Go to the documentation of this file.
91 for (
i=0;
i<10;
i+=2){
92 xpow = (
int)(((int64_t)xpow * x + 0x40000000) >> 31);
96 xpow = (
int)(((int64_t)xpow * x + 0x40000000) >> 31);
107 Q31(1.0/720),
Q31(1.0/5040),
Q31(1.0/40320)
117 xpow = (
int)(((int64_t)xpow * x + 0x400000) >> 23);
127 int k, previous, present;
128 int base, prod, nz = 0;
130 base = (stop << 23) / start;
131 while (
base < 0x40000000){
142 for (k = 0; k < num_bands-1; k++) {
143 prod = (
int)(((int64_t)prod *
base + 0x400000) >> 23);
144 present = (prod + 0x400000) >> 23;
145 bands[k] = present - previous;
148 bands[num_bands-1] = stop - previous;
166 temp1.
mant = 759250125;
168 temp1.
mant = 0x20000000;
169 temp1.
exp = (temp1.
exp >> 1) + 1;
170 if (temp1.
exp > 66) {
177 temp2.
mant = 759250125;
179 temp2.
mant = 0x20000000;
180 temp2.
exp = (temp2.
exp >> 1) + 1;
187 for (k = 0; k < sbr->
n_q; k++) {
191 sbr->data[0].noise_facs_q[e][k] + 2;
192 temp1.
mant = 0x20000000;
195 temp2.
mant = 0x20000000;
202 for (ch = 0; ch < (id_aac ==
TYPE_CPE) + 1; ch++) {
210 temp1.
mant = 759250125;
212 temp1.
mant = 0x20000000;
213 temp1.
exp = (temp1.
exp >> 1) + 1;
214 if (temp1.
exp > 66) {
221 for (k = 0; k < sbr->
n_q; k++){
223 sbr->data[ch].noise_facs_q[e][k] + 1;
235 int (*alpha0)[2],
int (*alpha1)[2],
236 const int X_low[32][40][2],
int k0)
241 for (k = 0; k < k0; k++) {
268 if (!phi[1][0][0].mant) {
282 a00 =
av_div_sf(temp_real, phi[1][0][0]);
288 alpha0[k][0] = 0x7fffffff;
289 else if (
shift <= -30)
303 alpha0[k][1] = 0x7fffffff;
304 else if (
shift <= -30)
317 alpha1[k][0] = 0x7fffffff;
318 else if (
shift <= -30)
332 alpha1[k][1] = 0x7fffffff;
333 else if (
shift <= -30)
345 shift = (
int)(((int64_t)(alpha1[k][0]>>1) * (alpha1[k][0]>>1) + \
346 (int64_t)(alpha1[k][1]>>1) * (alpha1[k][1]>>1) + \
348 if (
shift >= 0x20000000){
355 shift = (
int)(((int64_t)(alpha0[k][0]>>1) * (alpha0[k][0]>>1) + \
356 (int64_t)(alpha0[k][1]>>1) * (alpha0[k][1]>>1) + \
358 if (
shift >= 0x20000000){
372 static const int bw_tab[] = { 0, 1610612736, 1932735283, 2104533975 };
375 for (
i = 0;
i < sbr->
n_q;
i++) {
381 if (new_bw < ch_data->bw_array[
i]){
382 accu = (int64_t)new_bw * 1610612736;
383 accu += (int64_t)ch_data->
bw_array[
i] * 0x20000000;
384 new_bw = (
int)((accu + 0x40000000) >> 31);
386 accu = (int64_t)new_bw * 1946157056;
387 accu += (int64_t)ch_data->
bw_array[
i] * 201326592;
388 new_bw = (
int)((accu + 0x40000000) >> 31);
390 ch_data->
bw_array[
i] = new_bw < 0x2000000 ? 0 : new_bw;
399 SBRData *ch_data,
const int e_a[2])
403 static const SoftFloat limgain[4] = { { 760155524, 0 }, { 0x20000000, 1 },
404 { 758351638, 1 }, { 625000000, 34 } };
407 int delta = !((e == e_a[1]) || (e == e_a[0]));
408 for (k = 0; k < sbr->
n_lim; k++) {
412 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
436 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
447 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
452 sbr->
q_m[e][m] = q_m_max;
454 sbr->
gain[e][m] = gain_max;
457 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
477 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
488 const int X_high[64][40][2],
494 const int kx = sbr->
kx[1];
495 const int m_max = sbr->
m[1];
508 for (
i = 0;
i < h_SL;
i++) {
509 memcpy(g_temp[
i + 2*ch_data->
t_env[0]], sbr->
gain[0], m_max *
sizeof(sbr->
gain[0][0]));
510 memcpy(q_temp[
i + 2*ch_data->
t_env[0]], sbr->
q_m[0], m_max *
sizeof(sbr->
q_m[0][0]));
513 for (
i = 0;
i < 4;
i++) {
514 memcpy(g_temp[
i + 2 * ch_data->
t_env[0]],
517 memcpy(q_temp[
i + 2 * ch_data->
t_env[0]],
524 for (
i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1];
i++) {
525 memcpy(g_temp[h_SL +
i], sbr->
gain[e], m_max *
sizeof(sbr->
gain[0][0]));
526 memcpy(q_temp[h_SL +
i], sbr->
q_m[e], m_max *
sizeof(sbr->
q_m[0][0]));
531 for (
i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1];
i++) {
536 if (h_SL && e != e_a[0] && e != e_a[1]) {
539 for (m = 0; m < m_max; m++) {
540 const int idx1 =
i + h_SL;
541 g_filt[m].
