FFmpeg
f_ebur128.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012 Clément Bœsch
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * EBU R.128 implementation
24  * @see http://tech.ebu.ch/loudness
25  * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
26  * @todo implement start/stop/reset through filter command injection
27  */
28 
29 #include <math.h>
30 
31 #include "libavutil/avassert.h"
32 #include "libavutil/avstring.h"
34 #include "libavutil/dict.h"
35 #include "libavutil/ffmath.h"
37 #include "libavutil/opt.h"
38 #include "libavutil/timestamp.h"
40 #include "audio.h"
41 #include "avfilter.h"
42 #include "formats.h"
43 #include "internal.h"
44 
45 #define MAX_CHANNELS 63
46 
47 #define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold
48 #define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum)
49 #define HIST_GRAIN 100 ///< defines histogram precision
50 #define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
51 
52 /**
53  * A histogram is an array of HIST_SIZE hist_entry storing all the energies
54  * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
55  * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
56  * This fixed-size system avoids the need of a list of energies growing
57  * infinitely over the time and is thus more scalable.
58  */
59 struct hist_entry {
60  int count; ///< how many times the corresponding value occurred
61  double energy; ///< E = 10^((L + 0.691) / 10)
62  double loudness; ///< L = -0.691 + 10 * log10(E)
63 };
64 
65 struct integrator {
66  double *cache[MAX_CHANNELS]; ///< window of filtered samples (N ms)
67  int cache_pos; ///< focus on the last added bin in the cache array
69  double sum[MAX_CHANNELS]; ///< sum of the last N ms filtered samples (cache content)
70  int filled; ///< 1 if the cache is completely filled, 0 otherwise
71  double rel_threshold; ///< relative threshold
72  double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold
73  int nb_kept_powers; ///< number of sum above absolute threshold
74  struct hist_entry *histogram; ///< histogram of the powers, used to compute LRA and I
75 };
76 
77 struct rect { int x, y, w, h; };
78 
79 typedef struct EBUR128Context {
80  const AVClass *class; ///< AVClass context for log and options purpose
81 
82  /* peak metering */
83  int peak_mode; ///< enabled peak modes
84  double *true_peaks; ///< true peaks per channel
85  double *sample_peaks; ///< sample peaks per channel
86  double *true_peaks_per_frame; ///< true peaks in a frame per channel
87 #if CONFIG_SWRESAMPLE
88  SwrContext *swr_ctx; ///< over-sampling context for true peak metering
89  double *swr_buf; ///< resampled audio data for true peak metering
90  int swr_linesize;
91 #endif
92 
93  /* video */
94  int do_video; ///< 1 if video output enabled, 0 otherwise
95  int w, h; ///< size of the video output
96  struct rect text; ///< rectangle for the LU legend on the left
97  struct rect graph; ///< rectangle for the main graph in the center
98  struct rect gauge; ///< rectangle for the gauge on the right
99  AVFrame *outpicref; ///< output picture reference, updated regularly
100  int meter; ///< select a EBU mode between +9 and +18
101  int scale_range; ///< the range of LU values according to the meter
102  int y_zero_lu; ///< the y value (pixel position) for 0 LU
103  int y_opt_max; ///< the y value (pixel position) for 1 LU
104  int y_opt_min; ///< the y value (pixel position) for -1 LU
105  int *y_line_ref; ///< y reference values for drawing the LU lines in the graph and the gauge
106 
107  /* audio */
108  int nb_channels; ///< number of channels in the input
109  double *ch_weighting; ///< channel weighting mapping
110  int sample_count; ///< sample count used for refresh frequency, reset at refresh
111 
112  /* Filter caches.
113  * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
114  double x[MAX_CHANNELS * 3]; ///< 3 input samples cache for each channel
115  double y[MAX_CHANNELS * 3]; ///< 3 pre-filter samples cache for each channel
116  double z[MAX_CHANNELS * 3]; ///< 3 RLB-filter samples cache for each channel
117  double pre_b[3]; ///< pre-filter numerator coefficients
118  double pre_a[3]; ///< pre-filter denominator coefficients
119  double rlb_b[3]; ///< rlb-filter numerator coefficients
120  double rlb_a[3]; ///< rlb-filter denominator coefficients
121 
122  struct integrator i400; ///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
123  struct integrator i3000; ///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
124 
125  /* I and LRA specific */
126  double integrated_loudness; ///< integrated loudness in LUFS (I)
127  double loudness_range; ///< loudness range in LU (LRA)
128  double lra_low, lra_high; ///< low and high LRA values
129 
130  /* misc */
131  int loglevel; ///< log level for frame logging
132  int metadata; ///< whether or not to inject loudness results in frames
133  int dual_mono; ///< whether or not to treat single channel input files as dual-mono
134  double pan_law; ///< pan law value used to calculate dual-mono measurements
135  int target; ///< target level in LUFS used to set relative zero LU in visualization
136  int gauge_type; ///< whether gauge shows momentary or short
137  int scale; ///< display scale type of statistics
139 
140 enum {
144 };
145 
146 enum {
149 };
150 
151 enum {
154 };
155 
156 #define OFFSET(x) offsetof(EBUR128Context, x)
157 #define A AV_OPT_FLAG_AUDIO_PARAM
158 #define V AV_OPT_FLAG_VIDEO_PARAM
159 #define F AV_OPT_FLAG_FILTERING_PARAM
160 static const AVOption ebur128_options[] = {
161  { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, V|F },
162  { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
163  { "meter", "set scale meter (+9 to +18)", OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
164  { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1}, INT_MIN, INT_MAX, A|V|F, "level" },
165  { "info", "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO}, INT_MIN, INT_MAX, A|V|F, "level" },
166  { "verbose", "verbose logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" },
167  { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|V|F },
168  { "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, "mode" },
169  { "none", "disable any peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE}, INT_MIN, INT_MAX, A|F, "mode" },
170  { "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
171  { "true", "enable true-peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
172  { "dualmono", "treat mono input files as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|F },
173  { "panlaw", "set a specific pan law for dual-mono files", OFFSET(pan_law), AV_OPT_TYPE_DOUBLE, {.dbl = -3.01029995663978}, -10.0, 0.0, A|F },
174  { "target", "set a specific target level in LUFS (-23 to 0)", OFFSET(target), AV_OPT_TYPE_INT, {.i64 = -23}, -23, 0, V|F },
175  { "gauge", "set gauge display type", OFFSET(gauge_type), AV_OPT_TYPE_INT, {.i64 = 0 }, GAUGE_TYPE_MOMENTARY, GAUGE_TYPE_SHORTTERM, V|F, "gaugetype" },
176  { "momentary", "display momentary value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, "gaugetype" },
177  { "m", "display momentary value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, "gaugetype" },
178  { "shortterm", "display short-term value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, "gaugetype" },
179  { "s", "display short-term value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, "gaugetype" },
180  { "scale", "sets display method for the stats", OFFSET(scale), AV_OPT_TYPE_INT, {.i64 = 0}, SCALE_TYPE_ABSOLUTE, SCALE_TYPE_RELATIVE, V|F, "scaletype" },
181  { "absolute", "display absolute values (LUFS)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, "scaletype" },
182  { "LUFS", "display absolute values (LUFS)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, "scaletype" },
183  { "relative", "display values relative to target (LU)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, "scaletype" },
