FFmpeg
vf_overlay.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2010 Stefano Sabatini
3  * Copyright (c) 2010 Baptiste Coudurier
4  * Copyright (c) 2007 Bobby Bingham
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * overlay one video on top of another
26  */
27 
28 #include "avfilter.h"
29 #include "formats.h"
30 #include "libavutil/common.h"
31 #include "libavutil/eval.h"
32 #include "libavutil/avstring.h"
33 #include "libavutil/pixdesc.h"
34 #include "libavutil/imgutils.h"
35 #include "libavutil/mathematics.h"
36 #include "libavutil/opt.h"
37 #include "libavutil/timestamp.h"
38 #include "internal.h"
39 #include "drawutils.h"
40 #include "framesync.h"
41 #include "video.h"
42 #include "vf_overlay.h"
43 
44 typedef struct ThreadData {
45  AVFrame *dst, *src;
46 } ThreadData;
47 
48 static const char *const var_names[] = {
49  "main_w", "W", ///< width of the main video
50  "main_h", "H", ///< height of the main video
51  "overlay_w", "w", ///< width of the overlay video
52  "overlay_h", "h", ///< height of the overlay video
53  "hsub",
54  "vsub",
55  "x",
56  "y",
57  "n", ///< number of frame
58  "pos", ///< position in the file
59  "t", ///< timestamp expressed in seconds
60  NULL
61 };
62 
63 #define MAIN 0
64 #define OVERLAY 1
65 
66 #define R 0
67 #define G 1
68 #define B 2
69 #define A 3
70 
71 #define Y 0
72 #define U 1
73 #define V 2
74 
75 enum EvalMode {
79 };
80 
82 {
83  OverlayContext *s = ctx->priv;
84 
85  ff_framesync_uninit(&s->fs);
86  av_expr_free(s->x_pexpr); s->x_pexpr = NULL;
87  av_expr_free(s->y_pexpr); s->y_pexpr = NULL;
88 }
89 
90 static inline int normalize_xy(double d, int chroma_sub)
91 {
92  if (isnan(d))
93  return INT_MAX;
94  return (int)d & ~((1 << chroma_sub) - 1);
95 }
96 
98 {
99  OverlayContext *s = ctx->priv;
100 
101  s->var_values[VAR_X] = av_expr_eval(s->x_pexpr, s->var_values, NULL);
102  s->var_values[VAR_Y] = av_expr_eval(s->y_pexpr, s->var_values, NULL);
103  /* It is necessary if x is expressed from y */
104  s->var_values[VAR_X] = av_expr_eval(s->x_pexpr, s->var_values, NULL);
105  s->x = normalize_xy(s->var_values[VAR_X], s->hsub);
106  s->y = normalize_xy(s->var_values[VAR_Y], s->vsub);
107 }
108 
109 static int set_expr(AVExpr **pexpr, const char *expr, const char *option, void *log_ctx)
110 {
111  int ret;
112  AVExpr *old = NULL;
113 
114  if (*pexpr)
115  old = *pexpr;
116  ret = av_expr_parse(pexpr, expr, var_names,
117  NULL, NULL, NULL, NULL, 0, log_ctx);
118  if (ret < 0) {
119  av_log(log_ctx, AV_LOG_ERROR,
120  "Error when evaluating the expression '%s' for %s\n",
121  expr, option);
122  *pexpr = old;
123  return ret;
124  }
125 
126  av_expr_free(old);
127  return 0;
128 }
129 
130 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
131  char *res, int res_len, int flags)
132 {
133  OverlayContext *s = ctx->priv;
134  int ret;
135 
136  if (!strcmp(cmd, "x"))
137  ret = set_expr(&s->x_pexpr, args, cmd, ctx);
138  else if (!strcmp(cmd, "y"))
139  ret = set_expr(&s->y_pexpr, args, cmd, ctx);
140  else
141  ret = AVERROR(ENOSYS);
142 
143  if (ret < 0)
144  return ret;
145 
146  if (s->eval_mode == EVAL_MODE_INIT) {
147  eval_expr(ctx);
148  av_log(ctx, AV_LOG_VERBOSE, "x:%f xi:%d y:%f yi:%d\n",
149  s->var_values[VAR_X], s->x,
150  s->var_values[VAR_Y], s->y);
151  }
152  return ret;
153 }
154 
155 static const enum AVPixelFormat alpha_pix_fmts[] = {
160 };
161 
163 {
164  OverlayContext *s = ctx->priv;
165 
166  /* overlay formats contains alpha, for avoiding conversion with alpha information loss */
167  static const enum AVPixelFormat main_pix_fmts_yuv420[] = {
171  };
172  static const enum AVPixelFormat overlay_pix_fmts_yuv420[] = {
174  };
175 
176  static const enum AVPixelFormat main_pix_fmts_yuv420p10[] = {
179  };
180  static const enum AVPixelFormat overlay_pix_fmts_yuv420p10[] = {
182  };
183 
184  static const enum AVPixelFormat main_pix_fmts_yuv422[] = {
186  };
187  static const enum AVPixelFormat overlay_pix_fmts_yuv422[] = {
189  };
190 
191  static const enum AVPixelFormat main_pix_fmts_yuv422p10[] = {
193  };
194  static const enum AVPixelFormat overlay_pix_fmts_yuv422p10[] = {
196  };
197 
198  static const enum AVPixelFormat main_pix_fmts_yuv444[] = {
200  };
201  static const enum AVPixelFormat overlay_pix_fmts_yuv444[] = {
203  };
204 
205  static const enum AVPixelFormat main_pix_fmts_gbrp[] = {
207  };
208  static const enum AVPixelFormat overlay_pix_fmts_gbrp[] = {
210  };
211 
212  static const enum AVPixelFormat main_pix_fmts_rgb[] = {
217  };
218  static const enum AVPixelFormat overlay_pix_fmts_rgb[] = {
222  };
223 
224  const enum AVPixelFormat *main_formats, *overlay_formats;
226  int ret;
227 
228  switch (s->format) {
230  main_formats = main_pix_fmts_yuv420;
231  overlay_formats = overlay_pix_fmts_yuv420;
232  break;
234  main_formats = main_pix_fmts_yuv420p10;
235  overlay_formats = overlay_pix_fmts_yuv420p10;
236  break;
238  main_formats = main_pix_fmts_yuv422;
239  overlay_formats = overlay_pix_fmts_yuv422;
240  break;
242  main_formats = main_pix_fmts_yuv422p10;
243  overlay_formats = overlay_pix_fmts_yuv422p10;
244  break;
246  main_formats = main_pix_fmts_yuv444;
247  overlay_formats = overlay_pix_fmts_yuv444;
248  break;
249  case OVERLAY_FORMAT_RGB:
250  main_formats = main_pix_fmts_rgb;
251  overlay_formats = overlay_pix_fmts_rgb;
252  break;
253  case OVERLAY_FORMAT_GBRP:
254  main_formats = main_pix_fmts_gbrp;
255  overlay_formats = overlay_pix_fmts_gbrp;
256  break;
257  case OVERLAY_FORMAT_AUTO:
259  default:
260  av_assert0(0);
261  }
262 
263  formats = ff_make_format_list(main_formats);
264  if ((ret = ff_formats_ref(formats, &ctx->inputs[MAIN]->outcfg.formats)) < 0 ||
265  (ret = ff_formats_ref(formats, &ctx->outputs[MAIN]->incfg.formats)) < 0)
266  return ret;
267 
268  return ff_formats_ref(ff_make_format_list(overlay_formats),
269  &ctx->inputs[OVERLAY]->outcfg.formats);
270 }
271 
273 {
274  AVFilterContext *ctx = inlink->dst;
275  OverlayContext *s = inlink->dst->priv;
276  int ret;
277  const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format);
278 
279  av_image_fill_max_pixsteps(s->overlay_pix_step, NULL, pix_desc);
280 
281  /* Finish the configuration by evaluating the expressions
