Go to the documentation of this file.
65 .log_level_offset_offset = offsetof(
Parser, log_offset),
66 .parent_log_context_offset = offsetof(
Parser, log_ctx),
74 [
'y'-
'E']= { 8.271806125530276749e-25, 1e-24, -24 },
75 [
'z'-
'E']= { 8.4703294725430034e-22, 1e-21, -21 },
76 [
'a'-
'E']= { 8.6736173798840355e-19, 1e-18, -18 },
77 [
'f'-
'E']= { 8.8817841970012523e-16, 1e-15, -15 },
78 [
'p'-
'E']= { 9.0949470177292824e-13, 1e-12, -12 },
79 [
'n'-
'E']= { 9.3132257461547852e-10, 1e-9, -9 },
80 [
'u'-
'E']= { 9.5367431640625e-7, 1e-6, -6 },
81 [
'm'-
'E']= { 9.765625e-4, 1e-3, -3 },
82 [
'c'-
'E']= { 9.8431332023036951e-3, 1e-2, -2 },
83 [
'd'-
'E']= { 9.921256574801246e-2, 1e-1, -1 },
84 [
'h'-
'E']= { 1.0159366732596479e2, 1e2, 2 },
85 [
'k'-
'E']= { 1.024e3, 1e3, 3 },
86 [
'K'-
'E']= { 1.024e3, 1e3, 3 },
87 [
'M'-
'E']= { 1.048576e6, 1e6, 6 },
88 [
'G'-
'E']= { 1.073741824e9, 1e9, 9 },
89 [
'T'-
'E']= { 1.099511627776e12, 1e12, 12 },
90 [
'P'-
'E']= { 1.125899906842624e15, 1e15, 15 },
91 [
'E'-
'E']= { 1.152921504606847e18, 1e18, 18 },
92 [
'Z'-
'E']= { 1.1805916207174113e21, 1e21, 21 },
93 [
'Y'-
'E']= { 1.2089258196146292e24, 1e24, 24 },
110 if(numstr[0]==
'0' && (numstr[1]|0x20)==
'x') {
111 d = strtoul(numstr, &next, 16);
116 if (next[0] ==
'd' && next[1] ==
'B') {
120 }
else if (*next >=
'E' && *next <=
'z') {
123 if (next[1] ==
'i') {
145 #define IS_IDENTIFIER_CHAR(c) ((c) - '0' <= 9U || (c) - 'a' <= 25U || (c) - 'A' <= 25U || (c) == '_')
150 for (
i=0; prefix[
i];
i++) {
151 if (prefix[
i] !=
s[
i])
return 0;
224 return v0 + (v1 -
v0) *
f;
235 r=
r*1664525+1013904223;
237 return e->
value * (
r * (1.0/UINT64_MAX));
246 double t = 1,
d = 0, v;
250 double var0 = p->
var[
id];
251 for(
i=0;
i<1000;
i++) {
265 double low = -1, high = -1, v, low_v = -DBL_MAX, high_v = DBL_MAX;
266 double var0 = p->
var[0];
268 for(
i=-1;
i<1024;
i++) {
272 p->
var[0] = x_max*pow(0.9,
i-255);
273 if (
i&1) p->
var[0] *= -1;
274 if (
i&2) p->
var[0] += low;
275 else p->
var[0] += high;
278 if (v<=0 && v>low_v) {
282 if (v>=0 && v<high_v) {
286 if (low>=0 && high>=0){
287 for (j=0; j<1000; j++) {
288 p->
var[0] = (low+high)*0.5;
289 if (low == p->
var[0] || high == p->
var[0])
292 if (v<=0) low = p->
var[0];
293 if (v>=0) high= p->
var[0];
303 return -low_v<high_v ? low : high;
313 case e_eq:
return e->
value * (
d == d2 ? 1.0 : 0.0);
314 case e_gt:
return e->
value * (
d > d2 ? 1.0 : 0.0);
315 case e_gte:
return e->
value * (
d >= d2 ? 1.0 : 0.0);
316 case e_lt:
return e->
value * (
d < d2 ? 1.0 : 0.0);
317 case e_lte:
return e->
value * (
d <= d2 ? 1.0 : 0.0);
349 char *next = p->
s, *
s0 = p->
s;
385 p->
s= strchr(p->
s,
'(');
397 if (p->
s[0] !=
')') {
418 if (p->
s[0] !=
')') {
426 if (
strmatch(next,
"sinh" ))
d->a.func0 = sinh;
427 else if (
strmatch(next,
"cosh" ))
d->a.func0 = cosh;
428 else if (
strmatch(next,
"tanh" ))
d->a.func0 = tanh;
429 else if (
strmatch(next,
"sin" ))
d->a.func0 = sin;
430 else if (
strmatch(next,
"cos" ))
d->a.func0 = cos;
431 else if (
strmatch(next,
"tan" ))
d->a.func0 = tan;
432 else if (
strmatch(next,
"atan" ))
d->a.func0 = atan;
433 else if (
strmatch(next,
"asin" ))
d->a.func0 = asin;
434 else if (
strmatch(next,
"acos" ))
d->a.func0 = acos;
436 else if (
strmatch(next,
"log" ))
d->a.func0 = log;
520 *sign= (*p->
s ==
'+') - (*p->
s ==
'-');
532 if (next != p->
s && next[0] ==
'd' && next[1] ==
'B') {
542 int sign, sign2,
ret;
561 if (e0) e0->
value *= (sign|1);
573 while (p->
s[0]==
'*' || p->
s[0]==
'/') {
597 while (*p->
s ==
'+' || *p->
s ==
'-') {
625 while (*p->
s ==
';') {
688 const char *
const *
func2_names,
double (*
const *funcs2)(
void *,
double,
double),
689 int log_offset,
void *log_ctx)
744 if (!e || !counter || !