184  { "LU", "display values relative to target (LU)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, "scaletype" },
185  { NULL },
186 };
187 
188 AVFILTER_DEFINE_CLASS(ebur128);
189 
190 static const uint8_t graph_colors[] = {
191  0xdd, 0x66, 0x66, // value above 1LU non reached below -1LU (impossible)
192  0x66, 0x66, 0xdd, // value below 1LU non reached below -1LU
193  0x96, 0x33, 0x33, // value above 1LU reached below -1LU (impossible)
194  0x33, 0x33, 0x96, // value below 1LU reached below -1LU
195  0xdd, 0x96, 0x96, // value above 1LU line non reached below -1LU (impossible)
196  0x96, 0x96, 0xdd, // value below 1LU line non reached below -1LU
197  0xdd, 0x33, 0x33, // value above 1LU line reached below -1LU (impossible)
198  0x33, 0x33, 0xdd, // value below 1LU line reached below -1LU
199  0xdd, 0x66, 0x66, // value above 1LU non reached above -1LU
200  0x66, 0xdd, 0x66, // value below 1LU non reached above -1LU
201  0x96, 0x33, 0x33, // value above 1LU reached above -1LU
202  0x33, 0x96, 0x33, // value below 1LU reached above -1LU
203  0xdd, 0x96, 0x96, // value above 1LU line non reached above -1LU
204  0x96, 0xdd, 0x96, // value below 1LU line non reached above -1LU
205  0xdd, 0x33, 0x33, // value above 1LU line reached above -1LU
206  0x33, 0xdd, 0x33, // value below 1LU line reached above -1LU
207 };
208 
209 static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
210 {
211  const int above_opt_max = y > ebur128->y_opt_max;
212  const int below_opt_min = y < ebur128->y_opt_min;
213  const int reached = y >= v;
214  const int line = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
215  const int colorid = 8*below_opt_min+ 4*line + 2*reached + above_opt_max;
216  return graph_colors + 3*colorid;
217 }
218 
219 static inline int lu_to_y(const EBUR128Context *ebur128, double v)
220 {
221  v += 2 * ebur128->meter; // make it in range [0;...]
222  v = av_clipf(v, 0, ebur128->scale_range); // make sure it's in the graph scale
223  v = ebur128->scale_range - v; // invert value (y=0 is on top)
224  return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
225 }
226 
227 #define FONT8 0
228 #define FONT16 1
229 
230 static const uint8_t font_colors[] = {
231  0xdd, 0xdd, 0x00,
232  0x00, 0x96, 0x96,
233 };
234 
235 static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
236 {
237  int i;
238  char buf[128] = {0};
239  const uint8_t *font;
240  int font_height;
241  va_list vl;
242 
243  if (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
244  else if (ftid == FONT8) font = avpriv_cga_font, font_height = 8;
245  else return;
246 
247  va_start(vl, fmt);
248  vsnprintf(buf, sizeof(buf), fmt, vl);
249  va_end(vl);
250 
251  for (i = 0; buf[i]; i++) {
252  int char_y, mask;
253  uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
254 
255  for (char_y = 0; char_y < font_height; char_y++) {
256  for (mask = 0x80; mask; mask >>= 1) {
257  if (font[buf[i] * font_height + char_y] & mask)
258  memcpy(p, color, 3);
259  else
260  memcpy(p, "\x00\x00\x00", 3);
261  p += 3;
262  }
263  p += pic->linesize[0] - 8*3;
264  }
265  }
266 }
267 
268 static void drawline(AVFrame *pic, int x, int y, int len, int step)
269 {
270  int i;
271  uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
272 
273  for (i = 0; i < len; i++) {
274  memcpy(p, "\x00\xff\x00", 3);
275  p += step;
276  }
277 }
278 
279 static int config_video_output(AVFilterLink *outlink)
280 {
281  int i, x, y;
282  uint8_t *p;
283  AVFilterContext *ctx = outlink->src;
284  EBUR128Context *ebur128 = ctx->priv;
285  AVFrame *outpicref;
286 
287  /* check if there is enough space to represent everything decently */
288  if (ebur128->w < 640 || ebur128->h < 480) {
289  av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
290  "minimum size is 640x480\n", ebur128->w, ebur128->h);
291  return AVERROR(EINVAL);
292  }
293  outlink->w = ebur128->w;
294  outlink->h = ebur128->h;
295  outlink->sample_aspect_ratio = (AVRational){1,1};
296 
297 #define PAD 8
298 
299  /* configure text area position and size */
300  ebur128->text.x = PAD;
301  ebur128->text.y = 40;
302  ebur128->text.w = 3 * 8; // 3 characters
303  ebur128->text.h = ebur128->h - PAD - ebur128->text.y;
304 
305  /* configure gauge position and size */
306  ebur128->gauge.w = 20;
307  ebur128->gauge.h = ebur128->text.h;
308  ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
309  ebur128->gauge.y = ebur128->text.y;
310 
311  /* configure graph position and size */
312  ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
313  ebur128->graph.y = ebur128->gauge.y;
314  ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
315  ebur128->graph.h = ebur128->gauge.h;
316 
317  /* graph and gauge share the LU-to-pixel code */
318  av_assert0(ebur128->graph.h == ebur128->gauge.h);
319 
320  /* prepare the initial picref buffer */
321  av_frame_free(&ebur128->outpicref);
322  ebur128->outpicref = outpicref =
323  ff_get_video_buffer(outlink, outlink->w, outlink->h);
324  if (!outpicref)
325  return AVERROR(ENOMEM);
326  outpicref->sample_aspect_ratio = (AVRational){1,1};
327 
328  /* init y references values (to draw LU lines) */
329  ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
330  if (!ebur128->y_line_ref)
331  return AVERROR(ENOMEM);
332 
333  /* black background */
334  memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
335 
336  /* draw LU legends */
337  drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
338  for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
339  y = lu_to_y(ebur128, i);
340  x = PAD + (i < 10 && i > -10) * 8;
341  ebur128->y_line_ref[y] = i;
342  y -= 4; // -4 to center vertically
343  drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
344  "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
345  }
346 
347  /* draw graph */
348  ebur128->y_zero_lu = lu_to_y(ebur128, 0);
349  ebur128->y_opt_max = lu_to_y(ebur128, 1);
350  ebur128->y_opt_min = lu_to_y(ebur128, -1);
351  p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
352  + ebur128->graph.x * 3;
353  for (y = 0; y < ebur128->graph.h; y++) {
354  const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
355 
356  for (x = 0; x < ebur128->graph.w; x++)
357  memcpy(p + x*3, c, 3);
358  p += outpicref->linesize[0];
359  }
360 
361  /* draw fancy rectangles around the graph and the gauge */
362 #define DRAW_RECT(r) do { \
363  drawline(outpicref, r.x, r.y - 1, r.w, 3); \
364  drawline(outpicref, r.x, r.y + r.h, r.w, 3); \
365  drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \
366  drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \
367 } while (0)
368  DRAW_RECT(ebur128->graph);
369  DRAW_RECT(ebur128->gauge);
370 
371  return 0;
372 }
373 
375 {
376  AVFilterContext *ctx = inlink->dst;
377  EBUR128Context *ebur128 = ctx->priv;
378 
379  /* Unofficial reversed parametrization of PRE
380  * and RLB from 48kHz */
381 
382  double f0 = 1681.974450955533;
383  double G = 3.999843853973347;
384  double Q = 0.7071752369554196;
385 
386  double K = tan(M_PI * f0 / (double)inlink->sample_rate);
387  double Vh = pow(10.0, G / 20.0);
388  double Vb = pow(Vh, 0.4996667741545416);
389 
390  double a0 = 1.0 + K / Q + K * K;
391 
392  ebur128->pre_b[0] = (Vh + Vb * K / Q + K * K) / a0;
393  ebur128->pre_b[1] = 2.0 * (K * K - Vh) / a0;
394  ebur128->pre_b[2] = (Vh - Vb * K / Q + K * K) / a0;
395  ebur128->pre_a[1] = 2.0 * (K * K - 1.0) / a0;
396  ebur128->pre_a[2] = (1.0 - K / Q + K * K) / a0;
397 
398  f0 = 38.13547087602444;
399  Q = 0.5003270373238773;
400  K = tan(M_PI * f0 / (double)inlink->sample_rate);
401 
402  ebur128->rlb_b[0] = 1.0;
403  ebur128->rlb_b[1] = -2.0;
404  ebur128->rlb_b[2] = 1.0;
405  ebur128->rlb_a[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
406  ebur128->rlb_a[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);
407 
408  /* Force 100ms framing in case of metadata injection: the frames must have
409  * a granularity of the window overlap to be accurately exploited.