282  now when both inputs are configured. */
283  s->var_values[VAR_MAIN_W ] = s->var_values[VAR_MW] = ctx->inputs[MAIN ]->w;
284  s->var_values[VAR_MAIN_H ] = s->var_values[VAR_MH] = ctx->inputs[MAIN ]->h;
285  s->var_values[VAR_OVERLAY_W] = s->var_values[VAR_OW] = ctx->inputs[OVERLAY]->w;
286  s->var_values[VAR_OVERLAY_H] = s->var_values[VAR_OH] = ctx->inputs[OVERLAY]->h;
287  s->var_values[VAR_HSUB] = 1<<pix_desc->log2_chroma_w;
288  s->var_values[VAR_VSUB] = 1<<pix_desc->log2_chroma_h;
289  s->var_values[VAR_X] = NAN;
290  s->var_values[VAR_Y] = NAN;
291  s->var_values[VAR_N] = 0;
292  s->var_values[VAR_T] = NAN;
293  s->var_values[VAR_POS] = NAN;
294 
295  if ((ret = set_expr(&s->x_pexpr, s->x_expr, "x", ctx)) < 0 ||
296  (ret = set_expr(&s->y_pexpr, s->y_expr, "y", ctx)) < 0)
297  return ret;
298 
299  s->overlay_is_packed_rgb =
300  ff_fill_rgba_map(s->overlay_rgba_map, inlink->format) >= 0;
301  s->overlay_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts);
302 
303  if (s->eval_mode == EVAL_MODE_INIT) {
304  eval_expr(ctx);
305  av_log(ctx, AV_LOG_VERBOSE, "x:%f xi:%d y:%f yi:%d\n",
306  s->var_values[VAR_X], s->x,
307  s->var_values[VAR_Y], s->y);
308  }
309 
311  "main w:%d h:%d fmt:%s overlay w:%d h:%d fmt:%s\n",
312  ctx->inputs[MAIN]->w, ctx->inputs[MAIN]->h,
313  av_get_pix_fmt_name(ctx->inputs[MAIN]->format),
314  ctx->inputs[OVERLAY]->w, ctx->inputs[OVERLAY]->h,
315  av_get_pix_fmt_name(ctx->inputs[OVERLAY]->format));
316  return 0;
317 }
318 
319 static int config_output(AVFilterLink *outlink)
320 {
321  AVFilterContext *ctx = outlink->src;
322  OverlayContext *s = ctx->priv;
323  int ret;
324 
325  if ((ret = ff_framesync_init_dualinput(&s->fs, ctx)) < 0)
326  return ret;
327 
328  outlink->w = ctx->inputs[MAIN]->w;
329  outlink->h = ctx->inputs[MAIN]->h;
330  outlink->time_base = ctx->inputs[MAIN]->time_base;
331 
332  return ff_framesync_configure(&s->fs);
333 }
334 
335 // divide by 255 and round to nearest
336 // apply a fast variant: (X+127)/255 = ((X+127)*257+257)>>16 = ((X+128)*257)>>16
337 #define FAST_DIV255(x) ((((x) + 128) * 257) >> 16)
338 
339 // calculate the unpremultiplied alpha, applying the general equation:
340 // alpha = alpha_overlay / ( (alpha_main + alpha_overlay) - (alpha_main * alpha_overlay) )
341 // (((x) << 16) - ((x) << 9) + (x)) is a faster version of: 255 * 255 * x
342 // ((((x) + (y)) << 8) - ((x) + (y)) - (y) * (x)) is a faster version of: 255 * (x + y)
343 #define UNPREMULTIPLY_ALPHA(x, y) ((((x) << 16) - ((x) << 9) + (x)) / ((((x) + (y)) << 8) - ((x) + (y)) - (y) * (x)))
344 
345 /**
346  * Blend image in src to destination buffer dst at position (x, y).
347  */
348 
350  AVFrame *dst, const AVFrame *src,
351  int main_has_alpha, int x, int y,
352  int is_straight, int jobnr, int nb_jobs)
353 {
354  OverlayContext *s = ctx->priv;
355  int i, imax, j, jmax;
356  const int src_w = src->width;
357  const int src_h = src->height;
358  const int dst_w = dst->width;
359  const int dst_h = dst->height;
360  uint8_t alpha; ///< the amount of overlay to blend on to main
361  const int dr = s->main_rgba_map[R];
362  const int dg = s->main_rgba_map[G];
363  const int db = s->main_rgba_map[B];
364  const int da = s->main_rgba_map[A];
365  const int dstep = s->main_pix_step[0];
366  const int sr = s->overlay_rgba_map[R];
367  const int sg = s->overlay_rgba_map[G];
368  const int sb = s->overlay_rgba_map[B];
369  const int sa = s->overlay_rgba_map[A];
370  const int sstep = s->overlay_pix_step[0];
371  int slice_start, slice_end;
372  uint8_t *S, *sp, *d, *dp;
373 
374  i = FFMAX(-y, 0);
375  imax = FFMIN3(-y + dst_h, FFMIN(src_h, dst_h), y + src_h);
376 
377  slice_start = i + (imax * jobnr) / nb_jobs;
378  slice_end = i + (imax * (jobnr+1)) / nb_jobs;
379 
380  sp = src->data[0] + (slice_start) * src->linesize[0];
381  dp = dst->data[0] + (y + slice_start) * dst->linesize[0];
382 
383  for (i = slice_start; i < slice_end; i++) {
384  j = FFMAX(-x, 0);
385  S = sp + j * sstep;
386  d = dp + (x+j) * dstep;
387 
388  for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) {
389  alpha = S[sa];
390 
391  // if the main channel has an alpha channel, alpha has to be calculated
392  // to create an un-premultiplied (straight) alpha value
393  if (main_has_alpha && alpha != 0 && alpha != 255) {
394  uint8_t alpha_d = d[da];
395  alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d);
396  }
397 
398  switch (alpha) {
399  case 0:
400  break;
401  case 255:
402  d[dr] = S[sr];
403  d[dg] = S[sg];
404  d[db] = S[sb];
405  break;
406  default:
407  // main_value = main_value * (1 - alpha) + overlay_value * alpha
408  // since alpha is in the range 0-255, the result must divided by 255
409  d[dr] = is_straight ? FAST_DIV255(d[dr] * (255 - alpha) + S[sr] * alpha) :
410  FFMIN(FAST_DIV255(d[dr] * (255 - alpha)) + S[sr], 255);
411  d[dg] = is_straight ? FAST_DIV255(d[dg] * (255 - alpha) + S[sg] * alpha) :
412  FFMIN(FAST_DIV255(d[dg] * (255 - alpha)) + S[sg], 255);
413  d[db] = is_straight ? FAST_DIV255(d[db] * (255 - alpha) + S[sb] * alpha) :
414  FFMIN(FAST_DIV255(d[db] * (255 - alpha)) + S[sb], 255);
415  }
416  if (main_has_alpha) {
417  switch (alpha) {
418  case 0:
419  break;
420  case 255:
421  d[da] = S[sa];
422  break;
423  default:
424  // apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha
425  d[da] += FAST_DIV255((255 - d[da]) * S[sa]);
426  }
427  }
428  d += dstep;
429  S += sstep;
430  }
431  dp += dst->linesize[0];
432  sp += src->linesize[0];
433  }
434 }
435 
436 #define DEFINE_BLEND_PLANE(depth, nbits) \
437 static av_always_inline void blend_plane_##depth##_##nbits##bits(AVFilterContext *ctx, \
438  AVFrame *dst, const AVFrame *src, \
439  int src_w, int src_h, \
440  int dst_w, int dst_h, \
441  int i, int hsub, int vsub, \
442  int x, int y, \
443  int main_has_alpha, \
444  int dst_plane, \
445  int dst_offset, \
446  int dst_step, \
447  int straight, \
448  int yuv, \
449  int jobnr, \
450  int nb_jobs) \
451 { \
452  OverlayContext *octx = ctx->priv; \
453  int src_wp = AV_CEIL_RSHIFT(src_w, hsub); \
454  int src_hp = AV_CEIL_RSHIFT(src_h, vsub); \
455  int dst_wp = AV_CEIL_RSHIFT(dst_w, hsub); \
456  int dst_hp = AV_CEIL_RSHIFT(dst_h, vsub); \
457  int yp = y>>vsub; \