size)
779 const char *
const *
func2_names,
double (*
const *funcs2)(
void *,
double,
double),
780 void *opaque,
int log_offset,
void *log_ctx)
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int parse_primary(AVExpr **e, Parser *p)
double strtod(const char *, char **)
static av_const int av_isspace(int c)
Locale-independent conversion of ASCII isspace.
const uint8_t ff_reverse[256]
int av_expr_count_func(AVExpr *e, unsigned *counter, int size, int arg)
Track the presence of user provided functions and their number of occurrences in a parsed expression.
const char *const * const_names
#define IS_IDENTIFIER_CHAR(c)
double(*const funcs2)(void *, double a, double b)
static const char *const func2_names[]
static const double const_values[]
int64_t av_gcd(int64_t a, int64_t b)
Compute the greatest common divisor of two integer operands.
int av_expr_parse(AVExpr **expr, const char *s, const char *const *const_names, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), int log_offset, void *log_ctx)
Parse an expression.
const char *const * func1_names
static __device__ float trunc(float a)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
static const char *const func1_names[]
void av_expr_free(AVExpr *e)
Free a parsed expression previously created with av_expr_parse().
#define FFDIFFSIGN(x, y)
Comparator.
static const struct @297 si_prefixes[ 'z' - 'E'+1]
double(*const funcs1)(void *, double a)
static __device__ float ceil(float a)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int expr_count(AVExpr *e, unsigned *counter, int size, int type)
static double(*const funcs1[])(void *, double)
static __device__ float floor(float a)
int av_expr_count_vars(AVExpr *e, unsigned *counter, int size)
Track the presence of variables and their number of occurrences in a parsed expression.
double(* func1)(void *, double)
double av_expr_eval(AVExpr *e, const double *const_values, void *opaque)
Evaluate a previously parsed expression.
static const AVClass eval_class
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
static __device__ float fabs(float a)
static int parse_pow(AVExpr **e, Parser *p, int *sign)
const char * av_default_item_name(void *ptr)
Return the context name.
static int parse_dB(AVExpr **e, Parser *p, int *sign)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
int av_expr_parse_and_eval(double *d, const char *s, const char *const *const_names, const double *const_values, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), void *opaque, int log_offset, void *log_ctx)
Parse and evaluate an expression.
static double eval_expr(Parser *p, AVExpr *e)
static const struct @298 constants[]
static av_const double hypot(double x, double y)
static int verify_expr(AVExpr *e)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
static int parse_subexpr(AVExpr **e, Parser *p)
static AVExpr * make_eval_expr(int type, int value, AVExpr *p0, AVExpr *p1)
#define AV_LOG_INFO
Standard information.
#define i(width, name, range_min, range_max)
static double etime(double v)
static av_always_inline av_const double round(double x)
static int parse_factor(AVExpr **e, Parser *p)
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
double av_strtod(const char *numstr, char **tail)
Parse the string in numstr and return its value as a double.
static const char *const const_names[]
const char *const * func2_names
int64_t av_gettime(void)
Get the current time in microseconds.
static int strmatch(const char *s, const char *prefix)
static int parse_term(AVExpr **e, Parser *p)
#define FF_QP2LAMBDA
factor to convert from H.263 QP to lambda
static int parse_expr(AVExpr **e, Parser *p)
const double * const_values
double(* func2)(void *, double, double)