410  * As for the true peaks mode, it just simplifies the resampling buffer
411  * allocation and the lookup in it (since sample buffers differ in size, it
412  * can be more complex to integrate in the one-sample loop of
413  * filter_frame()). */
414  if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS))
415  inlink->min_samples =
416  inlink->max_samples = inlink->sample_rate / 10;
417  return 0;
418 }
419 
420 static int config_audio_output(AVFilterLink *outlink)
421 {
422  int i;
423  AVFilterContext *ctx = outlink->src;
424  EBUR128Context *ebur128 = ctx->priv;
426 
427 #define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \
428  AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
429  AV_CH_SIDE_LEFT |AV_CH_SIDE_RIGHT| \
430  AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT)
431 
432  ebur128->nb_channels = nb_channels;
433  ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
434  if (!ebur128->ch_weighting)
435  return AVERROR(ENOMEM);
436 
437 #define I400_BINS(x) ((x) * 4 / 10)
438 #define I3000_BINS(x) ((x) * 3)
439 
440  for (i = 0; i < nb_channels; i++) {
441  /* channel weighting */
442  const uint64_t chl = av_channel_layout_extract_channel(outlink->channel_layout, i);
444  ebur128->ch_weighting[i] = 0;
445  } else if (chl & BACK_MASK) {
446  ebur128->ch_weighting[i] = 1.41;
447  } else {
448  ebur128->ch_weighting[i] = 1.0;
449  }
450 
451  if (!ebur128->ch_weighting[i])
452  continue;
453 
454  /* bins buffer for the two integration window (400ms and 3s) */
455  ebur128->i400.cache_size = I400_BINS(outlink->sample_rate);
456  ebur128->i3000.cache_size = I3000_BINS(outlink->sample_rate);
457  ebur128->i400.cache[i] = av_calloc(ebur128->i400.cache_size, sizeof(*ebur128->i400.cache[0]));
458  ebur128->i3000.cache[i] = av_calloc(ebur128->i3000.cache_size, sizeof(*ebur128->i3000.cache[0]));
459  if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
460  return AVERROR(ENOMEM);
461  }
462 
463 #if CONFIG_SWRESAMPLE
464  if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
465  int ret;
466 
467  ebur128->swr_buf = av_malloc_array(nb_channels, 19200 * sizeof(double));
468  ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks));
469  ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame));
470  ebur128->swr_ctx = swr_alloc();
471  if (!ebur128->swr_buf || !ebur128->true_peaks ||
472  !ebur128->true_peaks_per_frame || !ebur128->swr_ctx)
473  return AVERROR(ENOMEM);
474 
475  av_opt_set_int(ebur128->swr_ctx, "in_channel_layout", outlink->channel_layout, 0);
476  av_opt_set_int(ebur128->swr_ctx, "in_sample_rate", outlink->sample_rate, 0);
477  av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0);
478 
479  av_opt_set_int(ebur128->swr_ctx, "out_channel_layout", outlink->channel_layout, 0);
480  av_opt_set_int(ebur128->swr_ctx, "out_sample_rate", 192000, 0);
481  av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0);
482 
483  ret = swr_init(ebur128->swr_ctx);
484  if (ret < 0)
485  return ret;
486  }
487 #endif
488 
489  if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) {
490  ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks));
491  if (!ebur128->sample_peaks)
492  return AVERROR(ENOMEM);
493  }
494 
495  return 0;
496 }
497 
498 #define ENERGY(loudness) (ff_exp10(((loudness) + 0.691) / 10.))
499 #define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
500 #define DBFS(energy) (20 * log10(energy))
501 
502 static struct hist_entry *get_histogram(void)
503 {
504  int i;
505  struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
506 
507  if (!h)
508  return NULL;
509  for (i = 0; i < HIST_SIZE; i++) {
510  h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
511  h[i].energy = ENERGY(h[i].loudness);
512  }
513  return h;
514 }
515 
517 {
518  EBUR128Context *ebur128 = ctx->priv;
519  AVFilterPad pad;
520  int ret;
521 
522  if (ebur128->loglevel != AV_LOG_INFO &&
523  ebur128->loglevel != AV_LOG_VERBOSE) {
524  if (ebur128->do_video || ebur128->metadata)
525  ebur128->loglevel = AV_LOG_VERBOSE;
526  else
527  ebur128->loglevel = AV_LOG_INFO;
528  }
529 
530  if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) {
532  "True-peak mode requires libswresample to be performed\n");
533  return AVERROR(EINVAL);
534  }
535 
536  // if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9)
537  // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
538  ebur128->scale_range = 3 * ebur128->meter;
539 
540  ebur128->i400.histogram = get_histogram();
541  ebur128->i3000.histogram = get_histogram();
542  if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
543  return AVERROR(ENOMEM);
544 
545  ebur128->integrated_loudness = ABS_THRES;
546  ebur128->loudness_range = 0;
547 
548  /* insert output pads */
549  if (ebur128->do_video) {
550  pad = (AVFilterPad){
551  .name = "out0",
552  .type = AVMEDIA_TYPE_VIDEO,
553  .config_props = config_video_output,
554  };
555  ret = ff_append_outpad(ctx, &pad);
556  if (ret < 0)
557  return ret;
558  }
559  pad = (AVFilterPad){
560  .name = ebur128->do_video ? "out1" : "out0",
561  .type = AVMEDIA_TYPE_AUDIO,
562  .config_props = config_audio_output,
563  };
564  ret = ff_append_outpad(ctx, &pad);
565  if (ret < 0)
566  return ret;
567 
568  /* summary */
569  av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
570 
571  return 0;
572 }
573 
574 #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
575 
576 /* loudness and power should be set such as loudness = -0.691 +
577  * 10*log10(power), we just avoid doing that calculus two times */
578 static int gate_update(struct integrator *integ, double power,
579  double loudness, int gate_thres)
580 {
581  int ipower;
582  double relative_threshold;
583  int gate_hist_pos;
584 
585  /* update powers histograms by incrementing current power count */
586  ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
587  integ->histogram[ipower].count++;
588 
589  /* compute relative threshold and get its position in the histogram */
590  integ->sum_kept_powers += power;
591  integ->nb_kept_powers++;
592  relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
593  if (!relative_threshold)
594  relative_threshold = 1e-12;
595  integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