458  int xp = x>>hsub; \
459  uint##depth##_t *s, *sp, *d, *dp, *dap, *a, *da, *ap; \
460  int jmax, j, k, kmax; \
461  int slice_start, slice_end; \
462  const uint##depth##_t max = (1 << nbits) - 1; \
463  const uint##depth##_t mid = (1 << (nbits -1)) ; \
464  int bytes = depth / 8; \
465  \
466  dst_step /= bytes; \
467  j = FFMAX(-yp, 0); \
468  jmax = FFMIN3(-yp + dst_hp, FFMIN(src_hp, dst_hp), yp + src_hp); \
469  \
470  slice_start = j + (jmax * jobnr) / nb_jobs; \
471  slice_end = j + (jmax * (jobnr+1)) / nb_jobs; \
472  \
473  sp = (uint##depth##_t *)(src->data[i] + (slice_start) * src->linesize[i]); \
474  dp = (uint##depth##_t *)(dst->data[dst_plane] \
475  + (yp + slice_start) * dst->linesize[dst_plane] \
476  + dst_offset); \
477  ap = (uint##depth##_t *)(src->data[3] + (slice_start << vsub) * src->linesize[3]); \
478  dap = (uint##depth##_t *)(dst->data[3] + ((yp + slice_start) << vsub) * dst->linesize[3]); \
479  \
480  for (j = slice_start; j < slice_end; j++) { \
481  k = FFMAX(-xp, 0); \
482  d = dp + (xp+k) * dst_step; \
483  s = sp + k; \
484  a = ap + (k<<hsub); \
485  da = dap + ((xp+k) << hsub); \
486  kmax = FFMIN(-xp + dst_wp, src_wp); \
487  \
488  if (nbits == 8 && ((vsub && j+1 < src_hp) || !vsub) && octx->blend_row[i]) { \
489  int c = octx->blend_row[i]((uint8_t*)d, (uint8_t*)da, (uint8_t*)s, \
490  (uint8_t*)a, kmax - k, src->linesize[3]); \
491  \
492  s += c; \
493  d += dst_step * c; \
494  da += (1 << hsub) * c; \
495  a += (1 << hsub) * c; \
496  k += c; \
497  } \
498  for (; k < kmax; k++) { \
499  int alpha_v, alpha_h, alpha; \
500  \
501  /* average alpha for color components, improve quality */ \
502  if (hsub && vsub && j+1 < src_hp && k+1 < src_wp) { \
503  alpha = (a[0] + a[src->linesize[3]] + \
504  a[1] + a[src->linesize[3]+1]) >> 2; \
505  } else if (hsub || vsub) { \
506  alpha_h = hsub && k+1 < src_wp ? \
507  (a[0] + a[1]) >> 1 : a[0]; \
508  alpha_v = vsub && j+1 < src_hp ? \
509  (a[0] + a[src->linesize[3]]) >> 1 : a[0]; \
510  alpha = (alpha_v + alpha_h) >> 1; \
511  } else \
512  alpha = a[0]; \
513  /* if the main channel has an alpha channel, alpha has to be calculated */ \
514  /* to create an un-premultiplied (straight) alpha value */ \
515  if (main_has_alpha && alpha != 0 && alpha != max) { \
516  /* average alpha for color components, improve quality */ \
517  uint8_t alpha_d; \
518  if (hsub && vsub && j+1 < src_hp && k+1 < src_wp) { \
519  alpha_d = (da[0] + da[dst->linesize[3]] + \
520  da[1] + da[dst->linesize[3]+1]) >> 2; \
521  } else if (hsub || vsub) { \
522  alpha_h = hsub && k+1 < src_wp ? \
523  (da[0] + da[1]) >> 1 : da[0]; \
524  alpha_v = vsub && j+1 < src_hp ? \
525  (da[0] + da[dst->linesize[3]]) >> 1 : da[0]; \
526  alpha_d = (alpha_v + alpha_h) >> 1; \
527  } else \
528  alpha_d = da[0]; \
529  alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); \
530  } \
531  if (straight) { \
532  if (nbits > 8) \
533  *d = (*d * (max - alpha) + *s * alpha) / max; \
534  else \
535  *d = FAST_DIV255(*d * (255 - alpha) + *s * alpha); \
536  } else { \
537  if (nbits > 8) { \
538  if (i && yuv) \
539  *d = av_clip((*d * (max - alpha) + *s * alpha) / max + *s - mid, -mid, mid) + mid; \
540  else \
541  *d = FFMIN((*d * (max - alpha) + *s * alpha) / max + *s, max); \
542  } else { \
543  if (i && yuv) \
544  *d = av_clip(FAST_DIV255((*d - mid) * (max - alpha)) + *s - mid, -mid, mid) + mid; \
545  else \
546  *d = FFMIN(FAST_DIV255(*d * (max - alpha)) + *s, max); \
547  } \
548  } \
549  s++; \
550  d += dst_step; \
551  da += 1 << hsub; \
552  a += 1 << hsub; \
553  } \
554  dp += dst->linesize[dst_plane] / bytes; \
555  sp += src->linesize[i] / bytes; \
556  ap += (1 << vsub) * src->linesize[3] / bytes; \
557  dap += (1 << vsub) * dst->linesize[3] / bytes; \
558  } \
559 }
560 DEFINE_BLEND_PLANE(8, 8)
561 DEFINE_BLEND_PLANE(16, 10)
562 
563 #define DEFINE_ALPHA_COMPOSITE(depth, nbits) \
564 static inline void alpha_composite_##depth##_##nbits##bits(const AVFrame *src, const AVFrame *dst, \
565  int src_w, int src_h, \
566  int dst_w, int dst_h, \
567  int x, int y, \
568  int jobnr, int nb_jobs) \
569 { \
570  uint##depth##_t alpha; /* the amount of overlay to blend on to main */ \
571  uint##depth##_t *s, *sa, *d, *da; \
572  int i, imax, j, jmax; \
573  int slice_start, slice_end; \
574  const uint##depth##_t max = (1 << nbits) - 1; \
575  int bytes = depth / 8; \
576  \
577  imax = FFMIN3(-y + dst_h, FFMIN(src_h, dst_h), y + src_h); \
578  i = FFMAX(-y, 0); \
579  \
580  slice_start = i + (imax * jobnr) / nb_jobs; \
581  slice_end = i + ((imax * (jobnr+1)) / nb_jobs); \
582  \
583  sa = (uint##depth##_t *)(src->data[3] + (slice_start) * src->linesize[3]); \
584  da = (uint##depth##_t *)(dst->data[3] + (y + slice_start) * dst->linesize[3]); \
585  \
586  for (i = slice_start; i < slice_end; i++) { \
587  j = FFMAX(-x, 0); \
588  s = sa + j; \
589  d = da + x+j; \
590  \
591  for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) { \
592  alpha = *s; \
593  if (alpha != 0 && alpha != max) { \
594  uint8_t alpha_d = *d; \
595  alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); \
596  } \
597  if (alpha == max) \
598  *d = *s; \
599  else if (alpha > 0) { \
600  /* apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha */ \
601  if (nbits > 8) \
602  *d += (max - *d) * *s / max; \
603  else \
604  *d += FAST_DIV255((max - *d) * *s); \
605  } \
606  d += 1; \
607  s += 1; \
608  } \
609  da += dst->linesize[3] / bytes; \
610  sa += src->linesize[3] / bytes; \
611  } \
612 }
615 
616 #define DEFINE_BLEND_SLICE_YUV(depth, nbits) \
617 static av_always_inline void blend_slice_yuv_##depth##_##nbits##bits(AVFilterContext *ctx, \
618  AVFrame *dst, const AVFrame *src, \
619  int hsub, int vsub, \
620  int main_has_alpha, \
621  int x, int y, \
622  int is_straight, \
623  int jobnr, int nb_jobs) \
624 { \
625  OverlayContext *s = ctx->priv; \
626  const int src_w = src->width; \
627  const int src_h = src->height; \
628  const int dst_w = dst->width; \
629  const int dst_h = dst->height; \
630  \
631  blend_plane_##depth##_##nbits##bits(ctx, dst, src, src_w, src_h, dst_w, dst_h, 0, 0, 0, \
632  x, y, main_has_alpha, s->main_desc->comp[0].plane, s->main_desc->comp[0].offset, \
