Go to the documentation of this file.
   68     bytestream_put_byte  (&bs, 0x1);
 
   72     bytestream_put_le16  (&bs, 0x0);
 
   73     bytestream_put_byte  (&bs, 0x0); 
 
   78     int tmp = 0x0, extended_toc = 0;
 
   82         { {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 }, { 17,  0, 21, 25, 29 } }, 
 
   83         { {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 }, { 18,  0, 22, 26, 30 } }, 
 
   84         { {  1,  5,  9,  0,  0 }, {  0,  0,  0, 13, 15 }, { 19,  0, 23, 27, 31 } }, 
 
   85         { {  2,  6, 10,  0,  0 }, {  0,  0,  0, 14, 16 }, { 20,  0, 24, 28, 32 } }, 
 
   86         { {  3,  7, 11,  0,  0 }, {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 } }, 
 
   87         { {  4,  8, 12,  0,  0 }, {  0,  0,  0,  0,  0 }, {  0,  0,  0,  0,  0 } }, 
 
   89     int cfg = toc_cfg[
s->packet.framesize][
s->packet.mode][
s->packet.bandwidth];
 
   93     if (
s->packet.frames == 2) {                                       
 
   94         if (
s->frame[0].framebits == 
s->frame[1].framebits) {          
 
  100     } 
else if (
s->packet.frames > 2) {
 
  104     tmp |= (
s->channels > 1) << 2;                                
 
  105     tmp |= (cfg - 1)         << 3;                           
 
  108         for (
int i = 0; 
i < (
s->packet.frames - 1); 
i++)
 
  109             *fsize_needed |= (
s->frame[
i].framebits != 
s->frame[
i + 1].framebits);
 
  110         tmp = (*fsize_needed) << 7;                                
 
  112         tmp |= 
s->packet.frames;
 
  115     *
size = 1 + extended_toc;
 
  122     const int subframesize = 
s->avctx->frame_size;
 
  127     for (
int ch = 0; ch < 
f->channels; ch++) {
 
  136     for (
int sf = 0; sf < subframes; sf++) {
 
  137         if (sf != (subframes - 1))
 
  142         for (
int ch = 0; ch < 
f->channels; ch++) {
 
  148             memcpy(&
b->samples[sf*subframesize], 
input, 
len);
 
  153         if (sf != (subframes - 1))
 
  161     const int subframesize = 
s->avctx->frame_size;
 
  165     for (
int ch = 0; ch < 
f->channels; ch++) {
 
  167         float m = 
b->emph_coeff;
 
  177     for (
int sf = 0; sf < subframes; sf++) {
 
  178         for (
int ch = 0; ch < 
f->channels; ch++) {
 
  180             float m = 
b->emph_coeff;
 
  181             for (
int i = 0; 
i < subframesize; 
i++) {
 
  182                 float sample = 
b->samples[sf*subframesize + 
i];
 
  183                 b->samples[sf*subframesize + 
i] = 
sample - m;
 
  186             if (sf != (subframes - 1))
 
  195     float *
win = 
s->scratch, *
temp = 
s->scratch + 1920;
 
  198         for (
int ch = 0; ch < 
f->channels; ch++) {
 
  200             float *
src1 = 
b->overlap;
 
  201             for (
int t = 0; t < 
f->blocks; t++) {
 
  207                 s->mdct[0]->mdct(
s->mdct[0], 
b->coeffs + t, 
win, 
f->blocks);
 
  213         memset(
win, 0, wlen*
sizeof(
float));
 
  214         for (
int ch = 0; ch < 
f->channels; ch++) {
 
  225             s->dsp->vector_fmul_reverse(
temp, 
b->samples + rwin,
 
  229             s->mdct[
f->size]->mdct(
s->mdct[
f->size], 
b->coeffs, 
win, 1);
 
  233     for (
int ch = 0; ch < 
f->channels; ch++) {
 
  239             float *coeffs   = &
block->coeffs[band_offset];
 
  241             for (
int j = 0; j < band_size; j++)
 
  242                 ener += coeffs[j]*coeffs[j];
 
  245             ener = 1.0f/
block->lin_energy[
i];
 
