Go to the documentation of this file.
21 #include "config_components.h"
66 #define OFFSET(x) offsetof(HistogramContext, x)
67 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
69 #define COMMON_OPTIONS \
70 { "display_mode", "set display mode", OFFSET(display_mode), AV_OPT_TYPE_INT, {.i64=2}, 0, 2, FLAGS, "display_mode"}, \
71 { "d", "set display mode", OFFSET(display_mode), AV_OPT_TYPE_INT, {.i64=2}, 0, 2, FLAGS, "display_mode"}, \
72 { "overlay", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "display_mode" }, \
73 { "parade", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "display_mode" }, \
74 { "stack", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "display_mode" }, \
75 { "levels_mode", "set levels mode", OFFSET(levels_mode), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "levels_mode"}, \
76 { "m", "set levels mode", OFFSET(levels_mode), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "levels_mode"}, \
77 { "linear", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "levels_mode" }, \
78 { "logarithmic", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "levels_mode" }, \
79 { "components", "set color components to display", OFFSET(components), AV_OPT_TYPE_INT, {.i64=7}, 1, 15, FLAGS}, \
80 { "c", "set color components to display", OFFSET(components), AV_OPT_TYPE_INT, {.i64=7}, 1, 15, FLAGS},
174 if (!
ctx->inputs[0]->incfg.formats ||
175 !
ctx->inputs[0]->incfg.formats->nb_formats) {
179 if (!
ctx->inputs[0]->outcfg.formats)
182 avff =
ctx->inputs[0]->incfg.formats;
236 s->ncomp =
s->desc->nb_components;
237 s->histogram_size = 1 <<
s->desc->comp[0].depth;
238 s->mult =
s->histogram_size / 256;
250 s->start[0] =
s->start[1] =
s->start[2] =
s->start[3] = 0;
251 memcpy(
s->envelope_color,
s->envelope_rgba, 4);
258 s->start[0] =
s->start[3] = 0;
259 s->start[1] =
s->start[2] =
s->histogram_size / 2;
260 s->envelope_color[0] =
RGB_TO_Y_BT709(
s->envelope_rgba[0],
s->envelope_rgba[1],
s->envelope_rgba[2]);
261 s->envelope_color[1] =
RGB_TO_U_BT709(
s->envelope_rgba[0],
s->envelope_rgba[1],
s->envelope_rgba[2], 0);
262 s->envelope_color[2] =
RGB_TO_V_BT709(
s->envelope_rgba[0],
s->envelope_rgba[1],
s->envelope_rgba[2], 0);
263 s->envelope_color[3] =
s->envelope_rgba[3];
266 for (
int i = 1;
i < 4;
i++) {
267 memcpy(
s->fg_color[
i],
s->fg_color[0], 4);
268 memcpy(
s->bg_color[
i],
s->bg_color[0], 4);
271 if (
s->display_mode) {
272 if (
s->colors_mode == 1) {
273 for (
int i = 0;
i < 4;
i++)
274 for (
int j = 0; j < 4; j++)
275 FFSWAP(uint8_t,
s->fg_color[
i][j],
s->bg_color[
i][j]);
276 }
else if (
s->colors_mode == 2) {
277 for (
int i = 0;
i < 4;
i++)
279 }
else if (
s->colors_mode == 3) {
280 for (
int i = 0;
i < 4;
i++)
281 for (
int j = 0; j < 4; j++)
282 FFSWAP(uint8_t,
s->fg_color[
i][j],
s->bg_color[
i][j]);
283 for (
int i = 0;
i < 4;
i++)
285 }
else if (
s->colors_mode == 4) {
295 }
else if (
s->colors_mode == 5) {
296 for (
int i = 0;
i < 4;
i++)
297 for (
int j = 0; j < 4; j++)
298 FFSWAP(uint8_t,
s->fg_color[
i][j],
s->bg_color[
i][j]);
308 }
else if (
s->colors_mode == 6) {
309 for (
int i = 0;
i < 4;
i++)
320 }
else if (
s->colors_mode == 7) {
321 for (
int i = 0;
i < 4;
i++)
322 for (
int j = 0; j < 4; j++)
323 FFSWAP(uint8_t,
s->fg_color[
i][j],
s->bg_color[
i][j]);
333 }
else if (
s->colors_mode == 8) {
343 }
else if (
s->colors_mode == 9) {
344 for (
int i = 0;
i < 4;
i++)
358 for (
int i = 0;
i < 4;
i++) {
359 s->fg_color[
i][3] =
s->fgopacity * 255;
360 s->bg_color[
i][3] =
s->bgopacity * 255;
364 s->planeheight[0] =
s->planeheight[3] =
inlink->h;
366 s->planewidth[0] =
s->planewidth[3] =
inlink->w;
377 if (!strcmp(
ctx->filter->name,
"thistogram"))
380 for (
i = 0;
i <
s->ncomp;
i++) {
381 if ((1 <<
i) &
s->components)
387 s->width =
ctx->inputs[0]->w;
388 outlink->
w =
s->width *
FFMAX(ncomp * (
s->display_mode == 1), 1);
389 outlink->
h =
s->histogram_size *
FFMAX(ncomp * (
s->display_mode == 2), 1);
391 outlink->
w =
s->histogram_size *
FFMAX(ncomp * (
s->display_mode == 1), 1);
392 outlink->
h = (
s->level_height +
s->scale_height) *
FFMAX(ncomp * (
s->display_mode == 2), 1);
396 s->dncomp =
s->odesc->nb_components;
410 if (!