633  s->main_desc->comp[0].step, is_straight, 1, jobnr, nb_jobs); \
634  blend_plane_##depth##_##nbits##bits(ctx, dst, src, src_w, src_h, dst_w, dst_h, 1, hsub, vsub, \
635  x, y, main_has_alpha, s->main_desc->comp[1].plane, s->main_desc->comp[1].offset, \
636  s->main_desc->comp[1].step, is_straight, 1, jobnr, nb_jobs); \
637  blend_plane_##depth##_##nbits##bits(ctx, dst, src, src_w, src_h, dst_w, dst_h, 2, hsub, vsub, \
638  x, y, main_has_alpha, s->main_desc->comp[2].plane, s->main_desc->comp[2].offset, \
639  s->main_desc->comp[2].step, is_straight, 1, jobnr, nb_jobs); \
640  \
641  if (main_has_alpha) \
642  alpha_composite_##depth##_##nbits##bits(src, dst, src_w, src_h, dst_w, dst_h, x, y, \
643  jobnr, nb_jobs); \
644 }
647 
649  AVFrame *dst, const AVFrame *src,
650  int hsub, int vsub,
651  int main_has_alpha,
652  int x, int y,
653  int is_straight,
654  int jobnr,
655  int nb_jobs)
656 {
657  OverlayContext *s = ctx->priv;
658  const int src_w = src->width;
659  const int src_h = src->height;
660  const int dst_w = dst->width;
661  const int dst_h = dst->height;
662 
663  blend_plane_8_8bits(ctx, dst, src, src_w, src_h, dst_w, dst_h, 0, 0, 0, x, y, main_has_alpha,
664  s->main_desc->comp[1].plane, s->main_desc->comp[1].offset, s->main_desc->comp[1].step, is_straight, 0,
665  jobnr, nb_jobs);
666  blend_plane_8_8bits(ctx, dst, src, src_w, src_h, dst_w, dst_h, 1, hsub, vsub, x, y, main_has_alpha,
667  s->main_desc->comp[2].plane, s->main_desc->comp[2].offset, s->main_desc->comp[2].step, is_straight, 0,
668  jobnr, nb_jobs);
669  blend_plane_8_8bits(ctx, dst, src, src_w, src_h, dst_w, dst_h, 2, hsub, vsub, x, y, main_has_alpha,
670  s->main_desc->comp[0].plane, s->main_desc->comp[0].offset, s->main_desc->comp[0].step, is_straight, 0,
671  jobnr, nb_jobs);
672 
673  if (main_has_alpha)
674  alpha_composite_8_8bits(src, dst, src_w, src_h, dst_w, dst_h, x, y, jobnr, nb_jobs);
675 }
676 
677 static int blend_slice_yuv420(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
678 {
679  OverlayContext *s = ctx->priv;
680  ThreadData *td = arg;
681  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 1, 0, s->x, s->y, 1, jobnr, nb_jobs);
682  return 0;
683 }
684 
685 static int blend_slice_yuva420(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
686 {
687  OverlayContext *s = ctx->priv;
688  ThreadData *td = arg;
689  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 1, 1, s->x, s->y, 1, jobnr, nb_jobs);
690  return 0;
691 }
692 
693 static int blend_slice_yuv420p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
694 {
695  OverlayContext *s = ctx->priv;
696  ThreadData *td = arg;
697  blend_slice_yuv_16_10bits(ctx, td->dst, td->src, 1, 1, 0, s->x, s->y, 1, jobnr, nb_jobs);
698  return 0;
699 }
700 
701 static int blend_slice_yuva420p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
702 {
703  OverlayContext *s = ctx->priv;
704  ThreadData *td = arg;
705  blend_slice_yuv_16_10bits(ctx, td->dst, td->src, 1, 1, 1, s->x, s->y, 1, jobnr, nb_jobs);
706  return 0;
707 }
708 
709 static int blend_slice_yuv422p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
710 {
711  OverlayContext *s = ctx->priv;
712  ThreadData *td = arg;
713  blend_slice_yuv_16_10bits(ctx, td->dst, td->src, 1, 0, 0, s->x, s->y, 1, jobnr, nb_jobs);
714  return 0;
715 }
716 
717 static int blend_slice_yuva422p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
718 {
719  OverlayContext *s = ctx->priv;
720  ThreadData *td = arg;
721  blend_slice_yuv_16_10bits(ctx, td->dst, td->src, 1, 0, 1, s->x, s->y, 1, jobnr, nb_jobs);
722  return 0;
723 }
724 
725 static int blend_slice_yuv422(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
726 {
727  OverlayContext *s = ctx->priv;
728  ThreadData *td = arg;
729  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 0, 0, s->x, s->y, 1, jobnr, nb_jobs);
730  return 0;
731 }
732 
733 static int blend_slice_yuva422(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
734 {
735  OverlayContext *s = ctx->priv;
736  ThreadData *td = arg;
737  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 0, 1, s->x, s->y, 1, jobnr, nb_jobs);
738  return 0;
739 }
740 
741 static int blend_slice_yuv444(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
742 {
743  OverlayContext *s = ctx->priv;
744  ThreadData *td = arg;
745  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 1, jobnr, nb_jobs);
746  return 0;
747 }
748 
749 static int blend_slice_yuva444(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
750 {
751  OverlayContext *s = ctx->priv;
752  ThreadData *td = arg;
753  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 1, jobnr, nb_jobs);
754  return 0;
755 }
756 
757 static int blend_slice_gbrp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
758 {
759  OverlayContext *s = ctx->priv;
760  ThreadData *td = arg;
761  blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 1, jobnr, nb_jobs);
762  return 0;
763 }
764 
765 static int blend_slice_gbrap(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
766 {
767  OverlayContext *s = ctx->priv;
768  ThreadData *td = arg;
769  blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 1, jobnr, nb_jobs);
770  return 0;
771 }
772 
773 static int blend_slice_yuv420_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
774 {
775  OverlayContext *s = ctx->priv;
776  ThreadData *td = arg;
777  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 1, 0, s->x, s->y, 0, jobnr, nb_jobs);
778  return 0;
779 }
780 
781 static int blend_slice_yuva420_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
782 {
783  OverlayContext *s = ctx->priv;
784  ThreadData *td = arg;
785  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 1, 1, s->x, s->y, 0, jobnr, nb_jobs);
786  return 0;
787 }
788 
789 static int blend_slice_yuv422_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
790 {
791  OverlayContext *s = ctx->priv;
792  ThreadData *td = arg;
793  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 0, 0, s->x, s->y, 0, jobnr, nb_jobs);
794  return 0;
795 }
796 
797 static int blend_slice_yuva422_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
798 {
799  OverlayContext *s = ctx->priv;
800  ThreadData *td = arg;