  247             for (
int j = 0; j < band_size; j++)
 
  260     int tf_select = 0, 
diff = 0, tf_changed = 0, tf_select_needed;
 
  261     int bits = 
f->transient ? 2 : 4;
 
  265     for (
int i = 
f->start_band; i < f->end_band; 
i++) {
 
  267             const int tbit = (
diff ^ 1) == 
f->tf_change[
i];
 
  272         bits = 
f->transient ? 4 : 5;
 
  278         tf_select = 
f->tf_select;
 
  281     for (
int i = 
f->start_band; i < f->end_band; 
i++)
 
  287     float gain = 
f->pf_gain;
 
  288     int txval, octave = 
f->pf_octave, 
period = 
f->pf_period, tapset = 
f->pf_tapset;
 
  295     txval = 
FFMIN(octave, 6);
 
  299     txval = 
av_clip(
period - (16 << octave) + 1, 0, (1 << (4 + octave)) - 1);
 
  301     period = txval + (16 << octave) - 1;
 
  303     txval = 
FFMIN(((
int)(gain / 0.09375
f)) - 1, 7);
 
  305     gain   = 0.09375f * (txval + 1);
 
  312     for (
int i = 0; 
i < 2; 
i++) {
 
  325     float alpha, beta, prev[2] = { 0, 0 };
 
  336         beta  = 1.0f - (4915.0f/32768.0f);
 
  342     for (
int i = 
f->start_band; i < f->end_band; 
i++) {
 
  343         for (
int ch = 0; ch < 
f->channels; ch++) {
 
  346             const float last = 
FFMAX(-9.0
f, last_energy[ch][
i]);
 
  351             } 
else if (
left >= 2) {
 
  354             } 
else if (
left >= 1) {
 
  360             prev[ch] += beta * q_en;
 
  368     uint32_t inter, intra;
 
  387     for (
int i = 
f->start_band; i < f->end_band; 
i++) {
 
  388         if (!
f->fine_bits[
i])
 
  390         for (
int ch = 0; ch < 
f->channels; ch++) {
 
  392             int quant, lim = (1 << 
f->fine_bits[
i]);
 
  396             offset = 0.5f - ((
quant + 0.5f) * (1 << (14 - 
f->fine_bits[
i])) / 16384.0
f);
 
  404     for (
int priority = 0; priority < 2; priority++) {
 
  405         for (
int i = 
f->start_band; i < f->end_band && (
f->framebits - 
opus_rc_tell(rc)) >= 
f->channels; 
i++) {
 
  408             for (
int ch = 0; ch < 
f->channels; ch++) {
 
  410                 const float err = 
block->error_energy[
i];
 
  411                 const float offset = 0.5f * (1 << (14 - 
f->fine_bits[
i] - 1)) / 16384.0f;
 
  430         if (
f->framebits >= 16)
 
  432         for (
int ch = 0; ch < 
s->channels; ch++)
 
  433             memset(
s->last_quantized_energy[ch], 0.0f, 
sizeof(
float)*
CELT_MAX_BANDS);
 
  472     if (
f->anticollapse_needed)
 
  478     for (
int ch = 0; ch < 
f->channels; ch++) {
 
  481             s->last_quantized_energy[ch][
i] = 
block->energy[
i] + 
block->error_energy[
i];
 
  488     dst[1] = v - dst[0] >> 2;
 
  489     return 1 + (v >= 252);
 
  501         for (
int i = 0; 
i < 
s->packet.frames - 1; 
i++) {
 
  503                                        s->frame[
i].framebits >> 3);
 
  508     for (
int i = 0; 
i < 
s->packet.frames; 
i++) {
 
  510                            s->frame[
i].framebits >> 3);
 
  511         offset += 
s->frame[
i].framebits >> 3;
 
  524     f->format         = 
s->avctx->sample_fmt;
 
  525     f->nb_samples     = 
s->avctx->frame_size;
 
  535     for (
int i = 0; 
i < 
s->channels; 
i++) {
 
  537         memset(
f->extended_data[
i], 0, 
bps*
f->nb_samples);
 
  566         int pad_empty = 
s->packet.frames*(
frame_size/
s->avctx->frame_size) - 
s->bufqueue.available + 1;
 