596  gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
597 
598  return gate_hist_pos;
599 }
600 
601 static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
602 {
603  int i, ch, idx_insample;
604  AVFilterContext *ctx = inlink->dst;
605  EBUR128Context *ebur128 = ctx->priv;
606  const int nb_channels = ebur128->nb_channels;
607  const int nb_samples = insamples->nb_samples;
608  const double *samples = (double *)insamples->data[0];
609  AVFrame *pic = ebur128->outpicref;
610 
611 #if CONFIG_SWRESAMPLE
612  if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
613  const double *swr_samples = ebur128->swr_buf;
614  int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200,
615  (const uint8_t **)insamples->data, nb_samples);
616  if (ret < 0)
617  return ret;
618  for (ch = 0; ch < nb_channels; ch++)
619  ebur128->true_peaks_per_frame[ch] = 0.0;
620  for (idx_insample = 0; idx_insample < ret; idx_insample++) {
621  for (ch = 0; ch < nb_channels; ch++) {
622  ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], fabs(*swr_samples));
623  ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch],
624  fabs(*swr_samples));
625  swr_samples++;
626  }
627  }
628  }
629 #endif
630 
631  for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) {
632  const int bin_id_400 = ebur128->i400.cache_pos;
633  const int bin_id_3000 = ebur128->i3000.cache_pos;
634 
635 #define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \
636  ebur128->i##time.cache_pos++; \
637  if (ebur128->i##time.cache_pos == \
638  ebur128->i##time.cache_size) { \
639  ebur128->i##time.filled = 1; \
640  ebur128->i##time.cache_pos = 0; \
641  } \
642 } while (0)
643 
646 
647  for (ch = 0; ch < nb_channels; ch++) {
648  double bin;
649 
650  if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS)
651  ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], fabs(*samples));
652 
653  ebur128->x[ch * 3] = *samples++; // set X[i]
654 
655  if (!ebur128->ch_weighting[ch])
656  continue;
657 
658  /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
659 #define FILTER(Y, X, NUM, DEN) do { \
660  double *dst = ebur128->Y + ch*3; \
661  double *src = ebur128->X + ch*3; \
662  dst[2] = dst[1]; \
663  dst[1] = dst[0]; \
664  dst[0] = src[0]*NUM[0] + src[1]*NUM[1] + src[2]*NUM[2] \
665  - dst[1]*DEN[1] - dst[2]*DEN[2]; \
666 } while (0)
667 
668  // TODO: merge both filters in one?
669  FILTER(y, x, ebur128->pre_b, ebur128->pre_a); // apply pre-filter
670  ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
671  ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3 ];
672  FILTER(z, y, ebur128->rlb_b, ebur128->rlb_a); // apply RLB-filter
673 
674  bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
675 
676  /* add the new value, and limit the sum to the cache size (400ms or 3s)
677  * by removing the oldest one */
678  ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
679  ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
680 
681  /* override old cache entry with the new value */
682  ebur128->i400.cache [ch][bin_id_400 ] = bin;
683  ebur128->i3000.cache[ch][bin_id_3000] = bin;
684  }
685 
686  /* For integrated loudness, gating blocks are 400ms long with 75%
687  * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
688  * (4800 samples at 48kHz). */
689  if (++ebur128->sample_count == inlink->sample_rate / 10) {
690  double loudness_400, loudness_3000;
691  double power_400 = 1e-12, power_3000 = 1e-12;
692  AVFilterLink *outlink = ctx->outputs[0];
693  const int64_t pts = insamples->pts +
694  av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
695  outlink->time_base);
696 
697  ebur128->sample_count = 0;
698 
699 #define COMPUTE_LOUDNESS(m, time) do { \
700  if (ebur128->i##time.filled) { \
701  /* weighting sum of the last <time> ms */ \
702  for (ch = 0; ch < nb_channels; ch++) \
703  power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \
704  power_##time /= I##time##_BINS(inlink->sample_rate); \
705  } \
706  loudness_##time = LOUDNESS(power_##time); \
707 } while (0)
708 
709  COMPUTE_LOUDNESS(M, 400);
710  COMPUTE_LOUDNESS(S, 3000);
711 
712  /* Integrated loudness */
713 #define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard
714 
715  if (loudness_400 >= ABS_THRES) {
716  double integrated_sum = 0;
717  int nb_integrated = 0;
718  int gate_hist_pos = gate_update(&ebur128->i400, power_400,
719  loudness_400, I_GATE_THRES);
720 
721  /* compute integrated loudness by summing the histogram values
722  * above the relative threshold */
723  for (i = gate_hist_pos; i < HIST_SIZE; i++) {
724  const int nb_v = ebur128->i400.histogram[i].count;
725  nb_integrated += nb_v;
726  integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
727  }
728  if (nb_integrated) {
729  ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
730  /* dual-mono correction */
731  if (nb_channels == 1 && ebur128->dual_mono) {
732  ebur128->integrated_loudness -= ebur128->pan_law;
733  }
734  }
735  }
736 
737  /* LRA */
738 #define LRA_GATE_THRES -20
739 #define LRA_LOWER_PRC 10
740 #define LRA_HIGHER_PRC 95
741 
742  /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
743  * specs is ">" */
744  if (loudness_3000 >= ABS_THRES) {
745  int nb_powers = 0;
746  int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
747  loudness_3000, LRA_GATE_THRES);
748 
749  for (i = gate_hist_pos; i < HIST_SIZE; i++)
750  nb_powers += ebur128->i3000.histogram[i].count;
751  if (nb_powers) {
752  int n, nb_pow;
753 
754  /* get lower loudness to consider */
755  n = 0;
756  nb_pow = LRA_LOWER_PRC * nb_powers / 100. + 0.5;
757  for (i = gate_hist_pos; i < HIST_SIZE; i++) {
758  n += ebur128->i3000.histogram[i].count;
759  if (n >= nb_pow) {
760  ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
761  break;
762  }
763  }
764 
765  /* get higher loudness to consider */
766  n = nb_powers;
767  nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5;
768  for (i = HIST_SIZE - 1; i >= 0; i--) {
769  n -= ebur128->i3000.histogram[i].count;
770  if (n < nb_pow) {
771  ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
772  break;
773  }
774  }
775 
776  // XXX: show low & high on the graph?
