRED_ORDER 6
39 #define DEFAULT_MIN_PRED_ORDER 4
40 #define ALAC_MAX_LPC_PRECISION 9
41 #define ALAC_MIN_LPC_SHIFT 0
42 #define ALAC_MAX_LPC_SHIFT 9
43 
44 #define ALAC_CHMODE_LEFT_RIGHT 0
45 #define ALAC_CHMODE_LEFT_SIDE 1
46 #define ALAC_CHMODE_RIGHT_SIDE 2
47 #define ALAC_CHMODE_MID_SIDE 3
48 
49 typedef struct RiceContext {
54 } RiceContext;
55 
56 typedef struct AlacLPCContext {
57  int lpc_order;
59  int lpc_quant;
61 
62 typedef struct AlacEncodeContext {
63  const AVClass *class;
65  int frame_size; /**< current frame size */
66  int verbatim; /**< current frame verbatim mode flag */
82 
83 
85  const uint8_t *samples[2])
86 {
87  int ch, i;
88  int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 -
89  s->avctx->bits_per_raw_sample;
90 
91 #define COPY_SAMPLES(type) do { \
92  for (ch = 0; ch < channels; ch++) { \
93  int32_t *bptr = s->sample_buf[ch]; \
94  const type *sptr = (const type *)samples[ch]; \
95  for (i = 0; i < s->frame_size; i++) \
96  bptr[i] = sptr[i] >> shift; \
97  } \
98  } while (0)
99 
100  if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P)
102  else
103  COPY_SAMPLES(int16_t);
104 }
105 
106 static void encode_scalar(AlacEncodeContext *s, int x,
107  int k, int write_sample_size)
108 {
109  int divisor, q, r;
110 
111  k = FFMIN(k, s->rc.k_modifier);
112  divisor = (1<<k) - 1;
113  q = x / divisor;
114  r = x % divisor;
115 
116  if (q > 8) {
117  // write escape code and sample value directly
118  put_bits(&s->pbctx, 9, ALAC_ESCAPE_CODE);
119  put_bits(&s->pbctx, write_sample_size, x);
120  } else {
121  if (q)
122  put_bits(&s->pbctx, q, (1<<q) - 1);
123  put_bits(&s->pbctx, 1, 0);
124 
125  if (k != 1) {
126  if (r > 0)
127  put_bits(&s->pbctx, k, r+1);
128  else
129  put_bits(&s->pbctx, k-1, 0);
130  }
131  }
132 }
133 
135  enum AlacRawDataBlockType element,
136  int instance)
137 {
138  int encode_fs = 0;
139 
140  if (s->frame_size < DEFAULT_FRAME_SIZE)
141  encode_fs = 1;
142 
143  put_bits(&s->pbctx, 3, element); // element type
144  put_bits(&s->pbctx, 4, instance); // element instance
145  put_bits(&s->pbctx, 12, 0); // unused header bits
146  put_bits(&s->pbctx, 1, encode_fs); // Sample count is in the header
147  put_bits(&s->pbctx, 2, s->extra_bits >> 3); // Extra bytes (for 24-bit)
148  put_bits(&s->pbctx, 1, s->verbatim); // Audio block is verbatim
149  if (encode_fs)
150  put_bits32(&s->pbctx, s->frame_size); // No. of samples in the frame
151 }
152 
154 {
156  int shift[MAX_LPC_ORDER];
157  int opt_order;
158 
159  if (s->compression_level == 1) {
160  s->lpc[ch].lpc_order = 6;
161  s->lpc[ch].lpc_quant = 6;
162  s->lpc[ch].lpc_coeff[0] = 160;
163  s->lpc[ch].lpc_coeff[1] = -190;
164  s->lpc[ch].lpc_coeff[2] = 170;
165  s->lpc[ch].lpc_coeff[3] = -130;
166  s->lpc[ch].lpc_coeff[4] = 80;
167  s->lpc[ch].lpc_coeff[5] = -25;
168  } else {
169  opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, s->sample_buf[ch],
170  s->frame_size,
171  s->min_prediction_order,
172  s->max_prediction_order,
176  ALAC_MAX_LPC_SHIFT, 1);
177 
178  s->lpc[ch].lpc_order = opt_order;
179  s->lpc[ch].lpc_quant = shift[opt_order-1];
180  memcpy(s->lpc[ch].lpc_coeff, coefs[opt_order-1], opt_order*sizeof(int));
181  }
182 }
183 
184 static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
185 {
186  int i, best;
187  int32_t lt, rt;
188  uint64_t sum[4];
189  uint64_t score[4];