s->thistogram || !
out) {
418 for (k = 0; k < 4 &&
out->data[k]; k++) {
419 const int is_chroma = (k == 1 || k == 2);
420 const int dst_h =
AV_CEIL_RSHIFT(outlink->
h, (is_chroma ?
s->odesc->log2_chroma_h : 0));
421 const int dst_w =
AV_CEIL_RSHIFT(outlink->
w, (is_chroma ?
s->odesc->log2_chroma_w : 0));
423 if (
s->histogram_size <= 256) {
424 for (
i = 0;
i < dst_h ;
i++)
425 memset(
out->data[
s->odesc->comp[k].plane] +
426 i *
out->linesize[
s->odesc->comp[k].plane],
427 s->bg_color[0][k], dst_w);
429 const int mult =
s->mult;
431 for (
i = 0;
i < dst_h ;
i++)
432 for (j = 0; j < dst_w; j++)
434 i *
out->linesize[
s->odesc->comp[k].plane] + j * 2,
435 s->bg_color[0][k] *
mult);
440 for (m = 0, k = 0; k <
s->ncomp; k++) {
441 const int p =
s->desc->comp[k].plane;
442 const int max_value =
s->histogram_size - 1 -
s->start[p];
443 const int height =
s->planeheight[p];
444 const int width =
s->planewidth[p];
445 const int mid =
s->mid;
447 unsigned max_hval = 0;
450 if (!((1 << k) &
s->components))
453 starty = m *
s->histogram_size * (
s->display_mode == 2);
454 startx = m++ *
s->width * (
s->display_mode == 1);
456 startx = m *
s->histogram_size * (
s->display_mode == 1);
457 starty = m++ * (
s->level_height +
s->scale_height) * (
s->display_mode == 2);
460 if (
s->histogram_size <= 256) {
463 for (j = 0; j <
width; j++)
464 s->histogram[
src[j]]++;
468 const uint16_t *
src = (
const uint16_t *)(in->
data[p] +
i * in->
linesize[p]);
469 for (j = 0; j <
width; j++)
470 s->histogram[
src[j]]++;
474 for (
i = 0;
i <
s->histogram_size;
i++)
475 max_hval =
FFMAX(max_hval,
s->histogram[
i]);
476 max_hval_log =
log2(max_hval + 1);
479 const int bpp = 1 + (
s->histogram_size > 256);
480 int minh =
s->histogram_size - 1, maxh = 0;
483 s->x_pos =
out->width - 1;
484 for (j = 0; j < outlink->
h; j++) {
485 memmove(
out->data[p] + j *
out->linesize[p] ,
486 out->data[p] + j *
out->linesize[p] + bpp,
487 (outlink->
w - 1) * bpp);
489 }
else if (
s->slide == 3) {
491 for (j = 0; j < outlink->
h; j++) {
492 memmove(
out->data[p] + j *
out->linesize[p] + bpp,
493 out->data[p] + j *
out->linesize[p],
494 (outlink->
w - 1) * bpp);
498 for (
int i = 0;
i <
s->histogram_size;
i++) {
499 int idx =
s->histogram_size -
i - 1;
502 if (
s->envelope &&
s->histogram[idx]) {
508 value +=
lrint(max_value * (
log2(
s->histogram[idx] + 1) / max_hval_log));
510 value +=
lrint(max_value *
s->histogram[idx] / (
float)max_hval);
512 if (
s->histogram_size <= 256) {
513 s->out->data[p][(
i + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
value;
515 AV_WN16(
s->out->data[p] + (
i + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
value);
520 if (
s->histogram_size <= 256) {
521 s->out->data[0][(minh + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
s->envelope_color[0];
522 s->out->data[0][(maxh + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
s->envelope_color[0];
523 if (
s->dncomp >= 3) {
