Go to the documentation of this file.
26 for (
i = 0;
i < 2; ++
i) {
27 int n =
s->plane[
i].available_lines;
29 for (j = 0; j < n; ++j) {
32 s->plane[
i].line[j+n] =
NULL;
36 for (
i = 0;
i < 4; ++
i)
37 memset(
s->plane[
i].line, 0,
sizeof(uint8_t*) *
s->plane[
i].available_lines * (
s->is_ring ? 3 : 1));
38 s->should_free_lines = 0;
50 s->should_free_lines = 1;
53 for (
i = 0;
i < 2; ++
i) {
54 int n =
s->plane[
i].available_lines;
59 for (j = 0; j < n; ++j) {
63 if (!
s->plane[
i].line[j]) {
67 s->plane[ii].line[j] =
s->plane[
i].line[j] +
size + 16;
69 s->plane[
i].line[j+n] =
s->plane[
i].line[j];
70 s->plane[ii].line[j+n] =
s->plane[ii].line[j];
81 int size[4] = { lumLines,
86 s->h_chr_sub_sample = h_sub_sample;
87 s->v_chr_sub_sample = v_sub_sample;
90 s->should_free_lines = 0;
92 for (
i = 0;
i < 4; ++
i) {
93 int n =
size[
i] * ( ring == 0 ? 1 : 3);
95 if (!
s->plane[
i].line)
98 s->plane[
i].tmp = ring ?
s->plane[
i].line +
size[
i] * 2 :
NULL;
99 s->plane[
i].available_lines =
size[
i];
100 s->plane[
i].sliceY = 0;
101 s->plane[
i].sliceH = 0;
110 if (
s->should_free_lines)
112 for (
i = 0;
i < 4; ++
i) {
123 for (
i = 0;
i < 4;
i+=3) {
124 int n =
s->plane[
i].available_lines;
125 int l =
lum -
s->plane[
i].sliceY;
128 s->plane[
i].sliceY += n;
129 s->plane[
i].sliceH -= n;
134 for (
i = 1;
i < 3; ++
i) {
135 int n =
s->plane[
i].available_lines;
136 int l = chr -
s->plane[
i].sliceY;
139 s->plane[
i].sliceY += n;
140 s->plane[
i].sliceH -= n;
151 const int start[4] = {lumY,
156 const int end[4] = {lumY +lumH,
164 uint8_t *
const src_i =
src[
i] + (relative ? 0 : start[
i]) *
stride[
i];
166 int first =
s->plane[
i].sliceY;
167 int n =
s->plane[
i].available_lines;
168 int lines = end[
i] - start[
i];
169 int tot_lines = end[
i] -
first;
171 if (start[
i] >=
first && n >= tot_lines) {
172 s->plane[
i].sliceH =
FFMAX(tot_lines,
s->plane[
i].sliceH);
173 for (j = 0; j < lines; j+= 1)
176 s->plane[
i].sliceY = start[
i];
177 lines = lines > n ? n : lines;
178 s->plane[
i].sliceH = lines;
179 for (j = 0; j < lines; j+= 1)
180 s->plane[
i].line[j] = src_i + j *
stride[
i];
190 int i, j, k,
size, end;
192 for (
i = 0;
i < 4; ++
i) {
193 size =
s->plane[
i].available_lines;
194 for (j = 0; j <
size; ++j) {
197 for (k = 0; k < end; ++k)
198 ((
int32_t*)(
s->plane[
i].line[j]))[k] = 1<<18;
199 }
else if (bpc == 32) {
201 for (k = 0; k < end; ++k)
202 ((int64_t*)(
s->plane[
i].line[j]))[k] = 1LL<<34;
205 for (k = 0; k < end; ++k)
206 ((int16_t*)(
s->plane[
i].line[j]))[k] = 1<<14;
223 int chrDstH =
c->chrDstH;
224 int *lumFilterPos =
c->vLumFilterPos;
225 int *chrFilterPos =
c->vChrFilterPos;
226 int lumFilterSize =
c->vLumFilterSize;
227 int chrFilterSize =
c->vChrFilterSize;
228 int chrSubSample =
c->chrSrcVSubSample;
230 *out_lum_size = lumFilterSize;
231 *out_chr_size = chrFilterSize;
233 for (lumY = 0; lumY < dstH; lumY++) {
234 int chrY = (int64_t)lumY * chrDstH / dstH;
235 int nextSlice =
FFMAX(lumFilterPos[lumY] + lumFilterSize - 1,
236 ((chrFilterPos[chrY] + chrFilterSize - 1)
239 nextSlice >>= chrSubSample;
240 nextSlice <<= chrSubSample;
241 (*out_lum_size) =
FFMAX((*out_lum_size), nextSlice - lumFilterPos[lumY]);
242 (*out_chr_size) =
FFMAX((*out_chr_size), (nextSlice >> chrSubSample) - chrFilterPos[chrY]);
255 int need_lum_conv =
c->lumToYV12 ||
c->readLumPlanar ||
c->alpToYV12 ||
c->readAlpPlanar;
256 int need_chr_conv =
c->chrToYV12 ||
c->readChrPlanar;
257 int need_gamma =
c->is_internal_gamma;
259 int dst_stride =
FFALIGN(
c->dstW *
sizeof(int16_t) + 66, 16);
261 uint32_t * pal =
usePal(
c->srcFormat) ?