777  ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
778  }
779  }
780 
781  /* dual-mono correction */
782  if (nb_channels == 1 && ebur128->dual_mono) {
783  loudness_400 -= ebur128->pan_law;
784  loudness_3000 -= ebur128->pan_law;
785  }
786 
787 #define LOG_FMT "TARGET:%d LUFS M:%6.1f S:%6.1f I:%6.1f %s LRA:%6.1f LU"
788 
789  /* push one video frame */
790  if (ebur128->do_video) {
791  AVFrame *clone;
792  int x, y, ret;
793  uint8_t *p;
794  double gauge_value;
795  int y_loudness_lu_graph, y_loudness_lu_gauge;
796 
797  if (ebur128->gauge_type == GAUGE_TYPE_MOMENTARY) {
798  gauge_value = loudness_400 - ebur128->target;
799  } else {
800  gauge_value = loudness_3000 - ebur128->target;
801  }
802 
803  y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 - ebur128->target);
804  y_loudness_lu_gauge = lu_to_y(ebur128, gauge_value);
805 
806  /* draw the graph using the short-term loudness */
807  p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
808  for (y = 0; y < ebur128->graph.h; y++) {
809  const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
810 
811  memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
812  memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
813  p += pic->linesize[0];
814  }
815 
816  /* draw the gauge using either momentary or short-term loudness */
817  p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
818  for (y = 0; y < ebur128->gauge.h; y++) {
819  const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
820 
821  for (x = 0; x < ebur128->gauge.w; x++)
822  memcpy(p + x*3, c, 3);
823  p += pic->linesize[0];
824  }
825 
826  /* draw textual info */
827  if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
828  drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
829  LOG_FMT " ", // padding to erase trailing characters
830  ebur128->target, loudness_400, loudness_3000,
831  ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
832  } else {
833  drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
834  LOG_FMT " ", // padding to erase trailing characters
835  ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
836  ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
837  }
838 
839  /* set pts and push frame */
840  pic->pts = pts;
841  clone = av_frame_clone(pic);
842  if (!clone)
843  return AVERROR(ENOMEM);
844  ret = ff_filter_frame(outlink, clone);
845  if (ret < 0)
846  return ret;
847  }
848 
849  if (ebur128->metadata) { /* happens only once per filter_frame call */
850  char metabuf[128];
851 #define META_PREFIX "lavfi.r128."
852 
853 #define SET_META(name, var) do { \
854  snprintf(metabuf, sizeof(metabuf), "%.3f", var); \
855  av_dict_set(&insamples->metadata, name, metabuf, 0); \
856 } while (0)
857 
858 #define SET_META_PEAK(name, ptype) do { \
859  if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
860  char key[64]; \
861  for (ch = 0; ch < nb_channels; ch++) { \
862  snprintf(key, sizeof(key), \
863  META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch); \
864  SET_META(key, ebur128->name##_peaks[ch]); \
865  } \
866  } \
867 } while (0)
868 
869  SET_META(META_PREFIX "M", loudness_400);
870  SET_META(META_PREFIX "S", loudness_3000);
872  SET_META(META_PREFIX "LRA", ebur128->loudness_range);
873  SET_META(META_PREFIX "LRA.low", ebur128->lra_low);
874  SET_META(META_PREFIX "LRA.high", ebur128->lra_high);
875 
877  SET_META_PEAK(true, TRUE);
878  }
879 
880  if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
881  av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
882  av_ts2timestr(pts, &outlink->time_base),
883  ebur128->target, loudness_400, loudness_3000,
884  ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
885  } else {
886  av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
887  av_ts2timestr(pts, &outlink->time_base),
888  ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
889  ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
890  }
891 
892 #define PRINT_PEAKS(str, sp, ptype) do { \
893  if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
894  av_log(ctx, ebur128->loglevel, " " str ":"); \
895  for (ch = 0; ch < nb_channels; ch++) \
896  av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \
897  av_log(ctx, ebur128->loglevel, " dBFS"); \
898  } \
899 } while (0)
900 
901  PRINT_PEAKS("SPK", ebur128->sample_peaks, SAMPLES);
902  PRINT_PEAKS("FTPK", ebur128->true_peaks_per_frame, TRUE);
903  PRINT_PEAKS("TPK", ebur128->true_peaks, TRUE);
904  av_log(ctx, ebur128->loglevel, "\n");
905  }
906  }
907 
908  return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
909 }
910 
912 {
913  EBUR128Context *ebur128 = ctx->priv;
916  AVFilterLink *inlink = ctx->inputs[0];
917  AVFilterLink *outlink = ctx->outputs[0];
918  int ret;
919 
921  static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
922 
923  /* set optional output video format */
924  if (ebur128->do_video) {
926  if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
927  return ret;
928  outlink = ctx->outputs[1];
929  }
930 
931  /* set input and output audio formats
932  * Note: ff_set_common_* functions are not used because they affect all the
933  * links, and thus break the video format negotiation */
935  if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0 ||
936  (ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
937  return ret;
938 
940  if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0 ||
942  return ret;
943 
945  if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0 ||
946  (ret = ff_formats_ref(formats, &outlink->incfg.samplerates)) < 0)
947  return ret;
948 
949  return 0;
950 }
951 
953 {
954  int i;
955  EBUR128Context *ebur128 = ctx->priv;
956 
957  /* dual-mono correction */
958  if (ebur128->nb_channels == 1 && ebur128->dual_mono) {
959  ebur128->i400.rel_threshold -= ebur128->pan_law;
960  ebur128->i3000.rel_threshold -= ebur128->pan_law;
961  ebur128->lra_low -= ebur128->pan_law;
962  ebur128->lra_high -= ebur128->pan_law;
963  }
964 
965  av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
966  " Integrated loudness:\n"
967  " I: %5.1f LUFS\n"
968  " Threshold: %5.1f LUFS\n\n"
969  " Loudness range:\n"
970  " LRA: %5.1f LU\n"
971  " Threshold: %5.1f LUFS\n"
972  " LRA low: %5.1f LUFS\n"
973  " LRA high: %5.1f LUFS",
974  ebur128->integrated_loudness, ebur128->i400.rel_threshold,
975  ebur128->loudness_range, ebur128->i3000.rel_threshold,
976  ebur128->lra_low, ebur128->lra_high);
977 
978 #define PRINT_PEAK_SUMMARY(str, sp, ptype) do { \
979  int ch; \
980  double maxpeak; \
981  maxpeak = 0.0; \
982  if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
983  for (ch = 0; ch < ebur128->nb_channels; ch++) \
984  maxpeak = FFMAX(maxpeak, sp[ch]); \
985  av_log(ctx, AV_LOG_INFO, "\n\n " str " peak:\n" \
986  " Peak: %5.1f dBFS", \
987  DBFS(maxpeak)); \
988  } \
989 } while (0)
990 
991  PRINT_PEAK_SUMMARY("Sample", ebur128->sample_peaks, SAMPLES);
992  PRINT_PEAK_SUMMARY("True", ebur128->true_peaks, TRUE);
993  av_log(ctx, AV_LOG_INFO, "\n");
994 
995  av_freep(&ebur128->y_line_ref);
996  av_freep(&ebur128->ch_weighting);
997  av_freep(&ebur128->true_peaks);
998  av_freep(&ebur128->sample_peaks);
999  av_freep(&ebur128->true_peaks_per_frame);
1000  av_freep(&ebur128->i400.histogram);
1001  av_freep(&ebur128->i3000.histogram);
1002  for (i = 0; i < ebur128->nb_channels; i++) {
1003  av_freep(&ebur128->i400.cache[i]);
1004  av_freep(&ebur128->i3000.cache[i]);
1005  }
1006  av_frame_free(&ebur128->outpicref);
1007 #if CONFIG_SWRESAMPLE
1008  av_freep(&ebur128->swr_buf);
1009  swr_free(&ebur128->swr_ctx);
1010 #endif
1011 }
1012 
1013 static const AVFilterPad ebur128_inputs[] = {
1014  {
1015  .name = "default",
1016  .type = AVMEDIA_TYPE_AUDIO,
1017  .filter_frame = filter_frame,
1018  .config_props = config_audio_input,
1019  },
1020 };
1021 
1023  .name = "ebur128",
1024  .description = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
1025  .priv_size = sizeof(EBUR128Context),
1026  .init = init,
1027  .uninit = uninit,
1029  .outputs = NULL,
1031  .priv_class = &ebur128_class,
1033 };
M
#define M(a, b)
Definition: vp3dsp.c:48
formats
formats
Definition: signature.h:48
rect::w
int w
Definition: f_ebur128.c:77
ff_get_video_buffer
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:98
AVFilterChannelLayouts
A list of supported channel layouts.