  571         for (
int i = 0; 
i < pad_empty; 
i++) {
 
  579     for (
int i = 0; 
i < 
s->packet.frames; 
i++) {
 
  581         alloc_size += 
s->frame[
i].framebits >> 3;
 
  585     alloc_size += 2 + 
s->packet.frames*2;
 
  647         avctx->
bit_rate = coupled*(96000) + (
s->channels - coupled*2)*(48000);
 
  649         int64_t clipped_rate = 
av_clip(avctx->
bit_rate, 6000, 255000 * 
s->channels);
 
  650         av_log(avctx, 
AV_LOG_ERROR, 
"Unsupported bitrate %"PRId64
" kbps, clipping to %"PRId64
" kbps\n",
 
  651                avctx->
bit_rate/1000, clipped_rate/1000);
 
  676     for (
int ch = 0; ch < 
s->channels; ch++)
 
  677         memset(
s->last_quantized_energy[ch], 0.0f, 
sizeof(
float)*
CELT_MAX_BANDS);
 
  688     max_frames = 
ceilf(
FFMIN(
s->options.max_delay_ms, 120.0f)/2.5f);
 
  696     for (
int i = 0; 
i < max_frames; 
i++) {
 
  697         s->frame[
i].dsp = 
s->dsp;
 
  698         s->frame[
i].avctx = 
s->avctx;
 
  699         s->frame[
i].seed = 0;
 
  700         s->frame[
i].pvq = 
s->pvq;
 
  701         s->frame[
i].apply_phase_inv = 
s->options.apply_phase_inv;
 
  702         s->frame[
i].block[0].emph_coeff = 
s->frame[
i].block[1].emph_coeff = 0.0f;
 
  708 #define OPUSENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM 
  710     { 
"opus_delay", 
"Maximum delay in milliseconds", offsetof(
OpusEncContext, 
options.max_delay_ms), 
AV_OPT_TYPE_FLOAT, { .dbl = 
OPUS_MAX_LOOKAHEAD }, 2.5f, 
OPUS_MAX_LOOKAHEAD, 
OPUSENC_FLAGS, 
"max_delay_ms" },
 
  711     { 
"apply_phase_inv", 
"Apply intensity stereo phase inversion", offsetof(
OpusEncContext, 
options.apply_phase_inv), 
AV_OPT_TYPE_BOOL, { .i64 = 1 }, 0, 1, 
OPUSENC_FLAGS, 
"apply_phase_inv" },
 
  724     { 
"compression_level", 
"10" },
 
  741     .p.supported_samplerates = (
const int []){ 48000, 0 },
 
  742 #if FF_API_OLD_CHANNEL_LAYOUT 
  
int frame_size
Number of samples per channel in an audio frame.
 
@ AV_SAMPLE_FMT_FLTP
float, planar
 
const float ff_celt_postfilter_taps[3][3]
 
void ff_opus_rc_enc_cdf(OpusRangeCoder *rc, int val, const uint16_t *cdf)
 
int ff_opus_psy_process(OpusPsyContext *s, OpusPacketInfo *p)
 
static AVFrame * spawn_empty_frame(OpusEncContext *s)
 
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
const uint8_t ff_celt_freq_bands[]
 
void ff_af_queue_remove(AudioFrameQueue *afq, int nb_samples, int64_t *pts, int64_t *duration)
Remove frame(s) from the queue.
 
int av_frame_get_buffer(AVFrame *frame, int align)
Allocate new buffer(s) for audio or video data.
 
int sample_rate
samples per second
 
void ff_af_queue_close(AudioFrameQueue *afq)
Close AudioFrameQueue.
 
void ff_opus_psy_celt_frame_init(OpusPsyContext *s, CeltFrame *f, int index)
 
#define AV_CH_LAYOUT_MONO
 
void ff_opus_rc_enc_uint(OpusRangeCoder *rc, uint32_t val, uint32_t size)
CELT: write a uniformly distributed integer.
 
av_cold void ff_af_queue_init(AVCodecContext *avctx, AudioFrameQueue *afq)
Initialize AudioFrameQueue.
 