524 s->out->data[1][(minh + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
s->envelope_color[1];
525 s->out->data[2][(minh + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
s->envelope_color[2];
526 s->out->data[1][(maxh + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
s->envelope_color[1];
527 s->out->data[2][(maxh + starty) *
s->out->linesize[p] + startx +
s->x_pos] =
s->envelope_color[2];
530 const int mult =
s->mult;
532 AV_WN16(
s->out->data[0] + (minh + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
s->envelope_color[0] *
mult);
533 AV_WN16(
s->out->data[0] + (maxh + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
s->envelope_color[0] *
mult);
534 if (
s->dncomp >= 3) {
535 AV_WN16(
s->out->data[1] + (minh + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
s->envelope_color[1] *
mult);
536 AV_WN16(
s->out->data[2] + (minh + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
s->envelope_color[2] *
mult);
537 AV_WN16(
s->out->data[1] + (maxh + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
s->envelope_color[1] *
mult);
538 AV_WN16(
s->out->data[2] + (maxh + starty) *
s->out->linesize[p] + startx * 2 +
s->x_pos * 2,
s->envelope_color[2] *
mult);
543 for (
i = 0;
i <
s->histogram_size;
i++) {
547 col_height =
lrint(
s->level_height * (1. - (
log2(
s->histogram[
i] + 1) / max_hval_log)));
549 col_height =
s->level_height - (
s->histogram[
i] * (int64_t)
s->level_height + max_hval - 1) / max_hval;
551 if (
s->histogram_size <= 256) {
552 for (j =
s->level_height - 1; j >= col_height; j--) {
553 if (
s->display_mode) {
554 for (l = 0; l <
s->dncomp; l++)
555 out->data[l][(j + starty) *
out->linesize[l] + startx +
i] =
s->fg_color[p][l];
557 out->data[p][(j + starty) *
out->linesize[p] + startx +
i] = 255;
560 if (
s->display_mode) {
561 for (j = col_height - 1; j >= 0; j--) {
562 for (l = 0; l <
s->dncomp; l++)
563 out->data[l][(j + starty) *
out->linesize[l] + startx +
i] =
s->bg_color[p][l];
566 for (j =
s->level_height +
s->scale_height - 1; j >=
s->level_height; j--)
567 for (l = 0; l <
s->dncomp; l++)
568 out->data[l][(j + starty) *
out->linesize[l] + startx +
i] = p == l ?
i : mid;
570 const int mult =
s->mult;
572 for (j =
s->level_height - 1; j >= col_height; j--) {
573 if (
s->display_mode) {
574 for (l = 0; l <
s->dncomp; l++)
575 AV_WN16(
out->data[l] + (j + starty) *
out->linesize[l] + startx * 2 +
i * 2,
s->fg_color[p][l] *
mult);
577 AV_WN16(
out->data[p] + (j + starty) *
out->linesize[p] + startx * 2 +
i * 2, 255 *
mult);
580 if (
s->display_mode) {
581 for (j = col_height - 1; j >= 0; j--) {
582 for (l = 0; l <
s->dncomp; l++)
583 AV_WN16(
out->data[l] + (j + starty) *
out->linesize[l] + startx * 2 +
i * 2,
s->bg_color[p][l] *
mult);
586 for (j =
s->level_height +
s->scale_height - 1; j >=
s->level_height; j--)
587 for (l = 0; l <
s->dncomp; l++)
588 AV_WN16(
out->data[l] + (j + starty) *
out->linesize[l] + startx * 2 +
i * 2, p == l ?