Definition: formats.h:85
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
AVFilterFormatsConfig::samplerates
AVFilterFormats * samplerates
Lists of supported sample rates, only for audio.
Definition: avfilter.h:511
EBUR128Context::dual_mono
int dual_mono
whether or not to treat single channel input files as dual-mono
Definition: f_ebur128.c:133
av_clip
#define av_clip
Definition: common.h:96
V
#define V
Definition: f_ebur128.c:158
PEAK_MODE_NONE
@ PEAK_MODE_NONE
Definition: f_ebur128.c:141
EBUR128Context::ch_weighting
double * ch_weighting
channel weighting mapping
Definition: f_ebur128.c:109
EBUR128Context::y_opt_min
int y_opt_min
the y value (pixel position) for -1 LU
Definition: f_ebur128.c:104
SCALE_TYPE_ABSOLUTE
@ SCALE_TYPE_ABSOLUTE
Definition: f_ebur128.c:152
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
integrator::filled
int filled
1 if the cache is completely filled, 0 otherwise
Definition: f_ebur128.c:70
integrator
Definition: f_ebur128.c:65
EBUR128Context::gauge_type
int gauge_type
whether gauge shows momentary or short
Definition: f_ebur128.c:136
ff_make_format_list
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:381
EBUR128Context::y_opt_max
int y_opt_max
the y value (pixel position) for 1 LU
Definition: f_ebur128.c:103
SET_META_PEAK
#define SET_META_PEAK(name, ptype)
AVFilterFormatsConfig::channel_layouts
AVFilterChannelLayouts * channel_layouts
Lists of supported channel layouts, only for audio.
Definition: avfilter.h:516
PRINT_PEAKS
#define PRINT_PEAKS(str, sp, ptype)
get_graph_color
static const uint8_t * get_graph_color(const EBUR128Context *ebur128, int v, int y)
Definition: f_ebur128.c:209
A
#define A
Definition: f_ebur128.c:157
color
Definition: vf_paletteuse.c:599
GAUGE_TYPE_SHORTTERM
@ GAUGE_TYPE_SHORTTERM
Definition: f_ebur128.c:148
AV_CH_LOW_FREQUENCY_2
#define AV_CH_LOW_FREQUENCY_2
Definition: channel_layout.h:73
ff_filter_frame
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1018
sample_fmts
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:948
ff_channel_layouts_ref
int ff_channel_layouts_ref(AVFilterChannelLayouts *f, AVFilterChannelLayouts **ref)
Add *ref as a new reference to f.
Definition: formats.c:550
layouts
enum MovChannelLayoutTag * layouts
Definition: mov_chan.c:434
EBUR128Context::do_video
int do_video
1 if video output enabled, 0 otherwise
Definition: f_ebur128.c:94
rect
Definition: f_ebur128.c:77
HIST_SIZE
#define HIST_SIZE
Definition: f_ebur128.c:50
EBUR128Context::sample_count
int sample_count
sample count used for refresh frequency, reset at refresh
Definition: f_ebur128.c:110
inlink
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
Definition: filter_design.txt:212
hist_entry::count
int count
how many times the corresponding value occurred
Definition: f_ebur128.c:60
rect::y
int y
Definition: f_ebur128.c:77
av_frame_free
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:109
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:317
AVFrame::pts
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:424
step
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
Definition: rate_distortion.txt:58
w
uint8_t w
Definition: llviddspenc.c:38
AVOption
AVOption.
Definition: opt.h:247
AVFILTER_DEFINE_CLASS
AVFILTER_DEFINE_CLASS(ebur128)
I_GATE_THRES
#define I_GATE_THRES
FILTER_QUERY_FUNC
#define FILTER_QUERY_FUNC(func)
Definition: internal.h:168
ebur128_options
static const AVOption ebur128_options[]
Definition: f_ebur128.c:160
F
#define F
Definition: f_ebur128.c:159
AV_LOG_VERBOSE
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:196
init
static av_cold int init(AVFilterContext *ctx)
Definition: f_ebur128.c:516
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
AVFilter::name
const char * name
Filter name.
Definition: avfilter.h:169
config_audio_output
static int config_audio_output(AVFilterLink *outlink)
Definition: f_ebur128.c:420
integrator::sum_kept_powers
double sum_kept_powers
sum of the powers (weighted sums) above absolute threshold
Definition: f_ebur128.c:72
EBUR128Context::z
double z[MAX_CHANNELS *3]
3 RLB-filter samples cache for each channel
Definition: f_ebur128.c:116
LRA_HIGHER_PRC
#define LRA_HIGHER_PRC
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:338
AVFilterFormats
A list of supported formats for one end of a filter link.
Definition: formats.h:64
formats.h
integrator::cache
double * cache[MAX_CHANNELS]
window of filtered samples (N ms)
Definition: f_ebur128.c:66
S
#define S(s, c, i)
Definition: flacdsp_template.c:46
uninit
static av_cold void uninit(AVFilterContext *ctx)
Definition: f_ebur128.c:952
FONT8
#define FONT8
Definition: f_ebur128.c:227
EBUR128Context::pan_law
double pan_law
pan law value used to calculate dual-mono measurements
Definition: f_ebur128.c:134
EBUR128Context::rlb_b
double rlb_b[3]
rlb-filter numerator coefficients
Definition: f_ebur128.c:119
drawline
static void drawline(AVFrame *pic, int x, int y, int len, int step)
Definition: f_ebur128.c:268
get_histogram
static struct hist_entry * get_histogram(void)
Definition: f_ebur128.c:502
EBUR128Context::scale
int scale
display scale type of statistics
Definition: f_ebur128.c:137
query_formats
static int query_formats(AVFilterContext *ctx)
Definition: f_ebur128.c:911
LRA_GATE_THRES
#define LRA_GATE_THRES
EBUR128Context::rlb_a
double rlb_a[3]
rlb-filter denominator coefficients
Definition: f_ebur128.c:120
scale
static av_always_inline float scale(float x, float s)
Definition: vf_v360.c:1388
pts
static int64_t pts
Definition: transcode_aac.c:653
integrator::cache_pos
int cache_pos
focus on the last added bin in the cache array
Definition: f_ebur128.c:67
AVFilterPad
A filter pad used for either input or output.