190 
191  /* calculate sum of 2nd order residual for each channel */
192  sum[0] = sum[1] = sum[2] = sum[3] = 0;
193  for (i = 2; i < n; i++) {
194  lt = left_ch[i] - 2 * left_ch[i - 1] + left_ch[i - 2];
195  rt = right_ch[i] - 2 * right_ch[i - 1] + right_ch[i - 2];
196  sum[2] += FFABS((lt + rt) >> 1);
197  sum[3] += FFABS(lt - rt);
198  sum[0] += FFABS(lt);
199  sum[1] += FFABS(rt);
200  }
201 
202  /* calculate score for each mode */
203  score[0] = sum[0] + sum[1];
204  score[1] = sum[0] + sum[3];
205  score[2] = sum[1] + sum[3];
206  score[3] = sum[2] + sum[3];
207 
208  /* return mode with lowest score */
209  best = 0;
210  for (i = 1; i < 4; i++) {
211  if (score[i] < score[best])
212  best = i;
213  }
214  return best;
215 }
216 
218 {
219  int32_t *left = s->sample_buf[0], *right = s->sample_buf[1];
220  int i, mode, n = s->frame_size;
221  int32_t tmp;
222 
223  mode = estimate_stereo_mode(left, right, n);
224 
225  switch (mode) {
227  s->interlacing_leftweight = 0;
228  s->interlacing_shift = 0;
229  break;
231  for (i = 0; i < n; i++)
232  right[i] = left[i] - right[i];
233  s->interlacing_leftweight = 1;
234  s->interlacing_shift = 0;
235  break;
237  for (i = 0; i < n; i++) {
238  tmp = right[i];
239  right[i] = left[i] - right[i];
240  left[i] = tmp + (right[i] >> 31);
241  }
242  s->interlacing_leftweight = 1;
243  s->interlacing_shift = 31;
244  break;
245  default:
246  for (i = 0; i < n; i++) {
247  tmp = left[i];
248  left[i] = (tmp + right[i]) >> 1;
249  right[i] = tmp - right[i];
250  }
251  s->interlacing_leftweight = 1;
252  s->interlacing_shift = 1;
253  break;
254  }
255 }
256 
258 {
259  int i;
260  AlacLPCContext lpc = s->lpc[ch];
261  int32_t *residual = s->predictor_buf[ch];
262 
263  if (lpc.lpc_order == 31) {
264  residual[0] = s->sample_buf[ch][0];
265 
266  for (i = 1; i < s->frame_size; i++) {
267  residual[i] = s->sample_buf[ch][i ] -
268  s->sample_buf[ch][i - 1];
269  }
270 
271  return;
272  }
273 
274  // generalised linear predictor
275 
276  if (lpc.lpc_order > 0) {
277  int32_t *samples = s->sample_buf[ch];
278 
279  // generate warm-up samples
280  residual[0] = samples[0];
281  for (i = 1; i <= lpc.lpc_order; i++)
282  residual[i] = sign_extend(samples[i] - samples[i-1], s->write_sample_size);
283 
284  // perform lpc on remaining samples
285  for (i = lpc.lpc_order + 1; i < s->frame_size; i++) {
286  int sum = 1 << (lpc.lpc_quant - 1), res_val, j;
287 
288  for (j = 0; j < lpc.lpc_order; j++) {
289  sum += (samples[lpc.lpc_order-j] - samples[0]) *
290  lpc.lpc_coeff[j];
291  }
292 
293  sum >>= lpc.lpc_quant;
294  sum += samples[0];
295  residual[i] = sign_extend(samples[lpc.lpc_order+1] - sum,
296  s->write_sample_size);
297  res_val = residual[i];
298 
299  if (res_val) {
300  int index = lpc.lpc_order - 1;
301  int neg = (res_val < 0);
302 
303  while (index >= 0 && (neg ? (res_val < 0) : (res_val > 0))) {
304  int val = samples[0] - samples[lpc.lpc_order - index];
305  int sign = (val ? FFSIGN(val) : 0);
306 
307  if (neg)
308  sign *= -1;
309 
310  lpc.lpc_coeff[index] -= sign;
311  val *= sign;
312  res_val -= (val >> lpc.lpc_quant) * (lpc.lpc_order - index);
313  index--;
314  }
315  }
316  samples++;
317  }
318  }
319 }
320 
322 {
323  unsigned int history = s->rc.initial_history;
324  int sign_modifier = 0, i, k;
325  int32_t *samples = s->predictor_buf[ch];
