Go to the documentation of this file.
   22 #include "config_components.h" 
   49 #define MAX_CHANNELS 2 
   80 #define LATTICE_SHIFT   10 
   81 #define SAMPLE_SHIFT    4 
   82 #define LATTICE_FACTOR  (1 << LATTICE_SHIFT) 
   83 #define SAMPLE_FACTOR   (1 << SAMPLE_SHIFT) 
   85 #define BASE_QUANT      0.6 
   86 #define RATE_VARIATION  3.0 
   90     return (
a+(1<<(
b-1))) >> 
b;
 
  101 #define put_rac(C,S,B) \ 
  105         rc_stat2[(S)-state][B]++;\ 
  120             for(
i=e-1; 
i>=0; 
i--){
 
  132             for(
i=e-1; 
i>=0; 
i--){
 
  159         for(
i=e-1; 
i>=0; 
i--){
 
  173     for (
i = 0; 
i < entries; 
i++)
 
  183     for (
i = 0; 
i < entries; 
i++)
 
  193     for (
i = 0; 
i < entries; 
i++)
 
  203     for (
i = 0; 
i < entries; 
i++)
 
  211 #define ADAPT_LEVEL 8 
  213 static int bits_to_store(uint64_t x)
 
  263     int i, j, x = 0, low_bits = 0, 
max = 0;
 
  264     int step = 256, 
pos = 0, dominant = 0, any = 0;
 
  275         for (
i = 0; 
i < entries; 
i++)
 
  276             energy += 
abs(buf[
i]);
 
  278         low_bits = bits_to_store(energy / (entries * 2));
 
  285     for (
i = 0; 
i < entries; 
i++)
 
  300     for (
i = 0; 
i <= 
max; 
i++)
 
  302         for (j = 0; j < entries; j++)
 
  310         int steplet = 
step >> 8;
 
  312         if (
pos + steplet > x)
 
  315         for (
i = 0; 
i < steplet; 
i++)
 
  330             while (((
pos + interloper) < x) && (
bits[
pos + interloper] == dominant))
 
  334             write_uint_max(pb, interloper, (
step >> 8) - 1);
 
  336             pos += interloper + 1;
 
  343             dominant = !dominant;
 
  348     for (
i = 0; 
i < entries; 
i++)
 
  360     int i, low_bits = 0, x = 0;
 
  361     int n_zeros = 0, 
step = 256, dominant = 0;
 
  373             for (
i = 0; 
i < entries; 
i++)
 
  379     while (n_zeros < entries)
 
  381         int steplet = 
step >> 8;
 
  385             for (
i = 0; 
i < steplet; 
i++)
 
  386                 bits[x++] = dominant;
 
  395             int actual_run = read_uint_max(gb, steplet-1);
 
  399             for (
i = 0; 
i < actual_run; 
i++)
 
  400                 bits[x++] = dominant;
 
  402             bits[x++] = !dominant;
 
  405                 n_zeros += actual_run;
 
  415             dominant = !dominant;
 
  421     for (
i = 0; n_zeros < entries; 
i++)
 
  428                 level += 1 << low_bits;
 
  438             buf[
pos] += 1 << low_bits;
 
  447     for (
i = 0; 
i < entries; 
i++)
 
  461     for (
i = order-2; 
i >= 0; 
i--)
 
  465         for (j = 0, p = 
i+1; p < order; j++,p++)
 
  479     int *k_ptr = &(k[order-2]),
 
  480         *state_ptr = &(
state[order-2]);
 
  481     for (
i = order-2; 
i >= 0; 
i--, k_ptr--, state_ptr--)
 
  483         int k_value = *k_ptr, state_value = *state_ptr;
 
  488     for (
i = order-2; 
i >= 0; 
i--)
 
  504 #if CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER 
  509 static void modified_levinson_durbin(
int *
window, 
int window_entries,
 
  510         int *
out, 
int out_entries, 
int channels, 
int *tap_quant)
 
  517     for (
i = 0; 
i < out_entries; 
i++)
 
  520         double xx = 0.0, xy = 0.0;
 
  523         int *state_ptr = &(
state[0]);
 
  524         j = window_entries - 
step;
 
  525         for (;j>0;j--,x_ptr++,state_ptr++)
 
  527             double x_value = *x_ptr;
 
  528             double state_value = *state_ptr;
 
  529             xx += state_value*state_value;
 
  530             xy += x_value*state_value;
 
  533         for (j = 0; j <= (window_entries - 
step); j++);
 
  536             double stateval = 
window[j];
 
  539             xx += stateval*stateval;
 
