Go to the documentation of this file.
92 for (
i=0;
i<10;
i+=2){
93 xpow = (
int)(((int64_t)xpow * x + 0x40000000) >> 31);
97 xpow = (
int)(((int64_t)xpow * x + 0x40000000) >> 31);
108 Q31(1.0/720),
Q31(1.0/5040),
Q31(1.0/40320)
118 xpow = (
int)(((int64_t)xpow * x + 0x400000) >> 23);
128 int k, previous, present;
129 int base, prod, nz = 0;
131 base = (stop << 23) / start;
132 while (
base < 0x40000000){
143 for (k = 0; k < num_bands-1; k++) {
144 prod = (
int)(((int64_t)prod *
base + 0x400000) >> 23);
145 present = (prod + 0x400000) >> 23;
146 bands[k] = present - previous;
149 bands[num_bands-1] = stop - previous;
167 temp1.
mant = 759250125;
169 temp1.
mant = 0x20000000;
170 temp1.
exp = (temp1.
exp >> 1) + 1;
171 if (temp1.
exp > 66) {
178 temp2.
mant = 759250125;
180 temp2.
mant = 0x20000000;
181 temp2.
exp = (temp2.
exp >> 1) + 1;
188 for (k = 0; k < sbr->
n_q; k++) {
192 sbr->data[0].noise_facs_q[e][k] + 2;
193 temp1.
mant = 0x20000000;
196 temp2.
mant = 0x20000000;
203 for (ch = 0; ch < (id_aac ==
TYPE_CPE) + 1; ch++) {
211 temp1.
mant = 759250125;
213 temp1.
mant = 0x20000000;
214 temp1.
exp = (temp1.
exp >> 1) + 1;
215 if (temp1.
exp > 66) {
222 for (k = 0; k < sbr->
n_q; k++){
224 sbr->data[ch].noise_facs_q[e][k] + 1;
236 int (*alpha0)[2],
int (*alpha1)[2],
237 const int X_low[32][40][2],
int k0)
242 for (k = 0; k < k0; k++) {
269 if (!phi[1][0][0].mant) {
283 a00 =
av_div_sf(temp_real, phi[1][0][0]);
289 alpha0[k][0] = 0x7fffffff;
290 else if (
shift <= -30)
304 alpha0[k][1] = 0x7fffffff;
305 else if (
shift <= -30)
318 alpha1[k][0] = 0x7fffffff;
319 else if (
shift <= -30)
333 alpha1[k][1] = 0x7fffffff;
334 else if (
shift <= -30)
346 shift = (
int)(((int64_t)(alpha1[k][0]>>1) * (alpha1[k][0]>>1) + \
347 (int64_t)(alpha1[k][1]>>1) * (alpha1[k][1]>>1) + \
349 if (
shift >= 0x20000000){
356 shift = (
int)(((int64_t)(alpha0[k][0]>>1) * (alpha0[k][0]>>1) + \
357 (int64_t)(alpha0[k][1]>>1) * (alpha0[k][1]>>1) + \
359 if (
shift >= 0x20000000){
373 static const int bw_tab[] = { 0, 1610612736, 1932735283, 2104533975 };
376 for (
i = 0;
i < sbr->
n_q;
i++) {
382 if (new_bw < ch_data->bw_array[
i]){
383 accu = (int64_t)new_bw * 1610612736;
384 accu += (int64_t)ch_data->
bw_array[
i] * 0x20000000;
385 new_bw = (
int)((accu + 0x40000000) >> 31);
387 accu = (int64_t)new_bw * 1946157056;
388 accu += (int64_t)ch_data->
bw_array[
i] * 201326592;
389 new_bw = (
int)((accu + 0x40000000) >> 31);
391 ch_data->
bw_array[
i] = new_bw < 0x2000000 ? 0 : new_bw;
400 SBRData *ch_data,
const int e_a[2])
404 static const SoftFloat limgain[4] = { { 760155524, 0 }, { 0x20000000, 1 },
405 { 758351638, 1 }, { 625000000, 34 } };
408 int delta = !((e == e_a[1]) || (e == e_a[0]));
409 for (k = 0; k < sbr->
n_lim; k++) {
413 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
437 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
448 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
453 sbr->
q_m[e][m] = q_m_max;
455 sbr->
gain[e][m] = gain_max;
458 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
478 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
489 const int X_high[64][40][2],
495 const int kx = sbr->
kx[1];
496 const int m_max = sbr->
m[1];
509 for (
i = 0;
i < h_SL;
i++) {
510 memcpy(g_temp[
i + 2*ch_data->
t_env[0]], sbr->
gain[0], m_max *
sizeof(sbr->
gain[0][0]));
511 memcpy(q_temp[
i + 2*ch_data->
t_env[0]], sbr->
q_m[0], m_max *
sizeof(sbr->
q_m[0][0]));
514 for (
i = 0;
i < 4;
i++) {
515 memcpy(g_temp[
i + 2 * ch_data->
t_env[0]],
518 memcpy(q_temp[
i + 2 * ch_data->
t_env[0]],
525 for (
i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1];
i++) {
526 memcpy(g_temp[h_SL +
i], sbr->
gain[e], m_max *
sizeof(sbr->
gain[0][0]));
527 memcpy(q_temp[h_SL +
i], sbr->
q_m[e], m_max *
sizeof(sbr->
q_m[0][0]));
532 for (
i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1];
i++) {
537 if (h_SL && e != e_a[0] && e != e_a[1]) {
540 for (m = 0; m < m_max; m++) {
541 const int idx1 =
i + h_SL;
542 g_filt[m].