Definition: internal.h:50
PEAK_MODE_TRUE_PEAKS
@ PEAK_MODE_TRUE_PEAKS
Definition: f_ebur128.c:143
font_colors
static const uint8_t font_colors[]
Definition: f_ebur128.c:230
avassert.h
EBUR128Context::metadata
int metadata
whether or not to inject loudness results in frames
Definition: f_ebur128.c:132
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:180
MOVE_TO_NEXT_CACHED_ENTRY
#define MOVE_TO_NEXT_CACHED_ENTRY(time)
av_cold
#define av_cold
Definition: attributes.h:90
FILTER
#define FILTER(Y, X, NUM, DEN)
EBUR128Context::graph
struct rect graph
rectangle for the main graph in the center
Definition: f_ebur128.c:97
filter_frame
static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
Definition: f_ebur128.c:601
OFFSET
#define OFFSET(x)
Definition: f_ebur128.c:156
swr_init
av_cold int swr_init(struct SwrContext *s)
Initialize context after user parameters have been set.
Definition: swresample.c:152
AV_CH_LOW_FREQUENCY
#define AV_CH_LOW_FREQUENCY
Definition: channel_layout.h:52
config_video_output
static int config_video_output(AVFilterLink *outlink)
Definition: f_ebur128.c:279
mask
static const uint16_t mask[17]
Definition: lzw.c:38
EBUR128Context::integrated_loudness
double integrated_loudness
integrated loudness in LUFS (I)
Definition: f_ebur128.c:126
EBUR128Context::w
int w
Definition: f_ebur128.c:95
FONT16
#define FONT16
Definition: f_ebur128.c:228
AV_OPT_TYPE_DOUBLE
@ AV_OPT_TYPE_DOUBLE
Definition: opt.h:226
AVMEDIA_TYPE_AUDIO
@ AVMEDIA_TYPE_AUDIO
Definition: avutil.h:202
ff_formats_ref
int ff_formats_ref(AVFilterFormats *f, AVFilterFormats **ref)
Add *ref as a new reference to formats.
Definition: formats.c:555
EBUR128Context::target
int target
target level in LUFS used to set relative zero LU in visualization
Definition: f_ebur128.c:135
swr_alloc
av_cold struct SwrContext * swr_alloc(void)
Allocate SwrContext.
Definition: options.c:150
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
pix_fmts
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:296
ctx
AVFormatContext * ctx
Definition: movenc.c:48
av_frame_clone
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
Definition: frame.c:422
av_rescale_q
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
Definition: mathematics.c:141
drawtext
static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt,...)
Definition: f_ebur128.c:235
SwrContext
The libswresample context.
Definition: swresample_internal.h:95
hist_entry::loudness
double loudness
L = -0.691 + 10 * log10(E)
Definition: f_ebur128.c:62
FILTER_INPUTS
#define FILTER_INPUTS(array)
Definition: internal.h:191
EBUR128Context::true_peaks_per_frame
double * true_peaks_per_frame
true peaks in a frame per channel
Definition: f_ebur128.c:86
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:65
if
if(ret)
Definition: filter_design.txt:179
EBUR128Context::sample_peaks
double * sample_peaks
sample peaks per channel
Definition: f_ebur128.c:85
HIST_GRAIN
#define HIST_GRAIN
defines histogram precision
Definition: f_ebur128.c:49
I400_BINS
#define I400_BINS(x)
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:66
fabs
static __device__ float fabs(float a)
Definition: cuda_runtime.h:182
NULL
#define NULL
Definition: coverity.c:32
EBUR128Context::peak_mode
int peak_mode
enabled peak modes
Definition: f_ebur128.c:83
HIST_POS
#define HIST_POS(power)
Definition: f_ebur128.c:574
AVRational
Rational number (pair of numerator and denominator).
Definition: rational.h:58
AV_OPT_TYPE_IMAGE_SIZE
@ AV_OPT_TYPE_IMAGE_SIZE
offset must point to two consecutive integers
Definition: opt.h:234
av_clipf
#define av_clipf
Definition: common.h:144
EBUR128Context::pre_b
double pre_b[3]
pre-filter numerator coefficients
Definition: f_ebur128.c:117
LOG_FMT
#define LOG_FMT
EBUR128Context::gauge
struct rect gauge
rectangle for the gauge on the right
Definition: f_ebur128.c:98
swresample.h
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
av_get_channel_layout_nb_channels
int av_get_channel_layout_nb_channels(uint64_t channel_layout)
Return the number of channels in the channel layout.
Definition: channel_layout.c:226
av_opt_set_int
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
Definition: opt.c:589
EBUR128Context
Definition: f_ebur128.c:79
for
for(j=16;j >0;--j)
Definition: h264pred_template.c:469
AVFILTER_FLAG_DYNAMIC_OUTPUTS
#define AVFILTER_FLAG_DYNAMIC_OUTPUTS
The number of the filter outputs is not determined just by AVFilter.outputs.
Definition: avfilter.h:116
EBUR128Context::pre_a
double pre_a[3]
pre-filter denominator coefficients
Definition: f_ebur128.c:118
EBUR128Context::y_zero_lu
int y_zero_lu
the y value (pixel position) for 0 LU
Definition: f_ebur128.c:102
EBUR128Context::i3000
struct integrator i3000
3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
Definition: f_ebur128.c:123
ENERGY
#define ENERGY(loudness)
Definition: f_ebur128.c:498
AV_PIX_FMT_RGB24
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
av_ts2timestr
#define av_ts2timestr(ts, tb)
Convenience macro, the return value should be used only directly in function arguments but never stan...
Definition: timestamp.h:76
NULL_IF_CONFIG_SMALL
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
AV_SAMPLE_FMT_NONE
@ AV_SAMPLE_FMT_NONE
Definition: samplefmt.h:59
sample
#define sample
Definition: flacdsp_template.c:44
rect::h
int h
Definition: f_ebur128.c:77
swr_free
av_cold void swr_free(SwrContext **ss)
Free the given SwrContext and set the pointer to NULL.
Definition: swresample.c:137
MAX_CHANNELS
#define MAX_CHANNELS
Definition: f_ebur128.c:45
swr_convert
int attribute_align_arg swr_convert(struct SwrContext *s, uint8_t **out_arg, int out_count, const uint8_t **in_arg, int in_count)
Convert audio.
Definition: swresample.c:716
EBUR128Context::outpicref
AVFrame * outpicref
output picture reference, updated regularly
Definition: f_ebur128.c:99
line
Definition: graph2dot.c:48
xga_font_data.h
EBUR128Context::y
double y[MAX_CHANNELS *3]
3 pre-filter samples cache for each channel
Definition: f_ebur128.c:115
ff_all_channel_layouts
AVFilterChannelLayouts * ff_all_channel_layouts(void)
Construct an empty AVFilterChannelLayouts/AVFilterFormats struct – representing any channel layout (w...
Definition: formats.c:516
rect::x
int x
Definition: f_ebur128.c:77
EBUR128Context::h
int h
size of the video output
Definition: f_ebur128.c:95
a0
#define a0
Definition: regdef.h:46
M_PI
#define M_PI
Definition: mathematics.h:52
I3000_BINS
#define I3000_BINS(x)
AV_LOG_INFO
#define AV_LOG_INFO
Standard information.