  540             xy += stepval*stateval;
 
  558         state_ptr = &(
state[0]);
 
  559         j = window_entries - 
step;
 
  560         for (;j>0;j--,x_ptr++,state_ptr++)
 
  562             int x_value = *x_ptr;
 
  563             int state_value = *state_ptr;
 
  568         for (j=0; j <= (window_entries - 
step); j++)
 
  571             int stateval=
state[j];
 
  579 static inline int code_samplerate(
int samplerate)
 
  583         case 44100: 
return 0;
 
  584         case 22050: 
return 1;
 
  585         case 11025: 
return 2;
 
  586         case 96000: 
return 3;
 
  587         case 48000: 
return 4;
 
  588         case 32000: 
return 5;
 
  589         case 24000: 
return 6;
 
  590         case 16000: 
return 7;
 
  614         s->decorrelation = 3;
 
  621         s->quantization = 0.0;
 
  627         s->quantization = 1.0;
 
  631     if (
s->num_taps < 32 || 
s->num_taps > 1024 || 
s->num_taps % 32) {
 
  637     s->tap_quant = 
av_calloc(
s->num_taps, 
sizeof(*
s->tap_quant));
 
  641     for (
i = 0; 
i < 
s->num_taps; 
i++)
 
  647     s->block_align = 2048LL*
s->samplerate/(44100*
s->downsampling);
 
  648     s->frame_size = 
s->channels*
s->block_align*
s->downsampling;
 
  650     s->tail_size = 
s->num_taps*
s->channels;
 
  655     s->predictor_k = 
av_calloc(
s->num_taps, 
sizeof(*
s->predictor_k) );
 
  659     coded_samples = 
av_calloc(
s->block_align, 
s->channels * 
sizeof(**
s->coded_samples));
 
  662     for (
i = 0; 
i < 
s->channels; 
i++, coded_samples += 
s->block_align)
 
  663         s->coded_samples[
i] = coded_samples;
 
  665     s->int_samples = 
av_calloc(
s->frame_size, 
sizeof(*
s->int_samples));
 
  667     s->window_size = ((2*
s->tail_size)+
s->frame_size);
 
  668     s->window = 
av_calloc(
s->window_size, 2 * 
sizeof(*
s->window));
 
  669     if (!
s->window || !
s->int_samples)
 
  680         if (
s->version >= 2) {
 
  685         put_bits(&pb, 4, code_samplerate(
s->samplerate));
 
  698     av_log(avctx, 
AV_LOG_INFO, 
"Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
 
  699         s->version, 
s->minor_version, 
s->lossless, 
s->decorrelation, 
s->num_taps, 
s->block_align, 
s->frame_size, 
s->downsampling);
 
  725     int i, j, ch, 
quant = 0, x = 0;
 
  738     for (
i = 0; 
i < 
s->frame_size; 
i++)
 
  742         for (
i = 0; 
i < 
s->frame_size; 
i++)
 
  745     switch(
s->decorrelation)
 
  748             for (
i = 0; 
i < 
s->frame_size; 
i += 
s->channels)
 
  750                 s->int_samples[
i] += 
s->int_samples[
i+1];
 
  751                 s->int_samples[
i+1] -= 
shift(
s->int_samples[
i], 1);
 
  755             for (
i = 0; 
i < 
s->frame_size; 
i += 
s->channels)
 
  756                 s->int_samples[
i+1] -= 
s->int_samples[
i];
 
  759             for (
i = 0; 
i < 
s->frame_size; 
i += 
s->channels)
 
  760                 s->int_samples[
i] -= 
s->int_samples[
i+1];
 
  764     memset(
s->window, 0, 
s->window_size * 
sizeof(*
s->window));
 
  766     for (
i = 0; 
i < 
s->tail_size; 
i++)
 
  767         s->window[x++] = 
s->tail[
i];
 
  769     for (
i = 0; 
i < 
s->frame_size; 
i++)
 
  770         s->window[x++] = 
s->int_samples[
i];
 
  772     for (
i = 0; 
i < 
s->tail_size; 
i++)
 
  775     for (
i = 0; 
i < 
s->tail_size; 
i++)
 
  776         s->tail[
i] = 
s->int_samples[
s->frame_size - 
s->tail_size + 
i];
 
  779     modified_levinson_durbin(
s->window, 
s->window_size,
 
  780                 s->predictor_k, 
s->num_taps, 
s->channels, 
s->tap_quant);
 
  785     for (ch = 0; ch < 
s->channels; ch++)
 
  788         for (
i = 0; 
i < 
s->block_align; 
i++)
 