326 
327  for (i = 0; i < s->frame_size;) {
328  int x;
329 
330  k = av_log2((history >> 9) + 3);
331 
332  x = -2 * (*samples) -1;
333  x ^= x >> 31;
334 
335  samples++;
336  i++;
337 
338  encode_scalar(s, x - sign_modifier, k, s->write_sample_size);
339 
340  history += x * s->rc.history_mult -
341  ((history * s->rc.history_mult) >> 9);
342 
343  sign_modifier = 0;
344  if (x > 0xFFFF)
345  history = 0xFFFF;
346 
347  if (history < 128 && i < s->frame_size) {
348  unsigned int block_size = 0;
349 
350  k = 7 - av_log2(history) + ((history + 16) >> 6);
351 
352  while (*samples == 0 && i < s->frame_size) {
353  samples++;
354  i++;
355  block_size++;
356  }
357  encode_scalar(s, block_size, k, 16);
358  sign_modifier = (block_size <= 0xFFFF);
359  history = 0;
360  }
361 
362  }
363 }
364 
366  enum AlacRawDataBlockType element, int instance,
367  const uint8_t *samples0, const uint8_t *samples1)
368 {
369  const uint8_t *samples[2] = { samples0, samples1 };
370  int i, j, channels;
371  int prediction_type = 0;
372  PutBitContext *pb = &s->pbctx;
373 
374  channels = element == TYPE_CPE ? 2 : 1;
375 
376  if (s->verbatim) {
377  write_element_header(s, element, instance);
378  /* samples are channel-interleaved in verbatim mode */
379  if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
380  int shift = 32 - s->avctx->bits_per_raw_sample;
381  const int32_t *samples_s32[2] = { (const int32_t *)samples0,
382  (const int32_t *)samples1 };
383  for (i = 0; i < s->frame_size; i++)
384  for (j = 0; j < channels; j++)
385  put_sbits(pb, s->avctx->bits_per_raw_sample,
386  samples_s32[j][i] >> shift);
387  } else {
388  const int16_t *samples_s16[2] = { (const int16_t *)samples0,
389  (const int16_t *)samples1 };
390  for (i = 0; i < s->frame_size; i++)
391  for (j = 0; j < channels; j++)
392  put_sbits(pb, s->avctx->bits_per_raw_sample,
393  samples_s16[j][i]);
394  }
395  } else {
396  s->write_sample_size = s->avctx->bits_per_raw_sample - s->extra_bits +
397  channels - 1;
398 
400  write_element_header(s, element, instance);
401 
402  // extract extra bits if needed
403  if (s->extra_bits) {
404  uint32_t mask = (1 << s->extra_bits) - 1;
405  for (j = 0; j < channels; j++) {
406  int32_t *extra = s->predictor_buf[j];
407  int32_t *smp = s->sample_buf[j];
408  for (i = 0; i < s->frame_size; i++) {
409  extra[i] = smp[i] & mask;
410  smp[i] >>= s->extra_bits;
411  }
412  }
413  }
414 
415  if (channels == 2)
417  else
418  s->interlacing_shift = s->interlacing_leftweight = 0;
419  put_bits(pb, 8, s->interlacing_shift);
420  put_bits(pb, 8, s->interlacing_leftweight);
421 
422  for (i = 0; i < channels; i++) {
424 
425  put_bits(pb, 4, prediction_type);
426  put_bits(pb, 4, s->lpc[i].lpc_quant);
427 
428  put_bits(pb, 3, s->rc.rice_modifier);
429  put_bits(pb, 5, s->lpc[i].lpc_order);
430  // predictor coeff. table
431  for (j = 0; j < s->lpc[i].lpc_order; j++)
432  put_sbits(pb, 16, s->lpc[i].lpc_coeff[j]);
433  }
434 
435  // write extra bits if needed
436  if (s->extra_bits) {
437  for (i = 0; i < s->frame_size; i++) {
438  for (j = 0; j < channels; j++) {
439  put_bits(pb, s->extra_bits, s->predictor_buf[j][i]);
440  }
441  }
442  }
443 
444  // apply lpc and entropy coding to audio samples
445  for (i = 0; i < channels; i++) {
447 
448  // TODO: determine when this will actually help. for now it's not used.