i : mid *
mult);
593 memset(
s->histogram, 0,
s->histogram_size *
sizeof(
unsigned));
599 if (
s->x_pos >=
s->width) {
601 if (
s->thistogram && (
s->slide == 4 ||
s->slide == 0)) {
605 }
else if (
s->thistogram &&
s->slide == 4) {
637 #if CONFIG_HISTOGRAM_FILTER
646 .priv_class = &histogram_class,
651 #if CONFIG_THISTOGRAM_FILTER
660 static const AVOption thistogram_options[] = {
682 .
name =
"thistogram",
689 .priv_class = &thistogram_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
AVPixelFormat
Pixel format.
const AVFilter ff_vf_thistogram
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static const AVFilterPad outputs[]
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
const AVPixFmtDescriptor * odesc
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define AV_PIX_FMT_YUVA422P9
static int query_formats(AVFilterContext *ctx)
This structure describes decoded (raw) audio or video data.
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
static const uint8_t black_yuva_color[4]
#define AV_PIX_FMT_YUVA420P10
static enum AVPixelFormat levels_out_yuv8_pix_fmts[]
#define FILTER_QUERY_FUNC(func)
#define AV_PIX_FMT_YUV420P10
static enum AVPixelFormat levels_out_yuv9_pix_fmts[]
static const uint8_t green_gbrp_color[4]
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
static int config_input(AVFilterLink *inlink)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
const char * name
Filter name.
static const uint8_t white_gbrp_color[4]
A link between two filters.
#define AV_PIX_FMT_YUVA422P10
static const uint8_t blue_yuva_color[4]
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define AV_PIX_FMT_YUVA420P9
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
static const uint8_t red_gbrp_color[4]
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_YUV422P9
A filter pad used for either input or output.
static enum AVPixelFormat levels_out_rgb10_pix_fmts[]
#define AV_PIX_FMT_YUV444P10
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
static int16_t mult(Float11 *f1, Float11 *f2)
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define AV_PIX_FMT_GBRAP10
#define RGB_TO_Y_BT709(r, g, b)
static const AVOption histogram_options[]
#define AV_PIX_FMT_GBRAP12
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_CEIL_RSHIFT(a, b)
#define RGB_TO_U_BT709(r1, g1, b1, max)
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
uint8_t envelope_color[4]
#define AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUV420P9
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define FILTER_INPUTS(array)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Describe the class of an AVClass context structure.
Rational number (pair of numerator and denominator).
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
static enum AVPixelFormat levels_out_rgb12_pix_fmts[]
#define AV_PIX_FMT_YUV422P10
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
static int config_output(AVFilterLink *outlink)
const AVFilter ff_vf_histogram
static const uint8_t blue_gbrp_color[4]
#define RGB_TO_V_BT709(r1, g1, b1, max)
static const AVFilterPad inputs[]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
#define AV_PIX_FMT_FLAG_RGB
The pixel format contains RGB-like data (as opposed to YUV/grayscale).
AVFILTER_DEFINE_CLASS(histogram)
int format
agreed upon media format
#define AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV444P12
AVFilterContext * src
source filter
static const uint8_t red_yuva_color[4]
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
#define AV_PIX_FMT_YUVA444P10
static enum AVPixelFormat levels_in_pix_fmts[]
static const uint8_t gray_color[4]
#define i(width, name, range_min, range_max)
static float envelope(const float x)
int w
agreed upon image width
#define AV_PIX_FMT_GBRP12
static enum AVPixelFormat out_pix_fmts[]
static enum AVPixelFormat levels_out_yuv10_pix_fmts[]
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
const AVPixFmtDescriptor * desc
const char * name
Pad name.
#define AV_PIX_FMT_YUV444P9
#define FFSWAP(type, a, b)
#define AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_YUV420P12
int h
agreed upon image height
#define AV_PIX_FMT_YUVA422P12
static const uint8_t igreen_yuva_color[4]
static enum AVPixelFormat levels_out_rgb8_pix_fmts[]
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
static enum AVPixelFormat levels_out_yuv12_pix_fmts[]
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
#define FILTER_OUTPUTS(array)
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
static const SheerTable rgb[2]
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
static enum AVPixelFormat levels_out_rgb9_pix_fmts[]
unsigned histogram[256 *256]
static av_cold int uninit(AVCodecContext *avctx)
#define AV_PIX_FMT_YUV440P12
static const uint8_t black_gbrp_color[4]
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
static const uint8_t white_yuva_color[4]
static const uint8_t green_yuva_color[4]