Definition: log.h:191
internal.h
PRINT_PEAK_SUMMARY
#define PRINT_PEAK_SUMMARY(str, sp, ptype)
AVFrame::nb_samples
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:397
avpriv_vga16_font
const uint8_t avpriv_vga16_font[4096]
Definition: xga_font_data.c:160
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:271
EBUR128Context::text
struct rect text
rectangle for the LU legend on the left
Definition: f_ebur128.c:96
av_channel_layout_extract_channel
uint64_t av_channel_layout_extract_channel(uint64_t channel_layout, int index)
Get the channel with the given index in channel_layout.
Definition: channel_layout.c:271
EBUR128Context::y_line_ref
int * y_line_ref
y reference values for drawing the LU lines in the graph and the gauge
Definition: f_ebur128.c:105
av_malloc_array
#define av_malloc_array(a, b)
Definition: tableprint_vlc.h:32
vsnprintf
#define vsnprintf
Definition: snprintf.h:36
AVSampleFormat
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
integrator::rel_threshold
double rel_threshold
relative threshold
Definition: f_ebur128.c:71
ABS_THRES
#define ABS_THRES
silence gate: we discard anything below this absolute (LUFS) threshold
Definition: f_ebur128.c:47
len
int len
Definition: vorbis_enc_data.h:426
AVFilterPad::name
const char * name
Pad name.
Definition: internal.h:56
integrator::nb_kept_powers
int nb_kept_powers
number of sum above absolute threshold
Definition: f_ebur128.c:73
EBUR128Context::true_peaks
double * true_peaks
true peaks per channel
Definition: f_ebur128.c:84
av_calloc
void * av_calloc(size_t nmemb, size_t size)
Definition: mem.c:271
EBUR128Context::loudness_range
double loudness_range
loudness range in LU (LRA)
Definition: f_ebur128.c:127
AVFilter
Filter definition.
Definition: avfilter.h:165
hist_entry::energy
double energy
E = 10^((L + 0.691) / 10)
Definition: f_ebur128.c:61
graph_colors
static const uint8_t graph_colors[]
Definition: f_ebur128.c:190
G
#define G
Definition: huffyuvdsp.h:33
ret
ret
Definition: filter_design.txt:187
EBUR128Context::lra_low
double lra_low
Definition: f_ebur128.c:128
LRA_LOWER_PRC
#define LRA_LOWER_PRC
dict.h
EBUR128Context::lra_high
double lra_high
low and high LRA values
Definition: f_ebur128.c:128
SCALE_TYPE_RELATIVE
@ SCALE_TYPE_RELATIVE
Definition: f_ebur128.c:153
AVFrame::sample_aspect_ratio
AVRational sample_aspect_ratio
Sample aspect ratio for the video frame, 0/1 if unknown/unspecified.
Definition: frame.h:419
ff_af_ebur128
const AVFilter ff_af_ebur128
Definition: f_ebur128.c:1022
EBUR128Context::scale_range
int scale_range
the range of LU values according to the meter
Definition: f_ebur128.c:101
ff_all_samplerates
AVFilterFormats * ff_all_samplerates(void)
Definition: formats.c:510
META_PREFIX
#define META_PREFIX
power
static float power(float r, float g, float b, float max)
Definition: preserve_color.h:45
SET_META
#define SET_META(name, var)
channel_layout.h
SAMPLES
#define SAMPLES
LOUDNESS
#define LOUDNESS(energy)
Definition: f_ebur128.c:499
EBUR128Context::meter
int meter
select a EBU mode between +9 and +18
Definition: f_ebur128.c:100
PAD
#define PAD
AV_PIX_FMT_NONE
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
GAUGE_TYPE_MOMENTARY
@ GAUGE_TYPE_MOMENTARY
Definition: f_ebur128.c:147
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Definition: opt.h:224
avfilter.h
normalize.loudness
int loudness
Definition: normalize.py:20
samples
Filter the word “frame” indicates either a video frame or a group of audio samples
Definition: filter_design.txt:8
ffmath.h
AVFilterContext
An instance of a filter.
Definition: avfilter.h:402
AVMEDIA_TYPE_VIDEO
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
audio.h
AVFilterFormatsConfig::formats
AVFilterFormats * formats
List of supported formats (pixel or sample).
Definition: avfilter.h:506
ebur128_inputs
static const AVFilterPad ebur128_inputs[]
Definition: f_ebur128.c:1013
ff_append_outpad
int ff_append_outpad(AVFilterContext *f, AVFilterPad *p)
Definition: avfilter.c:150
avpriv_cga_font
const uint8_t avpriv_cga_font[2048]
Definition: xga_font_data.c:29
DRAW_RECT
#define DRAW_RECT(r)
AV_OPT_TYPE_BOOL
@ AV_OPT_TYPE_BOOL
Definition: opt.h:241
EBUR128Context::nb_channels
int nb_channels
number of channels in the input
Definition: f_ebur128.c:108
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:35
EBUR128Context::i400
struct integrator i400
400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
Definition: f_ebur128.c:122
AV_OPT_TYPE_FLAGS
@ AV_OPT_TYPE_FLAGS
Definition: opt.h:223
timestamp.h
AVFrame::linesize
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
Definition: frame.h:362
config_audio_input
static int config_audio_input(AVFilterLink *inlink)
Definition: f_ebur128.c:374
integrator::histogram
struct hist_entry * histogram
histogram of the powers, used to compute LRA and I
Definition: f_ebur128.c:74
integrator::cache_size
int cache_size
Definition: f_ebur128.c:68
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:28
h
h
Definition: vp9dsp_template.c:2038
BACK_MASK
#define BACK_MASK
AV_SAMPLE_FMT_DBL
@ AV_SAMPLE_FMT_DBL
double
Definition: samplefmt.h:64
avstring.h
lu_to_y
static int lu_to_y(const EBUR128Context *ebur128, double v)
Definition: f_ebur128.c:219
av_opt_set_sample_fmt
int av_opt_set_sample_fmt(void *obj, const char *name, enum AVSampleFormat fmt, int search_flags)
Definition: opt.c:707
integrator::sum
double sum[MAX_CHANNELS]
sum of the last N ms filtered samples (cache content)
Definition: f_ebur128.c:69
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Definition: opt.h:233
EBUR128Context::loglevel
int loglevel
log level for frame logging
Definition: f_ebur128.c:131
EBUR128Context::x
double x[MAX_CHANNELS *3]
3 input samples cache for each channel
Definition: f_ebur128.c:114
PEAK_MODE_SAMPLES_PEAKS
@ PEAK_MODE_SAMPLES_PEAKS
Definition: f_ebur128.c:142
gate_update
static int gate_update(struct integrator *integ, double power, double loudness, int gate_thres)
Definition: f_ebur128.c:578
COMPUTE_LOUDNESS
#define COMPUTE_LOUDNESS(m, time)
nb_channels
int nb_channels
Definition: channel_layout.c:81
hist_entry
A histogram is an array of HIST_SIZE hist_entry storing all the energies recorded (with an accuracy o...
Definition: f_ebur128.c:59