449  if (prediction_type == 15) {
450  // 2nd pass 1st order filter
451  int32_t *residual = s->predictor_buf[i];
452  for (j = s->frame_size - 1; j > 0; j--)
453  residual[j] -= residual[j - 1];
454  }
456  }
457  }
458 }
459 
461  uint8_t * const *samples)
462 {
463  PutBitContext *pb = &s->pbctx;
464  const enum AlacRawDataBlockType *ch_elements = ff_alac_channel_elements[s->avctx->channels - 1];
465  const uint8_t *ch_map = ff_alac_channel_layout_offsets[s->avctx->channels - 1];
466  int ch, element, sce, cpe;
467 
468  init_put_bits(pb, avpkt->data, avpkt->size);
469 
470  ch = element = sce = cpe = 0;
471  while (ch < s->avctx->channels) {
472  if (ch_elements[element] == TYPE_CPE) {
473  write_element(s, TYPE_CPE, cpe, samples[ch_map[ch]],
474  samples[ch_map[ch + 1]]);
475  cpe++;
476  ch += 2;
477  } else {
478  write_element(s, TYPE_SCE, sce, samples[ch_map[ch]], NULL);
479  sce++;
480  ch++;
481  }
482  element++;
483  }
484 
485  put_bits(pb, 3, TYPE_END);
486  flush_put_bits(pb);
487 
488  return put_bits_count(pb) >> 3;
489 }
490 
491 static av_always_inline int get_max_frame_size(int frame_size, int ch, int bps)
492 {
493  int header_bits = 23 + 32 * (frame_size < DEFAULT_FRAME_SIZE);
494  return FFALIGN(header_bits + bps * ch * frame_size + 3, 8) / 8;
495 }
496 
498 {
499  AlacEncodeContext *s = avctx->priv_data;
500  ff_lpc_end(&s->lpc_ctx);
501  return 0;
502 }
503 
505 {
506  AlacEncodeContext *s = avctx->priv_data;
507  int ret;
508  uint8_t *alac_extradata;
509 
510  avctx->frame_size = s->frame_size = DEFAULT_FRAME_SIZE;
511 
512  if (avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
513  if (avctx->bits_per_raw_sample != 24)
514  av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
515  avctx->bits_per_raw_sample = 24;
516  } else {
517  avctx->bits_per_raw_sample = 16;
518  s->extra_bits = 0;
519  }
520 
521  // Set default compression level
523  s->compression_level = 2;
524  else
525  s->compression_level = av_clip(avctx->compression_level, 0, 2);
526 
527  // Initialize default Rice parameters
528  s->rc.history_mult = 40;
529  s->rc.initial_history = 10;
530  s->rc.k_modifier = 14;
531  s->rc.rice_modifier = 4;
532 
533  s->max_coded_frame_size = get_max_frame_size(avctx->frame_size,
534  avctx->channels,
535  avctx->bits_per_raw_sample);
536 
538  if (!avctx->extradata)
539  return AVERROR(ENOMEM);
541 
542  alac_extradata = avctx->extradata;
543  AV_WB32(alac_extradata, ALAC_EXTRADATA_SIZE);
544  AV_WB32(alac_extradata+4, MKBETAG('a','l','a','c'));
545  AV_WB32(alac_extradata+12, avctx->frame_size);
546  AV_WB8 (alac_extradata+17, avctx->bits_per_raw_sample);
547  AV_WB8 (alac_extradata+21, avctx->channels);
548  AV_WB32(alac_extradata+24, s->max_coded_frame_size);
549  AV_WB32(alac_extradata+28,
550  avctx->sample_rate * avctx->channels * avctx->bits_per_raw_sample); // average bitrate
551  AV_WB32(alac_extradata+32, avctx->sample_rate);
552 
553  // Set relevant extradata fields
554  if (s->compression_level > 0) {
555  AV_WB8(alac_extradata+18, s->rc.history_mult);
556  AV_WB8(alac_extradata+19, s->rc.initial_history);
557  AV_WB8(alac_extradata+20, s->rc.k_modifier);
558  }
559 
560 #if FF_API_PRIVATE_OPT
562  if (avctx->min_prediction_order >= 0) {
563  if (avctx->min_prediction_order < MIN_LPC_ORDER ||
565  av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
566  avctx->min_prediction_order);
567  return AVERROR(EINVAL);
568  }
569 
570  s->min_prediction_order = avctx->min_prediction_order;
571  }
572 
573  if (avctx->max_prediction_order >= 0) {
574  if (avctx->max_prediction_order < MIN_LPC_ORDER ||
576  av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
577  avctx->max_prediction_order);
578  return AVERROR(EINVAL);
579  }
580 
581  s->max_prediction_order = avctx->max_prediction_order;
582  }