801  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 0, 1, s->x, s->y, 0, jobnr, nb_jobs);
802  return 0;
803 }
804 
805 static int blend_slice_yuv444_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
806 {
807  OverlayContext *s = ctx->priv;
808  ThreadData *td = arg;
809  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 0, jobnr, nb_jobs);
810  return 0;
811 }
812 
813 static int blend_slice_yuva444_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
814 {
815  OverlayContext *s = ctx->priv;
816  ThreadData *td = arg;
817  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 0, jobnr, nb_jobs);
818  return 0;
819 }
820 
821 static int blend_slice_gbrp_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
822 {
823  OverlayContext *s = ctx->priv;
824  ThreadData *td = arg;
825  blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 0, jobnr, nb_jobs);
826  return 0;
827 }
828 
829 static int blend_slice_gbrap_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
830 {
831  OverlayContext *s = ctx->priv;
832  ThreadData *td = arg;
833  blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 0, jobnr, nb_jobs);
834  return 0;
835 }
836 
837 static int blend_slice_rgb(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
838 {
839  OverlayContext *s = ctx->priv;
840  ThreadData *td = arg;
841  blend_slice_packed_rgb(ctx, td->dst, td->src, 0, s->x, s->y, 1, jobnr, nb_jobs);
842  return 0;
843 }
844 
845 static int blend_slice_rgba(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
846 {
847  OverlayContext *s = ctx->priv;
848  ThreadData *td = arg;
849  blend_slice_packed_rgb(ctx, td->dst, td->src, 1, s->x, s->y, 1, jobnr, nb_jobs);
850  return 0;
851 }
852 
853 static int blend_slice_rgb_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
854 {
855  OverlayContext *s = ctx->priv;
856  ThreadData *td = arg;
857  blend_slice_packed_rgb(ctx, td->dst, td->src, 0, s->x, s->y, 0, jobnr, nb_jobs);
858  return 0;
859 }
860 
861 static int blend_slice_rgba_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
862 {
863  OverlayContext *s = ctx->priv;
864  ThreadData *td = arg;
865  blend_slice_packed_rgb(ctx, td->dst, td->src, 1, s->x, s->y, 0, jobnr, nb_jobs);
866  return 0;
867 }
868 
870 {
871  OverlayContext *s = inlink->dst->priv;
872  const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format);
873 
874  av_image_fill_max_pixsteps(s->main_pix_step, NULL, pix_desc);
875 
876  s->hsub = pix_desc->log2_chroma_w;
877  s->vsub = pix_desc->log2_chroma_h;
878 
879  s->main_desc = pix_desc;
880 
881  s->main_is_packed_rgb =
882  ff_fill_rgba_map(s->main_rgba_map, inlink->format) >= 0;
883  s->main_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts);
884  switch (s->format) {
886  s->blend_slice = s->main_has_alpha ? blend_slice_yuva420 : blend_slice_yuv420;
887  break;
889  s->blend_slice = s->main_has_alpha ? blend_slice_yuva420p10 : blend_slice_yuv420p10;
890  break;
892  s->blend_slice = s->main_has_alpha ? blend_slice_yuva422 : blend_slice_yuv422;
893  break;
895  s->blend_slice = s->main_has_alpha ? blend_slice_yuva422p10 : blend_slice_yuv422p10;
896  break;
898  s->blend_slice = s->main_has_alpha ? blend_slice_yuva444 : blend_slice_yuv444;
899  break;
900  case OVERLAY_FORMAT_RGB:
901  s->blend_slice = s->main_has_alpha ? blend_slice_rgba : blend_slice_rgb;
902  break;
903  case OVERLAY_FORMAT_GBRP:
904  s->blend_slice = s->main_has_alpha ? blend_slice_gbrap : blend_slice_gbrp;
905  break;
906  case OVERLAY_FORMAT_AUTO:
907  switch (inlink->format) {
908  case AV_PIX_FMT_YUVA420P:
909  s->blend_slice = blend_slice_yuva420;
910  break;
912  s->blend_slice = blend_slice_yuva420p10;
913  break;
914  case AV_PIX_FMT_YUVA422P:
915  s->blend_slice = blend_slice_yuva422;
916  break;
918  s->blend_slice = blend_slice_yuva422p10;
919  break;
920  case AV_PIX_FMT_YUVA444P:
921  s->blend_slice = blend_slice_yuva444;
922  break;
923  case AV_PIX_FMT_ARGB:
924  case AV_PIX_FMT_RGBA:
925  case AV_PIX_FMT_BGRA:
926  case AV_PIX_FMT_ABGR:
927  s->blend_slice = blend_slice_rgba;
928  break;
929  case AV_PIX_FMT_GBRAP:
930  s->blend_slice = blend_slice_gbrap;
931  break;
932  default:
933  av_assert0(0);
934  break;
935  }
936  break;
937  }
938 
939  if (!s->alpha_format)
940  goto end;
941 
942  switch (s->format) {
944  s->blend_slice = s->main_has_alpha ? blend_slice_yuva420_pm : blend_slice_yuv420_pm;
945  break;
947  s->blend_slice = s->main_has_alpha ? blend_slice_yuva422_pm : blend_slice_yuv422_pm;
948  break;
950  s->blend_slice = s->main_has_alpha ? blend_slice_yuva444_pm : blend_slice_yuv444_pm;
951  break;
952  case OVERLAY_FORMAT_RGB:
953  s->blend_slice = s->main_has_alpha ? blend_slice_rgba_pm : blend_slice_rgb_pm;
954  break;
955  case OVERLAY_FORMAT_GBRP:
956  s->blend_slice = s->main_has_alpha ? blend_slice_gbrap_pm : blend_slice_gbrp_pm;
957  break;
958  case OVERLAY_FORMAT_AUTO:
959  switch (inlink->format) {
960  case AV_PIX_FMT_YUVA420P:
961  s->blend_slice = blend_slice_yuva420_pm;
962  break;
963  case AV_PIX_FMT_YUVA422P:
964  s->blend_slice = blend_slice_yuva422_pm;
965  break;
966  case AV_PIX_FMT_YUVA444P:
967  s->blend_slice = blend_slice_yuva444_pm;
968  break;
969  case AV_PIX_FMT_ARGB:
970  case AV_PIX_FMT_RGBA:
971  case AV_PIX_FMT_BGRA:
972  case AV_PIX_FMT_ABGR:
973  s->blend_slice = blend_slice_rgba_pm;
974  break;
975  case AV_PIX_FMT_GBRAP:
976  s->blend_slice = blend_slice_gbrap_pm;
977  break;
978  default:
979  av_assert0(0);
980  break;
981  }
982  break;
983  }
984 
985 end:
986  if (ARCH_X86)
987  ff_overlay_init_x86(s, s->format, inlink->format,
988  s->alpha_format, s->main_has_alpha);
989 
990  return 0;
991 }
992 
993 static int do_blend(FFFrameSync *fs)
994 {
995  AVFilterContext *ctx = fs->parent;
996  AVFrame *mainpic, *second;
997  OverlayContext *s = ctx->priv;
998  AVFilterLink *inlink = ctx->inputs[0];
999  int ret;
1000 
1001  ret = ff_framesync_dualinput_get_writable(fs, &mainpic, &second);
1002  if (ret < 0)
1003  return ret;
1004  if (!second)
1005  return ff_filter_frame(ctx->outputs[0], mainpic);
1006 
1007  if (s->eval_mode == EVAL_MODE_FRAME) {
1008  int64_t pos = mainpic->pkt_pos;
1009 
1010  s->var_values[VAR_N] = inlink->frame_count_out;
1011  s->var_values[VAR_T] = mainpic->pts == AV_NOPTS_VALUE ?