mant = g_filt[m].
exp = 0;
542 q_filt[m].
mant = q_filt[m].
exp = 0;
543 for (j = 0; j <= h_SL; j++) {
553 g_filt = g_temp[
i + h_SL];
560 if (e != e_a[0] && e != e_a[1]) {
565 int idx = indexsine&1;
566 int A = (1-((indexsine+(kx & 1))&2));
567 int B = (
A^(-idx)) + idx;
568 unsigned *
out = &Y1[
i][kx][idx];
573 for (m = 0; m+1 < m_max; m+=2) {
597 }
else if (
shift < 32) {
603 indexnoise = (indexnoise + m_max) & 0x1ff;
604 indexsine = (indexsine + 1) & 3;
unsigned bs_limiter_gains
AAC_FLOAT e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
static const SoftFloat FLOAT_EPSILON
A small value.
AAC_FLOAT env_facs[6][48]
static void aacsbr_func_ptr_init(AACSBRContext *c)
AAC_SIGNE m[2]
M' and M respectively, M is the number of QMF subbands that use SBR.
static av_const SoftFloat av_sub_sf(SoftFloat a, SoftFloat b)
AAC_FLOAT q_m[7][48]
Amplitude adjusted noise scalefactors.
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
uint8_t t_env[8]
Envelope time borders.
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
static const SoftFloat FLOAT_1
1.0
static av_const int av_gt_sf(SoftFloat a, SoftFloat b)
Compares two SoftFloats.
static av_always_inline SoftFloat av_sqrt_sf(SoftFloat val)
Rounding-to-nearest used.
static av_const SoftFloat av_div_sf(SoftFloat a, SoftFloat b)
b has to be normalized and not zero.
static void sbr_hf_assemble(int Y1[38][64][2], const int X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
AAC_FLOAT noise_facs[3][5]
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, int(*alpha0)[2], int(*alpha1)[2], const int X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static const SoftFloat FLOAT_MIN
#define av_assert0(cond)
assert() equivalent, that is always enabled.
#define NOISE_FLOOR_OFFSET
void(* autocorrelate)(const INTFLOAT x[40][2], AAC_FLOAT phi[3][2][2])
static const float bands[]
AAC_FLOAT s_m[7][48]
Sinusoidal levels.
AAC_SIGNE n_lim
Number of limiter bands.
uint8_t env_facs_q[6][48]
Envelope scalefactors.
static const SoftFloat FLOAT_0
0.0
uint16_t f_tablelim[30]
Frequency borders for the limiter.
aacsbr functions pointers
static int fixed_log(int x)
void(* hf_g_filt)(INTFLOAT(*Y)[2], const INTFLOAT(*X_high)[40][2], const AAC_FLOAT *g_filt, int m_max, intptr_t ixh)
AAC_SIGNE n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
uint8_t s_indexmapped[8][48]
unsigned bs_smoothing_mode
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static const SoftFloat FLOAT_0999999
0.999999
static int shift(int a, int b)
static const SoftFloat FLOAT_1584893192
1.584893192 (10^.2)
static const SoftFloat FLOAT_100000
100000
Spectral Band Replication.
uint8_t bs_invf_mode[2][5]
void(* hf_apply_noise[4])(INTFLOAT(*Y)[2], const AAC_FLOAT *s_m, const AAC_FLOAT *q_filt, int noise, int kx, int m_max)
AAC_SIGNE n_q
Number of noise floor bands.
static int fixed_exp(int x)
static const int CONST_076923
static const int shift2[6]
AAC_FLOAT e_curr[7][48]
Estimated envelope.
static const int CONST_RECIP_LN2
#define i(width, name, range_min, range_max)
static av_always_inline av_const double round(double x)
Spectral Band Replication per channel data.
INTFLOAT bw_array[5]
Chirp factors.
static av_const SoftFloat av_int2sf(int v, int frac_bits)
Converts a mantisse and exponent to a SoftFloat.
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
static av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b)
static const int fixed_exp_table[7]
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
uint8_t noise_facs_q[3][5]
Noise scalefactors.
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
static const int CONST_LN2
#define ENVELOPE_ADJUSTMENT_OFFSET
static const int16_t alpha[]
static const int fixed_log_table[10]
AAC_FLOAT q_mapped[7][48]
Dequantized noise scalefactors, remapped.
AAC_SIGNE kx[2]
kx', and kx respectively, kx is the first QMF subband where SBR is used.
static av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b)
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.