584 #endif
585 
586  if (s->max_prediction_order < s->min_prediction_order) {
587  av_log(avctx, AV_LOG_ERROR,
588  "invalid prediction orders: min=%d max=%d\n",
589  s->min_prediction_order, s->max_prediction_order);
590  return AVERROR(EINVAL);
591  }
592 
593  s->avctx = avctx;
594 
595  if ((ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
596  s->max_prediction_order,
597  FF_LPC_TYPE_LEVINSON)) < 0) {
598  return ret;
599  }
600 
601  return 0;
602 }
603 
604 static int alac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
605  const AVFrame *frame, int *got_packet_ptr)
606 {
607  AlacEncodeContext *s = avctx->priv_data;
608  int out_bytes, max_frame_size, ret;
609 
610  s->frame_size = frame->nb_samples;
611 
612  if (frame->nb_samples < DEFAULT_FRAME_SIZE)
613  max_frame_size = get_max_frame_size(s->frame_size, avctx->channels,
614  avctx->bits_per_raw_sample);
615  else
616  max_frame_size = s->max_coded_frame_size;
617 
618  if ((ret = ff_alloc_packet2(avctx, avpkt, 4 * max_frame_size, 0)) < 0)
619  return ret;
620 
621  /* use verbatim mode for compression_level 0 */
622  if (s->compression_level) {
623  s->verbatim = 0;
624  s->extra_bits = avctx->bits_per_raw_sample - 16;
625  } else {
626  s->verbatim = 1;
627  s->extra_bits = 0;
628  }
629 
630  out_bytes = write_frame(s, avpkt, frame->extended_data);
631 
632  if (out_bytes > max_frame_size) {
633  /* frame too large. use verbatim mode */
634  s->verbatim = 1;
635  s->extra_bits = 0;
636  out_bytes = write_frame(s, avpkt, frame->extended_data);
637  }
638 
639  avpkt->size = out_bytes;
640  *got_packet_ptr = 1;
641  return 0;
642 }
643 
644 #define OFFSET(x) offsetof(AlacEncodeContext, x)
645 #define AE AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
646 static const AVOption options[] = {
647  { "min_prediction_order", NULL, OFFSET(min_prediction_order), AV_OPT_TYPE_INT, { .i64 = DEFAULT_MIN_PRED_ORDER }, MIN_LPC_ORDER, ALAC_MAX_LPC_ORDER, AE },
648  { "max_prediction_order", NULL, OFFSET(max_prediction_order), AV_OPT_TYPE_INT, { .i64 = DEFAULT_MAX_PRED_ORDER }, MIN_LPC_ORDER, ALAC_MAX_LPC_ORDER, AE },
649 
650  { NULL },
651 };
652 
653 static const AVClass alacenc_class = {
654  .class_name = "alacenc",
655  .item_name = av_default_item_name,
656  .option = options,
657  .version = LIBAVUTIL_VERSION_INT,
658 };
659 
661  .name = "alac",
662  .long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),
663  .type = AVMEDIA_TYPE_AUDIO,
664  .id = AV_CODEC_ID_ALAC,
665  .priv_data_size = sizeof(AlacEncodeContext),
666  .priv_class = &alacenc_class,
668  .encode2 = alac_encode_frame,
669  .close = alac_encode_close,
670  .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME,
672  .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32P,
675 };
DEFAULT_FRAME_SIZE
#define DEFAULT_FRAME_SIZE
Definition: alacenc.c:31
AVCodecContext::frame_size
int frame_size
Number of samples per channel in an audio frame.
Definition: avcodec.h:1216
AVCodec
AVCodec.
Definition: codec.h:197
FF_ENABLE_DEPRECATION_WARNINGS
#define FF_ENABLE_DEPRECATION_WARNINGS
Definition: internal.h:84
AV_LOG_WARNING
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
alac_stereo_decorrelation
static void alac_stereo_decorrelation(AlacEncodeContext *s)
Definition: alacenc.c:217
OFFSET
#define OFFSET(x)
Definition: alacenc.c:644
ALAC_ESCAPE_CODE
#define ALAC_ESCAPE_CODE
Definition: alacenc.c:36
av_clip
#define av_clip
Definition: common.h:122
init
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:31
r
const char * r
Definition: vf_curves.c:116
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
AlacEncodeContext::compression_level
int compression_level
Definition: alacenc.c:67
put_bits32
static void av_unused put_bits32(PutBitContext *s, uint32_t value)
Write exactly 32 bits into a bitstream.