  791             for (j = 0; j < 
s->downsampling; j++, x += 
s->channels)
 
  793             s->coded_samples[ch][
i] = sum;
 
  800         double energy1 = 0.0, energy2 = 0.0;
 
  801         for (ch = 0; ch < 
s->channels; ch++)
 
  803             for (
i = 0; 
i < 
s->block_align; 
i++)
 
  805                 double sample = 
s->coded_samples[ch][
i];
 
  811         energy2 = sqrt(energy2/(
s->channels*
s->block_align));
 
  812         energy1 = 
M_SQRT2*energy1/(
s->channels*
s->block_align);
 
  817         if (energy2 > energy1)
 
  831     for (ch = 0; ch < 
s->channels; ch++)
 
  834             for (
i = 0; 
i < 
s->block_align; 
i++)
 
  848 #if CONFIG_SONIC_DECODER 
  849 static const int samplerate_table[] =
 
  850     { 44100, 22050, 11025, 96000, 48000, 32000, 24000, 16000, 8000 };
 
  874     if (
s->version >= 2) {
 
  886         int sample_rate_index;
 
  888         sample_rate_index = 
get_bits(&gb, 4);
 
  893         s->samplerate = samplerate_table[sample_rate_index];
 
  895             s->channels, 
s->samplerate);
 
  911     if (
s->decorrelation != 3 && 
s->channels != 2) {
 
  917     if (!
s->downsampling) {
 
  926     s->block_align = 2048LL*
s->samplerate/(44100*
s->downsampling);
 
  927     s->frame_size = 
s->channels*
s->block_align*
s->downsampling;
 
  930     if (
s->num_taps * 
s->channels > 
s->frame_size) {
 
  932                "number of taps times channels (%d * %d) larger than frame size %d\n",
 
  933                s->num_taps, 
s->channels, 
s->frame_size);
 
  937     av_log(avctx, 
AV_LOG_INFO, 
"Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
 
  938         s->version, 
s->minor_version, 
s->lossless, 
s->decorrelation, 
s->num_taps, 
s->block_align, 
s->frame_size, 
s->downsampling);
 
  941     s->tap_quant = 
av_calloc(
s->num_taps, 
sizeof(*
s->tap_quant));
 
  945     for (
i = 0; 
i < 
s->num_taps; 
i++)
 
  948     s->predictor_k = 
av_calloc(
s->num_taps, 
sizeof(*
s->predictor_k));
 
  950     tmp = 
av_calloc(
s->num_taps, 
s->channels * 
sizeof(**
s->predictor_state));
 
  953     for (
i = 0; 
i < 
s->channels; 
i++, 
tmp += 
s->num_taps)
 
  954         s->predictor_state[
i] = 
tmp;
 
  956     tmp = 
av_calloc(
s->block_align, 
s->channels * 
sizeof(**
s->coded_samples));
 
  959     for (
i = 0; 
i < 
s->channels; 
i++, 
tmp += 
s->block_align)
 
  960         s->coded_samples[
i]   = 
tmp;
 
  962     s->int_samples = 
av_calloc(
s->frame_size, 
sizeof(*
s->int_samples));
 
  984                               int *got_frame_ptr, 
AVPacket *avpkt)
 
  986     const uint8_t *buf = avpkt->
data;
 
  987     int buf_size = avpkt->
size;
 
  994     if (buf_size == 0) 
return 0;
 
 1010     for (
i = 0; 
i < 
s->num_taps; 
i++)
 
 1011         s->predictor_k[
i] *= (
unsigned) 
s->tap_quant[
i];
 
 1020     for (ch = 0; ch < 
s->channels; ch++)
 
 1031         for (
i = 0; 
i < 
s->block_align; 
i++)
 
 1033             for (j = 0; j < 
s->downsampling - 1; j++)
 
 1043         for (
i = 0; 
i < 
s->num_taps; 
i++)
 
 1044             s->predictor_state[ch][
i] = 
s->int_samples[
s->frame_size - 
s->channels + ch - 
i*
s->channels];
 
 1047     switch(
s->decorrelation)
 
 1050             for (
i = 0; 
i < 
s->frame_size; 
i += 
s->channels)
 
 1052                 s->int_samples[
i+1] += 
shift(
s->int_samples[
i], 1);
 
 1053                 s->int_samples[
i] -= 
s->int_samples[
i+1];
 
 1057             for (
i = 0; 
i < 
s->frame_size; 
i += 
s->channels)
 
 1058                 s->int_samples[
i+1] += 
s->int_samples[
i];
 