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
 
const uint16_t ff_celt_model_tapset[]
 
static const AVOption opusenc_options[]
 
This structure describes decoded (raw) audio or video data.
 
#define OPUS_RC_CHECKPOINT_SPAWN(rc)
 
#define AV_CHANNEL_LAYOUT_MONO
 
static void opus_packet_assembler(OpusEncContext *s, AVPacket *avpkt)
 
av_cold int ff_mdct15_init(MDCT15Context **ps, int inverse, int N, double scale)
 
int64_t duration
Duration of this packet in AVStream->time_base units, 0 if unknown.
 
#define AV_CHANNEL_LAYOUT_STEREO
 
static av_cold int opus_encode_end(AVCodecContext *avctx)
 
int nb_channels
Number of channels in this layout.
 
int av_cold ff_celt_pvq_init(CeltPVQ **pvq, int encode)
 
static void exp_quant_coarse(OpusRangeCoder *rc, CeltFrame *f, float last_energy[][CELT_MAX_BANDS], int intra)
 
static __device__ float ceilf(float a)
 
static AVFrame * ff_bufqueue_get(struct FFBufQueue *queue)
Get the first buffer from the queue and remove it.
 
static av_always_inline uint32_t opus_rc_tell(const OpusRangeCoder *rc)
CELT: estimate bits of entropy that have thus far been consumed for the current CELT frame,...
 
const uint8_t ff_celt_coarse_energy_dist[4][2][42]
 
int av_channel_layout_copy(AVChannelLayout *dst, const AVChannelLayout *src)
Make a copy of a channel layout.
 
static float win(SuperEqualizerContext *s, float n, int N)
 
AVCodec p
The public AVCodec.
 
AVChannelLayout ch_layout
Audio channel layout.
 
int initial_padding
Audio only.
 
static int opus_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
 
int flags
AV_CODEC_FLAG_*.
 
av_cold int ff_opus_psy_end(OpusPsyContext *s)
 
#define FF_CODEC_ENCODE_CB(func)
 
int ff_af_queue_add(AudioFrameQueue *afq, const AVFrame *f)
Add a frame to the queue.
 
#define AV_CH_LAYOUT_STEREO
 
static int quant(float coef, const float Q, const float rounding)
Quantize one coefficient.
 
void ff_opus_psy_postencode_update(OpusPsyContext *s, CeltFrame *f, OpusRangeCoder *rc)
 
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
 
#define OPUS_MAX_LOOKAHEAD
 
#define AV_CODEC_CAP_EXPERIMENTAL
Codec is experimental and is thus avoided in favor of non experimental encoders.
 
#define OPUS_BLOCK_SIZE(x)
 
static __device__ float floor(float a)
 
int ff_opus_psy_celt_frame_process(OpusPsyContext *s, CeltFrame *f, int index)
 
#define CELT_MAX_FINE_BITS
 
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
 
MDCT15Context * mdct[CELT_BLOCK_NB]
 
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
 
void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode)
 
#define LIBAVUTIL_VERSION_INT
 
Describe the class of an AVClass context structure.
 
void av_cold ff_celt_pvq_uninit(CeltPVQ **pvq)
 
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option keep it simple and lowercase description are in without period
 
int64_t bit_rate
the average bitrate
 
const char * av_default_item_name(void *ptr)
Return the context name.
 
static void ff_bufqueue_discard_all(struct FFBufQueue *queue)
Unref and remove all buffers from the queue.
 
static void celt_frame_mdct(OpusEncContext *s, CeltFrame *f)
 
static void celt_quant_fine(CeltFrame *f, OpusRangeCoder *rc)
 
static void celt_frame_setup_input(OpusEncContext *s, CeltFrame *f)
 
static __device__ float sqrtf(float a)
 
static int opus_gen_toc(OpusEncContext *s, uint8_t *toc, int *size, int *fsize_needed)
 
const uint8_t ff_celt_freq_range[]
 
#define CELT_ENERGY_SILENCE
 
const OptionDef options[]
 
void ff_opus_rc_enc_init(OpusRangeCoder *rc)
 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
 
An AVChannelLayout holds information about the channel layout of audio data.
 