Definition: put_bits.h:263
AlacEncodeContext::verbatim
int verbatim
current frame verbatim mode flag
Definition: alacenc.c:66
alac_data.h
AVCodecContext::sample_rate
int sample_rate
samples per second
Definition: avcodec.h:1196
DEFAULT_MIN_PRED_ORDER
#define DEFAULT_MIN_PRED_ORDER
Definition: alacenc.c:39
AlacEncodeContext::predictor_buf
int32_t predictor_buf[2][DEFAULT_FRAME_SIZE]
Definition: alacenc.c:74
AlacLPCContext::lpc_quant
int lpc_quant
Definition: alacenc.c:59
sample_fmts
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:925
put_sbits
static void put_sbits(PutBitContext *pb, int n, int32_t value)
Definition: put_bits.h:253
init_put_bits
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:57
RiceContext
Definition: alacenc.c:49
write_element_header
static void write_element_header(AlacEncodeContext *s, enum AlacRawDataBlockType element, int instance)
Definition: alacenc.c:134
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
tmp
static uint8_t tmp[11]
Definition: aes_ctr.c:27
put_bits
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:218
alac_encode_init
static av_cold int alac_encode_init(AVCodecContext *avctx)
Definition: alacenc.c:504
internal.h
AlacEncodeContext::avctx
AVCodecContext * avctx
Definition: alacenc.c:64
AVPacket::data
uint8_t * data
Definition: packet.h:369
AVOption
AVOption.
Definition: opt.h:248
AV_SAMPLE_FMT_S32P
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
Definition: samplefmt.h:68
AV_CODEC_ID_ALAC
@ AV_CODEC_ID_ALAC
Definition: codec_id.h:440
AlacLPCContext::lpc_order
int lpc_order
Definition: alacenc.c:57
lpc.h
FF_COMPRESSION_DEFAULT
#define FF_COMPRESSION_DEFAULT
Definition: avcodec.h:609
alac_linear_predictor
static void alac_linear_predictor(AlacEncodeContext *s, int ch)
Definition: alacenc.c:257
COPY_SAMPLES
#define COPY_SAMPLES(type)
LPCContext
Definition: lpc.h:52
AlacEncodeContext::lpc
AlacLPCContext lpc[2]
Definition: alacenc.c:79
DEFAULT_MAX_PRED_ORDER
#define DEFAULT_MAX_PRED_ORDER
Definition: alacenc.c:38
FFSIGN
#define FFSIGN(a)
Definition: common.h:73
TYPE_CPE
@ TYPE_CPE
Definition: aac.h:58
AlacEncodeContext::write_sample_size
int write_sample_size
Definition: alacenc.c:71
write_element
static void write_element(AlacEncodeContext *s, enum AlacRawDataBlockType element, int instance, const uint8_t *samples0, const uint8_t *samples1)
Definition: alacenc.c:365
val
static double val(void *priv, double ch)
Definition: aeval.c:76
alacenc_class
static const AVClass alacenc_class
Definition: alacenc.c:653
AlacEncodeContext::extra_bits
int extra_bits
Definition: alacenc.c:72
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
av_cold
#define av_cold
Definition: attributes.h:90
calc_predictor_params
static void calc_predictor_params(AlacEncodeContext *s, int ch)
Definition: alacenc.c:153
mask
static const uint16_t mask[17]
Definition: lzw.c:38
AVCodecContext::extradata_size
int extradata_size
Definition: avcodec.h:638
alac_encode_frame
static int alac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
Definition: alacenc.c:604
s
#define s(width, name)
Definition: cbs_vp9.c:257
ff_alac_encoder
AVCodec ff_alac_encoder
Definition: alacenc.c:660
frame_size
int frame_size
Definition: mxfenc.c:2206
AVMEDIA_TYPE_AUDIO
@ AVMEDIA_TYPE_AUDIO
Definition: avutil.h:202
AVCodecContext::bits_per_raw_sample
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:1747
RiceContext::rice_modifier
int rice_modifier
Definition: alacenc.c:53
RiceContext::k_modifier
int k_modifier
Definition: alacenc.c:52
channels
channels
Definition: aptx.h:33
alac_entropy_coder
static void alac_entropy_coder(AlacEncodeContext *s, int ch)
Definition: alacenc.c:321
PutBitContext
Definition: put_bits.h:44
int32_t
int32_t
Definition: audio_convert.c:194
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
LIBAVUTIL_VERSION_INT
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:67
AVCodecContext::max_prediction_order
attribute_deprecated int max_prediction_order
Definition: avcodec.h:1496
NULL
#define NULL
Definition: coverity.c:32
ALAC_MAX_LPC_PRECISION
#define ALAC_MAX_LPC_PRECISION
Definition: alacenc.c:40
AlacEncodeContext::pbctx
PutBitContext pbctx
Definition: alacenc.c:77
av_default_item_name
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:235
mathops.h
AE
#define AE
Definition: alacenc.c:645
ff_lpc_calc_coefs
int ff_lpc_calc_coefs(LPCContext *s, const int32_t *samples, int blocksize, int min_order, int max_order, int precision, int32_t coefs[][MAX_LPC_ORDER], int *shift, enum FFLPCType lpc_type, int lpc_passes, int omethod, int min_shift, int max_shift, int zero_shift)
Calculate LPC coefficients for multiple orders.