c->pal_yuv : (uint32_t*)
c->input_rgb2yuv_table;
277 num_ydesc = need_lum_conv ? 2 : 1;
278 num_cdesc = need_chr_conv ? 2 : 1;
280 c->numSlice =
FFMAX(num_ydesc, num_cdesc) + 2;
281 c->numDesc = num_ydesc + num_cdesc + num_vdesc + (need_gamma ? 2 : 0);
282 c->descIndex[0] = num_ydesc + (need_gamma ? 1 : 0);
283 c->descIndex[1] = num_ydesc + num_cdesc + (need_gamma ? 1 : 0);
296 res =
alloc_slice(&
c->slice[0],
c->srcFormat,
c->srcH,
c->chrSrcH,
c->chrSrcHSubSample,
c->chrSrcVSubSample, 0);
298 for (
i = 1;
i <
c->numSlice-2; ++
i) {
299 res =
alloc_slice(&
c->slice[
i],
c->srcFormat, lumBufSize, chrBufSize,
c->chrSrcHSubSample,
c->chrSrcVSubSample, 0);
305 res =
alloc_slice(&
c->slice[
i],
c->srcFormat, lumBufSize, chrBufSize,
c->chrDstHSubSample,
c->chrDstVSubSample, 1);
314 res =
alloc_slice(&
c->slice[
i],
c->dstFormat,
c->dstH,
c->chrDstH,
c->chrDstHSubSample,
c->chrDstVSubSample, 0);
330 c->desc[
index].alpha =
c->needAlpha;
336 dstIdx =
FFMAX(num_ydesc, num_cdesc);
339 c->desc[
index].alpha =
c->needAlpha;
353 dstIdx =
FFMAX(num_ydesc, num_cdesc);
354 if (
c->needs_hcscale)
363 srcIdx =
c->numSlice - 2;
364 dstIdx =
c->numSlice - 1;
386 for (
i = 0;
i <
c->numDesc; ++
i)
392 for (
i = 0;
i <
c->numSlice; ++
i)
int ff_init_desc_cfmt_convert(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint32_t *pal)
initializes chr pixel format conversion descriptor
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void fill_ones(SwsSlice *s, int n, int bpc)
static void get_min_buffer_size(SwsContext *c, int *out_lum_size, int *out_chr_size)
int ff_rotate_slice(SwsSlice *s, int lum, int chr)
static av_cold void cleanup(FlashSV2Context *s)
int ff_init_desc_hscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int *filter_pos, int filter_size, int xInc)
initializes lum horizontal scaling descriptor
int ff_init_desc_no_chr(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst)
int ff_init_filters(SwsContext *c)
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But first
#define av_assert0(cond)
assert() equivalent, that is always enabled.
int ff_init_desc_chscale(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint16_t *filter, int *filter_pos, int filter_size, int xInc)
initializes chr horizontal scaling descriptor
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static void free_lines(SwsSlice *s)
static int alloc_lines(SwsSlice *s, int size, int width)
static av_always_inline int usePal(enum AVPixelFormat pix_fmt)
static void free_slice(SwsSlice *s)
static int alloc_slice(SwsSlice *s, enum AVPixelFormat fmt, int lumLines, int chrLines, int h_sub_sample, int v_sub_sample, int ring)
#define i(width, name, range_min, range_max)
int ff_init_gamma_convert(SwsFilterDescriptor *desc, SwsSlice *src, uint16_t *table)
initializes gamma conversion descriptor
int ff_free_filters(SwsContext *c)
Struct which defines a slice of an image to be scaled or an output for a scaled slice.
void * av_calloc(size_t nmemb, size_t size)
int ff_init_slice_from_src(SwsSlice *s, uint8_t *src[4], int stride[4], int srcW, int lumY, int lumH, int chrY, int chrH, int relative)
static av_always_inline int isPlanarYUV(enum AVPixelFormat pix_fmt)
int ff_init_vscale(SwsContext *c, SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst)
initializes vertical scaling descriptors
static double lum(void *priv, double x, double y, int plane)
int ff_init_desc_fmt_convert(SwsFilterDescriptor *desc, SwsSlice *src, SwsSlice *dst, uint32_t *pal)
initializes lum pixel format conversion descriptor