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
 
const int8_t ff_celt_tf_select[4][2][2][2]
 
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
 
static void ff_bufqueue_add(void *log, struct FFBufQueue *queue, AVFrame *buf)
Add a buffer to the queue.
 
static int write_opuslacing(uint8_t *dst, int v)
 
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
 
static void opus_write_extradata(AVCodecContext *avctx)
 
const float ff_celt_beta_coef[]
 
#define DECLARE_ALIGNED(n, t, v)
 
float last_quantized_energy[OPUS_MAX_CHANNELS][CELT_MAX_BANDS]
 
static av_always_inline void bytestream_put_buffer(uint8_t **b, const uint8_t *src, unsigned int size)
 
int nb_samples
number of audio samples (per channel) described by this frame
 
static AVFrame * ff_bufqueue_peek(struct FFBufQueue *queue, unsigned index)
Get a buffer from the queue without altering it.
 
#define i(width, name, range_min, range_max)
 
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
 
void ff_opus_rc_enc_laplace(OpusRangeCoder *rc, int *value, uint32_t symbol, int decay)
 
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
 
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
 
Structure holding the queue.
 
uint8_t ** extended_data
pointers to the data planes/channels.
 
void ff_opus_rc_put_raw(OpusRangeCoder *rc, uint32_t val, uint32_t count)
CELT: write 0 - 31 bits to the rawbits buffer.
 
static void celt_encode_frame(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f, int index)
 
AVSampleFormat
Audio sample formats.
 
#define OPUS_MAX_CHANNELS
 
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
 
void ff_opus_psy_signal_eof(OpusPsyContext *s)
 
av_cold void ff_mdct15_uninit(MDCT15Context **ps)
 
const char * name
Name of the codec implementation.
 
@ AV_PKT_DATA_SKIP_SAMPLES
Recommmends skipping the specified number of samples.
 
#define CELT_POSTFILTER_MINPERIOD
 
const uint8_t ff_opus_default_coupled_streams[]
 
static const AVClass opusenc_class
 
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
 
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
 
static const FFCodecDefault opusenc_defaults[]
 
#define AV_INPUT_BUFFER_PADDING_SIZE
 
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
 
main external API structure.
 
const uint16_t ff_celt_model_energy_small[]
 
const float *const ff_celt_window
 
uint8_t * av_packet_new_side_data(AVPacket *pkt, enum AVPacketSideDataType type, size_t size)
Allocate new information of a packet.
 
static void celt_quant_coarse(CeltFrame *f, OpusRangeCoder *rc, float last_energy[][CELT_MAX_BANDS])
 
void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc)
 
void ff_opus_rc_enc_log(OpusRangeCoder *rc, int val, uint32_t bits)
 
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
 
const float ff_celt_alpha_coef[]
 
static void celt_enc_quant_pfilter(OpusRangeCoder *rc, CeltFrame *f)
 
static void celt_quant_final(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f)
 
const FFCodec ff_opus_encoder
 
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
 
int frame_number
Frame counter, set by libavcodec.
 
av_cold int ff_opus_psy_init(OpusPsyContext *s, AVCodecContext *avctx, struct FFBufQueue *bufqueue, OpusEncOptions *options)
 
static av_always_inline int diff(const uint32_t a, const uint32_t b)
 
static const int16_t alpha[]
 
This structure stores compressed data.
 
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
 
The exact code depends on how similar the blocks are and how related they are to the block
 
static void celt_apply_preemph_filter(OpusEncContext *s, CeltFrame *f)
 
const float ff_celt_mean_energy[]
 
struct FFBufQueue bufqueue
 
#define OPUS_RC_CHECKPOINT_BITS(rc)
 
#define AV_CODEC_CAP_SMALL_LAST_FRAME
Codec can be fed a final frame with a smaller size.
 
#define OPUS_RC_CHECKPOINT_ROLLBACK(rc)
 
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.
 
static void celt_enc_tf(CeltFrame *f, OpusRangeCoder *rc)
 
static av_cold int opus_encode_init(AVCodecContext *avctx)
 
void ff_opus_rc_enc_end(OpusRangeCoder *rc, uint8_t *dst, int size)