Definition: lpc.c:201
AlacEncodeContext::interlacing_shift
int interlacing_shift
Definition: alacenc.c:75
ff_alac_channel_elements
enum AlacRawDataBlockType ff_alac_channel_elements[ALAC_MAX_CHANNELS][5]
Definition: alac_data.c:47
index
int index
Definition: gxfenc.c:89
AlacLPCContext
Definition: alacenc.c:56
AV_WB32
#define AV_WB32(p, v)
Definition: intreadwrite.h:419
options
static const AVOption options[]
Definition: alacenc.c:646
AlacEncodeContext::max_coded_frame_size
int max_coded_frame_size
Definition: alacenc.c:70
AVPacket::size
int size
Definition: packet.h:370
NULL_IF_CONFIG_SMALL
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
TYPE_END
@ TYPE_END
Definition: aac.h:64
MAX_LPC_ORDER
#define MAX_LPC_ORDER
Definition: lpc.h:38
AlacEncodeContext::rc
RiceContext rc
Definition: alacenc.c:78
bps
unsigned bps
Definition: movenc.c:1612
AVCodecContext::sample_fmt
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:1204
AV_SAMPLE_FMT_NONE
@ AV_SAMPLE_FMT_NONE
Definition: samplefmt.h:59
MKBETAG
#define MKBETAG(a, b, c, d)
Definition: common.h:479
ALAC_MAX_LPC_SHIFT
#define ALAC_MAX_LPC_SHIFT
Definition: alacenc.c:42
MIN_LPC_ORDER
#define MIN_LPC_ORDER
Definition: lpc.h:37
get_max_frame_size
static av_always_inline int get_max_frame_size(int frame_size, int ch, int bps)
Definition: alacenc.c:491
AlacEncodeContext::max_prediction_order
int max_prediction_order
Definition: alacenc.c:69
FFMIN
#define FFMIN(a, b)
Definition: common.h:105
RiceContext::history_mult
int history_mult
Definition: alacenc.c:50
ORDER_METHOD_EST
#define ORDER_METHOD_EST
Definition: lpc.h:30
ALAC_CHMODE_LEFT_SIDE
#define ALAC_CHMODE_LEFT_SIDE
Definition: alacenc.c:45
AV_SAMPLE_FMT_S16P
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
Definition: samplefmt.h:67
ALAC_MAX_LPC_ORDER
#define ALAC_MAX_LPC_ORDER
Definition: alacenc.c:37
ff_lpc_end
av_cold void ff_lpc_end(LPCContext *s)
Uninitialize LPCContext.
Definition: lpc.c:323
AVCodecContext::channels
int channels
number of audio channels
Definition: avcodec.h:1197
ALAC_MIN_LPC_SHIFT
#define ALAC_MIN_LPC_SHIFT
Definition: alacenc.c:41
AlacEncodeContext::frame_size
int frame_size
current frame size
Definition: alacenc.c:65
AlacEncodeContext::min_prediction_order
int min_prediction_order
Definition: alacenc.c:68
i
int i
Definition: input.c:407
put_bits_count
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:76
ff_alac_channel_layout_offsets
const uint8_t ff_alac_channel_layout_offsets[ALAC_MAX_CHANNELS][ALAC_MAX_CHANNELS]
Definition: alac_data.c:24
av_get_bytes_per_sample
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:106
AVCodecContext::extradata
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:637
AVSampleFormat
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
init_sample_buffers
static void init_sample_buffers(AlacEncodeContext *s, int channels, const uint8_t *samples[2])
Definition: alacenc.c:84
av_always_inline
#define av_always_inline
Definition: attributes.h:49
uint8_t
uint8_t
Definition: audio_convert.c:194
av_mallocz
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
AVCodec::name
const char * name
Name of the codec implementation.