1012  NAN : mainpic->pts * av_q2d(inlink->time_base);
1013  s->var_values[VAR_POS] = pos == -1 ? NAN : pos;
1014 
1015  s->var_values[VAR_OVERLAY_W] = s->var_values[VAR_OW] = second->width;
1016  s->var_values[VAR_OVERLAY_H] = s->var_values[VAR_OH] = second->height;
1017  s->var_values[VAR_MAIN_W ] = s->var_values[VAR_MW] = mainpic->width;
1018  s->var_values[VAR_MAIN_H ] = s->var_values[VAR_MH] = mainpic->height;
1019 
1020  eval_expr(ctx);
1021  av_log(ctx, AV_LOG_DEBUG, "n:%f t:%f pos:%f x:%f xi:%d y:%f yi:%d\n",
1022  s->var_values[VAR_N], s->var_values[VAR_T], s->var_values[VAR_POS],
1023  s->var_values[VAR_X], s->x,
1024  s->var_values[VAR_Y], s->y);
1025  }
1026 
1027  if (s->x < mainpic->width && s->x + second->width >= 0 &&
1028  s->y < mainpic->height && s->y + second->height >= 0) {
1029  ThreadData td;
1030 
1031  td.dst = mainpic;
1032  td.src = second;
1033  ff_filter_execute(ctx, s->blend_slice, &td, NULL, FFMIN(FFMAX(1, FFMIN3(s->y + second->height, FFMIN(second->height, mainpic->height), mainpic->height - s->y)),
1035  }
1036  return ff_filter_frame(ctx->outputs[0], mainpic);
1037 }
1038 
1040 {
1041  OverlayContext *s = ctx->priv;
1042 
1043  s->fs.on_event = do_blend;
1044  return 0;
1045 }
1046 
1048 {
1049  OverlayContext *s = ctx->priv;
1050  return ff_framesync_activate(&s->fs);
1051 }
1052 
1053 #define OFFSET(x) offsetof(OverlayContext, x)
1054 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
1055 
1056 static const AVOption overlay_options[] = {
1057  { "x", "set the x expression", OFFSET(x_expr), AV_OPT_TYPE_STRING, {.str = "0"}, 0, 0, FLAGS },
1058  { "y", "set the y expression", OFFSET(y_expr), AV_OPT_TYPE_STRING, {.str = "0"}, 0, 0, FLAGS },
1059  { "eof_action", "Action to take when encountering EOF from secondary input ",
1060  OFFSET(fs.opt_eof_action), AV_OPT_TYPE_INT, { .i64 = EOF_ACTION_REPEAT },
1061  EOF_ACTION_REPEAT, EOF_ACTION_PASS, .flags = FLAGS, "eof_action" },
1062  { "repeat", "Repeat the previous frame.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_REPEAT }, .flags = FLAGS, "eof_action" },
1063  { "endall", "End both streams.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_ENDALL }, .flags = FLAGS, "eof_action" },
1064  { "pass", "Pass through the main input.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_PASS }, .flags = FLAGS, "eof_action" },
1065  { "eval", "specify when to evaluate expressions", OFFSET(eval_mode), AV_OPT_TYPE_INT, {.i64 = EVAL_MODE_FRAME}, 0, EVAL_MODE_NB-1, FLAGS, "eval" },
1066  { "init", "eval expressions once during initialization", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_INIT}, .flags = FLAGS, .unit = "eval" },
1067  { "frame", "eval expressions per-frame", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_FRAME}, .flags = FLAGS, .unit = "eval" },
1068  { "shortest", "force termination when the shortest input terminates", OFFSET(fs.opt_shortest), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
1069  { "format", "set output format", OFFSET(format), AV_OPT_TYPE_INT, {.i64=OVERLAY_FORMAT_YUV420}, 0, OVERLAY_FORMAT_NB-1, FLAGS, "format" },
1070  { "yuv420", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV420}, .flags = FLAGS, .unit = "format" },
1071  { "yuv420p10", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV420P10}, .flags = FLAGS, .unit = "format" },
1072  { "yuv422", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV422}, .flags = FLAGS, .unit = "format" },
1073  { "yuv422p10", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV422P10}, .flags = FLAGS, .unit = "format" },
1074  { "yuv444", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV444}, .flags = FLAGS, .unit = "format" },
1075  { "rgb", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_RGB}, .flags = FLAGS, .unit = "format" },
1076  { "gbrp", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_GBRP}, .flags = FLAGS, .unit = "format" },
1077  { "auto", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_AUTO}, .flags = FLAGS, .unit = "format" },
1078  { "repeatlast", "repeat overlay of the last overlay frame", OFFSET(fs.opt_repeatlast), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, FLAGS },
1079  { "alpha", "alpha format", OFFSET(alpha_format), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "alpha_format" },
1080  { "straight", "", 0, AV_OPT_TYPE_CONST, {.i64=0}, .flags = FLAGS, .unit = "alpha_format" },
1081  { "premultiplied", "", 0, AV_OPT_TYPE_CONST, {.i64=1}, .flags = FLAGS, .unit = "alpha_format" },
1082  { NULL }
1083 };
1084 
1086 
1088  {
1089  .name = "main",
1090  .type = AVMEDIA_TYPE_VIDEO,
1091  .config_props = config_input_main,
1092  },
1093  {
1094  .name = "overlay",
1095  .type = AVMEDIA_TYPE_VIDEO,
1096  .config_props = config_input_overlay,
1097  },
1098 };
1099 
1101  {
1102  .name = "default",
1103  .type = AVMEDIA_TYPE_VIDEO,
1104  .config_props = config_output,
1105  },
1106 };
1107 
1109  .name = "overlay",
1110  .description = NULL_IF_CONFIG_SMALL("Overlay a video source on top of the input."),
1111  .preinit = overlay_framesync_preinit,
1112  .init = init,
1113  .uninit = uninit,
1114  .priv_size = sizeof(OverlayContext),
1115  .priv_class = &overlay_class,
1116  .activate = activate,
1123 };
formats
formats
Definition: signature.h:48
VAR_MAIN_H
@ VAR_MAIN_H
Definition: vf_drawtext.c:118
ff_framesync_configure
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
Definition: framesync.c:119
td
#define td
Definition: regdef.h:70
AVPixelFormat
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
blend_slice_packed_rgb
static av_always_inline void blend_slice_packed_rgb(AVFilterContext *ctx, AVFrame *dst, const AVFrame *src, int main_has_alpha, int x, int y, int is_straight, int jobnr, int nb_jobs)
Blend image in src to destination buffer dst at position (x, y).
Definition: vf_overlay.c:349
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
VAR_OH
@ VAR_OH
Definition: scale_eval.c:46
blend_slice_rgb
static int blend_slice_rgb(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:837
set_expr
static int set_expr(AVExpr **pexpr, const char *expr, const char *option, void *log_ctx)
Definition: vf_overlay.c:109
OVERLAY
#define OVERLAY
Definition: vf_overlay.c:64
ff_make_format_list
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:381
ff_framesync_uninit
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
Definition: framesync.c:285
ff_filter_frame
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1018
av_pix_fmt_desc_get
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2660
blend_slice_yuv422
static int blend_slice_yuv422(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:725
avfilter_vf_overlay_outputs
static const AVFilterPad avfilter_vf_overlay_outputs[]
Definition: vf_overlay.c:1100
inlink
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
Definition: filter_design.txt:212
blend_slice_yuv422p10
static int blend_slice_yuv422p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:709
blend_slice_yuva422_pm
static int blend_slice_yuva422_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:797
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:317
pixdesc.h
AVFrame::pts
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:424
AVFrame::width
int width
Definition: frame.h:389
do_blend
static int do_blend(FFFrameSync *fs)
Definition: vf_overlay.c:993
AV_PIX_FMT_YUVA420P10
#define AV_PIX_FMT_YUVA420P10
Definition: pixfmt.h:441
AVOption
AVOption.