mant = g_filt[m].
exp = 0;
543 q_filt[m].
mant = q_filt[m].
exp = 0;
544 for (j = 0; j <= h_SL; j++) {
554 g_filt = g_temp[
i + h_SL];
561 if (e != e_a[0] && e != e_a[1]) {
566 int idx = indexsine&1;
567 int A = (1-((indexsine+(kx & 1))&2));
568 int B = (
A^(-idx)) + idx;
569 unsigned *
out = &Y1[
i][kx][idx];
574 for (m = 0; m+1 < m_max; m+=2) {
598 }
else if (
shift < 32) {
604 indexnoise = (indexnoise + m_max) & 0x1ff;
605 indexsine = (indexsine + 1) & 3;
unsigned bs_limiter_gains
AAC_FLOAT e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
static const SoftFloat FLOAT_EPSILON
A small value.
AAC_FLOAT env_facs[6][48]
static void aacsbr_func_ptr_init(AACSBRContext *c)
AAC_SIGNE m[2]
M' and M respectively, M is the number of QMF subbands that use SBR.
static av_const SoftFloat av_sub_sf(SoftFloat a, SoftFloat b)
AAC_FLOAT q_m[7][48]
Amplitude adjusted noise scalefactors.
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
uint8_t t_env[8]
Envelope time borders.
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
static const SoftFloat FLOAT_1
1.0
static av_const int av_gt_sf(SoftFloat a, SoftFloat b)
Compares two SoftFloats.
static av_always_inline SoftFloat av_sqrt_sf(SoftFloat val)
Rounding-to-nearest used.
static av_const SoftFloat av_div_sf(SoftFloat a, SoftFloat b)
b has to be normalized and not zero.
static void sbr_hf_assemble(int Y1[38][64][2], const int X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
AAC_FLOAT noise_facs[3][5]
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, int(*alpha0)[2], int(*alpha1)[2], const int X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static const SoftFloat FLOAT_MIN
#define av_assert0(cond)
assert() equivalent, that is always enabled.
#define NOISE_FLOOR_OFFSET
void(* autocorrelate)(const INTFLOAT x[40][2], AAC_FLOAT phi[3][2][2])
static const float bands[]
AAC_FLOAT s_m[7][48]
Sinusoidal levels.
AAC_SIGNE n_lim
Number of limiter bands.
uint8_t env_facs_q[6][48]
Envelope scalefactors.
static const SoftFloat FLOAT_0
0.0
uint16_t f_tablelim[30]
Frequency borders for the limiter.
aacsbr functions pointers
static int fixed_log(int x)
void(* hf_g_filt)(INTFLOAT(*Y)[2], const INTFLOAT(*X_high)[40][2], const AAC_FLOAT *g_filt, int m_max, intptr_t ixh)
AAC_SIGNE n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
uint8_t s_indexmapped[8][48]
unsigned bs_smoothing_mode
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static const SoftFloat FLOAT_0999999
0.999999
static const SoftFloat FLOAT_1584893192
1.584893192 (10^.2)
static const SoftFloat FLOAT_100000
100000
Spectral Band Replication.
uint8_t bs_invf_mode[2][5]
void(* hf_apply_noise[4])(INTFLOAT(*Y)[2], const AAC_FLOAT *s_m, const AAC_FLOAT *q_filt, int noise, int kx, int m_max)
AAC_SIGNE n_q
Number of noise floor bands.
static int fixed_exp(int x)
static const int CONST_076923
static const int shift2[6]
AAC_FLOAT e_curr[7][48]
Estimated envelope.
static const int CONST_RECIP_LN2
#define i(width, name, range_min, range_max)
static av_always_inline av_const double round(double x)
Spectral Band Replication per channel data.
INTFLOAT bw_array[5]
Chirp factors.
static av_const SoftFloat av_int2sf(int v, int frac_bits)
Converts a mantisse and exponent to a SoftFloat.
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
static av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b)
static const int fixed_exp_table[7]
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
uint8_t noise_facs_q[3][5]
Noise scalefactors.
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
static const int CONST_LN2
static int shift(int a, int b)
#define ENVELOPE_ADJUSTMENT_OFFSET
static const int16_t alpha[]
static const int fixed_log_table[10]
AAC_FLOAT q_mapped[7][48]
Dequantized noise scalefactors, remapped.
AAC_SIGNE kx[2]
kx', and kx respectively, kx is the first QMF subband where SBR is used.
static av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b)
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.