Definition: codec.h:204
TYPE_SCE
@ TYPE_SCE
Definition: aac.h:57
ff_alac_channel_layouts
const uint64_t ff_alac_channel_layouts[ALAC_MAX_CHANNELS+1]
Definition: alac_data.c:35
avcodec.h
AV_WB8
#define AV_WB8(p, d)
Definition: intreadwrite.h:396
ret
ret
Definition: filter_design.txt:187
AVClass::class_name
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
frame
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
Definition: filter_design.txt:264
ALAC_CHMODE_LEFT_RIGHT
#define ALAC_CHMODE_LEFT_RIGHT
Definition: alacenc.c:44
AV_INPUT_BUFFER_PADDING_SIZE
#define AV_INPUT_BUFFER_PADDING_SIZE
Definition: avcodec.h:215
left
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:386
write_frame
static int write_frame(AlacEncodeContext *s, AVPacket *avpkt, uint8_t *const *samples)
Definition: alacenc.c:460
AVCodecContext
main external API structure.
Definition: avcodec.h:536
mode
mode
Definition: ebur128.h:83
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Definition: opt.h:225
estimate_stereo_mode
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
Definition: alacenc.c:184
sign_extend
static av_const int sign_extend(int val, unsigned bits)
Definition: mathops.h:130
AlacLPCContext::lpc_coeff
int lpc_coeff[ALAC_MAX_LPC_ORDER+1]
Definition: alacenc.c:58
samples
Filter the word “frame” indicates either a video frame or a group of audio samples
Definition: filter_design.txt:8
AlacEncodeContext::sample_buf
int32_t sample_buf[2][DEFAULT_FRAME_SIZE]
Definition: alacenc.c:73
AlacRawDataBlockType
AlacRawDataBlockType
Definition: alac_data.h:26
FF_DISABLE_DEPRECATION_WARNINGS
#define FF_DISABLE_DEPRECATION_WARNINGS
Definition: internal.h:83
shift
static int shift(int a, int b)
Definition: sonic.c:82
AlacEncodeContext::lpc_ctx
LPCContext lpc_ctx
Definition: alacenc.c:80
ALAC_CHMODE_RIGHT_SIDE
#define ALAC_CHMODE_RIGHT_SIDE
Definition: alacenc.c:46
alac_encode_close
static av_cold int alac_encode_close(AVCodecContext *avctx)
Definition: alacenc.c:497
flush_put_bits
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:110
FFALIGN
#define FFALIGN(x, a)
Definition: macros.h:48
ALAC_EXTRADATA_SIZE
#define ALAC_EXTRADATA_SIZE
Definition: alacenc.c:32
AVCodecContext::priv_data
void * priv_data
Definition: avcodec.h:563
AVPacket
This structure stores compressed data.
Definition: packet.h:346
channel_layouts
static const uint16_t channel_layouts[7]
Definition: dca_lbr.c:114
AlacEncodeContext
Definition: alacenc.c:62
AVCodecContext::min_prediction_order
attribute_deprecated int min_prediction_order
Definition: avcodec.h:1492
AlacEncodeContext::interlacing_leftweight
int interlacing_leftweight
Definition: alacenc.c:76
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:28
encode_scalar
static void encode_scalar(AlacEncodeContext *s, int x, int k, int write_sample_size)
Definition: alacenc.c:106
RiceContext::initial_history
int initial_history
Definition: alacenc.c:51
AV_CODEC_CAP_SMALL_LAST_FRAME
#define AV_CODEC_CAP_SMALL_LAST_FRAME
Codec can be fed a final frame with a smaller size.
Definition: codec.h:82
ff_alloc_packet2
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: encode.c:33
put_bits.h
av_log2
int av_log2(unsigned v)
Definition: intmath.c:26
FF_LPC_TYPE_LEVINSON
@ FF_LPC_TYPE_LEVINSON
Levinson-Durbin recursion.
Definition: lpc.h:47
ff_lpc_init
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order, enum FFLPCType lpc_type)
Initialize LPCContext.
Definition: lpc.c:301
AVCodecContext::compression_level
int compression_level
Definition: avcodec.h:608