Definition: opt.h:247
EOF_ACTION_ENDALL
@ EOF_ACTION_ENDALL
Definition: framesync.h:28
FILTER_QUERY_FUNC
#define FILTER_QUERY_FUNC(func)
Definition: internal.h:168
AV_PIX_FMT_YUV420P10
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:404
VAR_HSUB
@ VAR_HSUB
Definition: boxblur.c:40
AV_LOG_VERBOSE
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:196
AV_PIX_FMT_BGR24
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
AV_PIX_FMT_BGRA
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
mathematics.h
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
blend_slice_yuv420
static int blend_slice_yuv420(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:677
AVFilter::name
const char * name
Filter name.
Definition: avfilter.h:169
FFFrameSync
Frame sync structure.
Definition: framesync.h:146
blend_slice_yuva422p10
static int blend_slice_yuva422p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:717
video.h
VAR_MAIN_W
@ VAR_MAIN_W
Definition: vf_drawtext.c:119
AV_PIX_FMT_YUVA422P10
#define AV_PIX_FMT_YUVA422P10
Definition: pixfmt.h:442
VAR_X
@ VAR_X
Definition: vf_blend.c:79
AVFrame::data
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:338
hsub
static void hsub(htype *dst, const htype *src, int bins)
Definition: vf_median.c:74
AVFilterFormats
A list of supported formats for one end of a filter link.
Definition: formats.h:64
blend_slice_gbrap
static int blend_slice_gbrap(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:765
formats.h
av_expr_parse
int av_expr_parse(AVExpr **expr, const char *s, const char *const *const_names, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), int log_offset, void *log_ctx)
Parse an expression.
Definition: eval.c:685
var_names
static const char *const var_names[]
Definition: vf_overlay.c:48
S
#define S(s, c, i)
Definition: flacdsp_template.c:46
VAR_T
@ VAR_T
Definition: aeval.c:51
VAR_VSUB
@ VAR_VSUB
Definition: boxblur.c:41
OVERLAY_FORMAT_RGB
@ OVERLAY_FORMAT_RGB
Definition: vf_overlay.h:48
blend_slice_gbrp_pm
static int blend_slice_gbrp_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:821
AV_PIX_FMT_GBRAP
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:205
FAST_DIV255
#define FAST_DIV255(x)
Definition: vf_overlay.c:337
OVERLAY_FORMAT_YUV422P10
@ OVERLAY_FORMAT_YUV422P10
Definition: vf_overlay.h:46
av_expr_free
void av_expr_free(AVExpr *e)
Free a parsed expression previously created with av_expr_parse().
Definition: eval.c:336
R
#define R
Definition: vf_overlay.c:66
AVFilterPad
A filter pad used for either input or output.
Definition: internal.h:50
ff_overlay_init_x86
void ff_overlay_init_x86(OverlayContext *s, int format, int pix_format, int alpha_format, int main_has_alpha)
Definition: vf_overlay_init.c:35
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:180
config_input_main
static int config_input_main(AVFilterLink *inlink)
Definition: vf_overlay.c:869
query_formats
static int query_formats(AVFilterContext *ctx)
Definition: vf_overlay.c:162
av_cold
#define av_cold
Definition: attributes.h:90
blend_slice_rgb_pm
static int blend_slice_rgb_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:853
EVAL_MODE_FRAME
@ EVAL_MODE_FRAME
Definition: vf_overlay.c:77
AV_PIX_FMT_YUVJ422P
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
s
#define s(width, name)
Definition: cbs_vp9.c:257
AV_PIX_FMT_YUVA420P
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:101
OVERLAY_FORMAT_YUV422
@ OVERLAY_FORMAT_YUV422
Definition: vf_overlay.h:45
AVFrame::pkt_pos
int64_t pkt_pos
reordered pos from the last AVPacket that has been input into the decoder
Definition: frame.h:593
ff_formats_ref
int ff_formats_ref(AVFilterFormats *f, AVFilterFormats **ref)
Add *ref as a new reference to formats.
Definition: formats.c:555
slice_end
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
Definition: mpeg12dec.c:2042
av_q2d
static double av_q2d(AVRational a)
Convert an AVRational to a double.
Definition: rational.h:104
ff_set_common_formats_from_list
int ff_set_common_formats_from_list(AVFilterContext *ctx, const int *fmts)
Equivalent to ff_set_common_formats(ctx, ff_make_format_list(fmts))
Definition: formats.c:705
av_assert0
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
VAR_MW
@ VAR_MW
Definition: vf_overlay.h:28
AV_LOG_DEBUG
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:201
ctx
AVFormatContext * ctx
Definition: movenc.c:48
av_expr_eval
double av_expr_eval(AVExpr *e, const double *const_values, void *opaque)
Evaluate a previously parsed expression.
Definition: eval.c:766
UNPREMULTIPLY_ALPHA
#define UNPREMULTIPLY_ALPHA(x, y)
Definition: vf_overlay.c:343
AVExpr
Definition: eval.c:157
AVPixFmtDescriptor::log2_chroma_w
uint8_t log2_chroma_w
Amount to shift the luma width right to find the chroma width.
Definition: pixdesc.h:80
vf_overlay.h
B
#define B
Definition: vf_overlay.c:68
AV_PIX_FMT_YUV420P
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
blend_slice_yuva420p10
static int blend_slice_yuva420p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:701
eval_expr
static void eval_expr(AVFilterContext *ctx)
Definition: vf_overlay.c:97
EOF_ACTION_PASS
@ EOF_ACTION_PASS
Definition: framesync.h:29
NAN
#define NAN
Definition: mathematics.h:64
FILTER_INPUTS
#define FILTER_INPUTS(array)
Definition: internal.h:191
AV_PIX_FMT_YUVJ444P
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
AV_PIX_FMT_RGBA
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
arg
const char * arg
Definition: jacosubdec.c:67
ff_vf_overlay
const AVFilter ff_vf_overlay
Definition: vf_overlay.c:1108
option
option
Definition: libkvazaar.c:312
ThreadData::dst
AVFrame * dst
Definition: vf_blend.c:83
config_input_overlay
static int config_input_overlay(AVFilterLink *inlink)
Definition: vf_overlay.c:272
NULL
#define NULL
Definition: coverity.c:32
EVAL_MODE_NB
@ EVAL_MODE_NB
Definition: vf_overlay.c:78
fs
#define fs(width, name, subs,...)
Definition: cbs_vp9.c:259
ThreadData::src
const uint8_t * src
Definition: vf_bm3d.c:55
blend_slice_yuva444_pm
static int blend_slice_yuva444_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:813
isnan
#define isnan(x)
Definition: libm.h:340
uninit
static av_cold void uninit(AVFilterContext *ctx)
Definition: vf_overlay.c:81
AV_PIX_FMT_YUVJ420P
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
src
#define src
Definition: vp8dsp.c:255
OverlayContext
Definition: vf_overlay.h:54
VAR_POS
@ VAR_POS
Definition: noise_bsf.c:56
ff_fmt_is_in
int ff_fmt_is_in(int fmt, const int *fmts)
Tell if an integer is contained in the provided -1-terminated list of integers.