 1061             for (
i = 0; 
i < 
s->frame_size; 
i += 
s->channels)
 
 1062                 s->int_samples[
i] += 
s->int_samples[
i+1];
 
 1067         for (
i = 0; 
i < 
s->frame_size; 
i++)
 
 1071     for (
i = 0; 
i < 
s->frame_size; 
i++)
 
 1085     .
init           = sonic_decode_init,
 
 1086     .close          = sonic_decode_close,
 
 1093 #if CONFIG_SONIC_ENCODER 
 1100     .
init           = sonic_encode_init,
 
 1105     .close          = sonic_encode_close,
 
 1109 #if CONFIG_SONIC_LS_ENCODER 
 1111     .
p.
name         = 
"sonicls",
 
 1116     .
init           = sonic_encode_init,
 
 1121     .close          = sonic_encode_close,
 
  
static void error(const char *err)
 
static int intlist_write(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part)
 
int frame_size
Number of samples per channel in an audio frame.
 
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
static int put_bytes_output(const PutBitContext *s)
 
int sample_rate
samples per second
 
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
 
This structure describes decoded (raw) audio or video data.
 
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
 
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
 
enum AVChannelOrder order
Channel order used in this layout.
 
int nb_channels
Number of channels in this layout.
 
static void skip_bits(GetBitContext *s, int n)
 
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
 
static SDL_Window * window
 
AVCodec p
The public AVCodec.
 
const struct AVCodec * codec
 
AVChannelLayout ch_layout
Audio channel layout.
 
av_cold void ff_init_range_encoder(RangeCoder *c, uint8_t *buf, int buf_size)
 
#define FF_CODEC_ENCODE_CB(func)
 
static int quant(float coef, const float Q, const float rounding)
Quantize one coefficient.
 
exp golomb vlc writing stuff
 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
 
#define AV_CODEC_CAP_EXPERIMENTAL
Codec is experimental and is thus avoided in favor of non experimental encoders.
 
#define FF_ARRAY_ELEMS(a)
 
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
 
static av_flatten int get_symbol(RangeCoder *c, uint8_t *state, int is_signed)
 
#define FF_CODEC_DECODE_CB(func)
 
static __device__ float floor(float a)
 
@ AV_CHANNEL_ORDER_UNSPEC
Only the channel count is specified, without any further information about the channel order.
 
static int predictor_calc_error(int *k, int *state, int order, int error)
 
int * coded_samples[MAX_CHANNELS]
 
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
 
const FFCodec ff_sonic_encoder
 
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
 
static int intlist_read(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part)
 
static __device__ float fabs(float a)
 
static void predictor_init_state(int *k, int *state, int order)
 
int ff_rac_terminate(RangeCoder *c, int version)
Terminates the range coder.
 
#define ROUNDED_DIV(a, b)
 
static unsigned int get_bits1(GetBitContext *s)
 
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
 
void av_channel_layout_uninit(AVChannelLayout *channel_layout)
Free any allocated data in the channel layout and reset the channel count to 0.
 
static av_always_inline av_flatten void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2])
 
#define AV_CODEC_CAP_CHANNEL_CONF
Codec should fill in channel configuration and samplerate instead of container.
 
const FFCodec ff_sonic_decoder
 
av_cold void ff_init_range_decoder(RangeCoder *c, const uint8_t *buf, int buf_size)
 
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
 
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
 
static void copy(const float *p1, float *p2, const int length)
 
enum AVSampleFormat sample_fmt
audio sample format
 
void ff_build_rac_states(RangeCoder *c, int factor, int max_p)
 
static void set_se_golomb(PutBitContext *pb, int i)
write signed exp golomb code.
 
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
 
#define AV_LOG_INFO
Standard information.
 
#define i(width, name, range_min, range_max)
 
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
 
AVSampleFormat
Audio sample formats.
 
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
 
const FFCodec ff_sonic_ls_encoder
 
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
 
@ AV_SAMPLE_FMT_S16
signed 16 bits
 
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
 
const char * name
Name of the codec implementation.
 
static int get_rac(RangeCoder *c, uint8_t *const state)
 
void * av_calloc(size_t nmemb, size_t size)
 
int * predictor_state[MAX_CHANNELS]
 
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
 
main external API structure.
 
Filter the word “frame” indicates either a video frame or a group of audio samples
 
static int shift(int a, int b)
 
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
 
This structure stores compressed data.
 
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
 
static int shift_down(int a, int b)
 
int ff_alloc_packet(AVCodecContext *avctx, AVPacket *avpkt, int64_t size)
Check AVPacket size and allocate data.