Definition: formats.c:352
AV_PIX_FMT_YUV422P10
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:405
blend_slice_yuv420_pm
static int blend_slice_yuv420_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:773
AV_PIX_FMT_ABGR
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
avfilter_vf_overlay_inputs
static const AVFilterPad avfilter_vf_overlay_inputs[]
Definition: vf_overlay.c:1087
eval.h
blend_slice_yuv420p10
static int blend_slice_yuv420p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:693
AV_PIX_FMT_RGB24
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
A
#define A
Definition: vf_overlay.c:69
overlay_options
static const AVOption overlay_options[]
Definition: vf_overlay.c:1056
NULL_IF_CONFIG_SMALL
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
ff_framesync_init_dualinput
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
Definition: framesync.c:353
VAR_N
@ VAR_N
Definition: noise_bsf.c:48
OVERLAY_FORMAT_NB
@ OVERLAY_FORMAT_NB
Definition: vf_overlay.h:51
OVERLAY_FORMAT_YUV420P10
@ OVERLAY_FORMAT_YUV420P10
Definition: vf_overlay.h:44
sp
#define sp
Definition: regdef.h:63
OVERLAY_FORMAT_YUV420
@ OVERLAY_FORMAT_YUV420
Definition: vf_overlay.h:43
AV_NOPTS_VALUE
#define AV_NOPTS_VALUE
Undefined timestamp value.
Definition: avutil.h:248
format
ofilter format
Definition: ffmpeg_filter.c:172
VAR_MH
@ VAR_MH
Definition: vf_overlay.h:29
config_output
static int config_output(AVFilterLink *outlink)
Definition: vf_overlay.c:319
AV_PIX_FMT_YUVA444P
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:167
OVERLAY_FORMAT_AUTO
@ OVERLAY_FORMAT_AUTO
Definition: vf_overlay.h:50
DEFINE_ALPHA_COMPOSITE
#define DEFINE_ALPHA_COMPOSITE(depth, nbits)
Definition: vf_overlay.c:563
blend_slice_rgba
static int blend_slice_rgba(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:845
internal.h
blend_slice_yuva420_pm
static int blend_slice_yuva420_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:781
AV_PIX_FMT_ARGB
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
FLAGS
#define FLAGS
Definition: vf_overlay.c:1054
blend_slice_gbrap_pm
static int blend_slice_gbrap_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:829
blend_slice_yuva444
static int blend_slice_yuva444(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:749
blend_slice_rgba_pm
static int blend_slice_rgba_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:861
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:271
blend_slice_planar_rgb
static av_always_inline void blend_slice_planar_rgb(AVFilterContext *ctx, AVFrame *dst, const AVFrame *src, int hsub, int vsub, int main_has_alpha, int x, int y, int is_straight, int jobnr, int nb_jobs)
Definition: vf_overlay.c:648
FFMIN3
#define FFMIN3(a, b, c)
Definition: macros.h:50
common.h
ff_filter_get_nb_threads
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Definition: avfilter.c:803
ThreadData
Used for passing data between threads.
Definition: dsddec.c:67
EvalMode
EvalMode
Definition: af_volume.h:39
av_always_inline
#define av_always_inline
Definition: attributes.h:49
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
AV_PIX_FMT_NV21
@ AV_PIX_FMT_NV21
as above, but U and V bytes are swapped
Definition: pixfmt.h:90
AVFilterPad::name
const char * name
Pad name.
Definition: internal.h:56
blend_slice_gbrp
static int blend_slice_gbrp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:757
VAR_OVERLAY_H
@ VAR_OVERLAY_H
Definition: vf_overlay.h:31
VAR_OW
@ VAR_OW
Definition: scale_eval.c:45
normalize_xy
static int normalize_xy(double d, int chroma_sub)
Definition: vf_overlay.c:90
blend_slice_yuv444
static int blend_slice_yuv444(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:741
AVFilter
Filter definition.
Definition: avfilter.h:165
process_command
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
Definition: vf_overlay.c:130
ret
ret
Definition: filter_design.txt:187
AV_PIX_FMT_NV12
@ AV_PIX_FMT_NV12
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:89
DEFINE_BLEND_PLANE
#define DEFINE_BLEND_PLANE(depth, nbits)
Definition: vf_overlay.c:436
MAIN
#define MAIN
Definition: vf_overlay.c:63
pos
unsigned int pos
Definition: spdifenc.c:412
EOF_ACTION_REPEAT
@ EOF_ACTION_REPEAT
Definition: framesync.h:27
blend_slice_yuva422
static int blend_slice_yuva422(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:733
AVFrame::height
int height
Definition: frame.h:389
framesync.h
AV_PIX_FMT_NONE
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Definition: opt.h:224
avfilter.h
activate
static int activate(AVFilterContext *ctx)
Definition: vf_overlay.c:1047
G
#define G
Definition: vf_overlay.c:67
av_image_fill_max_pixsteps
void av_image_fill_max_pixsteps(int max_pixsteps[4], int max_pixstep_comps[4], const AVPixFmtDescriptor *pixdesc)
Compute the max pixel step for each plane of an image with a format described by pixdesc.
Definition: imgutils.c:35
AV_PIX_FMT_YUV444P
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
blend_slice_yuv444_pm
static int blend_slice_yuv444_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:805
AVFilterContext
An instance of a filter.
Definition: avfilter.h:402
AV_PIX_FMT_GBRP
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:158
OVERLAY_FORMAT_GBRP
@ OVERLAY_FORMAT_GBRP
Definition: vf_overlay.h:49
AVFILTER_FLAG_SLICE_THREADS
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:121
AVMEDIA_TYPE_VIDEO
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
AV_PIX_FMT_YUV422P
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
OVERLAY_FORMAT_YUV444
@ OVERLAY_FORMAT_YUV444
Definition: vf_overlay.h:47
AVPixFmtDescriptor
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:69
FRAMESYNC_DEFINE_CLASS
FRAMESYNC_DEFINE_CLASS(overlay, OverlayContext, fs)
alpha
static const int16_t alpha[]
Definition: ilbcdata.h:55
AV_OPT_TYPE_BOOL
@ AV_OPT_TYPE_BOOL
Definition: opt.h:241
FILTER_OUTPUTS
#define FILTER_OUTPUTS(array)
Definition: internal.h:192
EVAL_MODE_INIT
@ EVAL_MODE_INIT
Definition: vf_overlay.c:76
ff_fill_rgba_map
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
Definition: drawutils.c:34
DEFINE_BLEND_SLICE_YUV
#define DEFINE_BLEND_SLICE_YUV(depth, nbits)
Definition: vf_overlay.c:616
d
d
Definition: ffmpeg_filter.c:153
AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
Definition: avfilter.h:154
imgutils.h
timestamp.h
flags
#define flags(name, subs,...)
Definition: cbs_av1.c:561
AVFrame::linesize
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
Definition: frame.h:362
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:28
VAR_Y
@ VAR_Y
Definition: vf_blend.c:79
ff_framesync_activate
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter's input and try to produce output.
Definition: framesync.c:336
avstring.h
AV_OPT_TYPE_STRING
@ AV_OPT_TYPE_STRING
Definition: opt.h:228
ff_framesync_dualinput_get_writable
int ff_framesync_dualinput_get_writable(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
Same as ff_framesync_dualinput_get(), but make sure that f0 is writable.
Definition: framesync.c:391
drawutils.h
alpha_pix_fmts
static enum AVPixelFormat alpha_pix_fmts[]
Definition: vf_overlay.c:155
OFFSET
#define OFFSET(x)
Definition: vf_overlay.c:1053
ff_filter_execute
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
Definition: internal.h:143
VAR_OVERLAY_W
@ VAR_OVERLAY_W
Definition: vf_overlay.h:30
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Definition: opt.h:233
blend_slice_yuva420
static int blend_slice_yuva420(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:685
AVPixFmtDescriptor::log2_chroma_h
uint8_t log2_chroma_h
Amount to shift the luma height right to find the chroma height.
Definition: pixdesc.h:89
AV_PIX_FMT_YUVA422P
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:166
av_get_pix_fmt_name
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2580
blend_slice_yuv422_pm
static int blend_slice_yuv422_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:789
init
static av_cold int init(AVFilterContext *ctx)
Definition: vf_overlay.c:1039