FFmpeg
g729postfilter.c
Go to the documentation of this file.
1 /*
2  * G.729, G729 Annex D postfilter
3  * Copyright (c) 2008 Vladimir Voroshilov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <stdint.h>
23 #include <string.h>
24 
25 #include "libavutil/common.h"
26 #include "libavutil/intmath.h"
27 
28 #include "audiodsp.h"
29 #include "g729.h"
30 #include "g729postfilter.h"
31 #include "celp_math.h"
32 #include "acelp_filters.h"
33 #include "acelp_vectors.h"
34 #include "celp_filters.h"
35 
36 #define FRAC_BITS 15
37 #include "mathops.h"
38 
39 /**
40  * short interpolation filter (of length 33, according to spec)
41  * for computing signal with non-integer delay
42  */
44  0, 31650, 28469, 23705, 18050, 12266, 7041, 2873,
45  0, -1597, -2147, -1992, -1492, -933, -484, -188,
46 };
47 
48 /**
49  * long interpolation filter (of length 129, according to spec)
50  * for computing signal with non-integer delay
51  */
53  0, 31915, 29436, 25569, 20676, 15206, 9639, 4439,
54  0, -3390, -5579, -6549, -6414, -5392, -3773, -1874,
55  0, 1595, 2727, 3303, 3319, 2850, 2030, 1023,
56  0, -887, -1527, -1860, -1876, -1614, -1150, -579,
57  0, 501, 859, 1041, 1044, 892, 631, 315,
58  0, -266, -453, -543, -538, -455, -317, -156,
59  0, 130, 218, 258, 253, 212, 147, 72,
60  0, -59, -101, -122, -123, -106, -77, -40,
61 };
62 
63 /**
64  * formant_pp_factor_num_pow[i] = FORMANT_PP_FACTOR_NUM^(i+1)
65  */
66 static const int16_t formant_pp_factor_num_pow[10]= {
67  /* (0.15) */
68  18022, 9912, 5451, 2998, 1649, 907, 499, 274, 151, 83
69 };
70 
71 /**
72  * formant_pp_factor_den_pow[i] = FORMANT_PP_FACTOR_DEN^(i+1)
73  */
74 static const int16_t formant_pp_factor_den_pow[10] = {
75  /* (0.15) */
76  22938, 16057, 11240, 7868, 5508, 3856, 2699, 1889, 1322, 925
77 };
78 
79 /**
80  * \brief Residual signal calculation (4.2.1 if G.729)
81  * \param out [out] output data filtered through A(z/FORMANT_PP_FACTOR_NUM)
82  * \param filter_coeffs (3.12) A(z/FORMANT_PP_FACTOR_NUM) filter coefficients
83  * \param in input speech data to process
84  * \param subframe_size size of one subframe
85  *
86  * \note in buffer must contain 10 items of previous speech data before top of the buffer
87  * \remark It is safe to pass the same buffer for input and output.
88  */
89 static void residual_filter(int16_t* out, const int16_t* filter_coeffs, const int16_t* in,
90  int subframe_size)
91 {
92  int i, n;
93 
94  for (n = subframe_size - 1; n >= 0; n--) {
95  int sum = 0x800;
96  for (i = 0; i < 10; i++)
97  sum += filter_coeffs[i] * in[n - i - 1];
98 
99  out[n] = in[n] + (sum >> 12);
100  }
101 }
102 
103 /**
104  * \brief long-term postfilter (4.2.1)
105  * \param dsp initialized DSP context
106  * \param pitch_delay_int integer part of the pitch delay in the first subframe
107  * \param residual filtering input data
108  * \param residual_filt [out] speech signal with applied A(z/FORMANT_PP_FACTOR_NUM) filter
109  * \param subframe_size size of subframe
110  *
111  * \return 0 if long-term prediction gain is less than 3dB, 1 - otherwise
112  */
113 static int16_t long_term_filter(AudioDSPContext *adsp, int pitch_delay_int,
114  const int16_t* residual, int16_t *residual_filt,
115  int subframe_size)
116 {
117  int i, k, tmp, tmp2;
118  int sum;
119  int L_temp0;
120  int L_temp1;
121  int64_t L64_temp0;
122  int64_t L64_temp1;
123  int16_t shift;
124  int corr_int_num, corr_int_den;
125 
126  int ener;
127  int16_t sh_ener;
128 
129  int16_t gain_num,gain_den; //selected signal's gain numerator and denominator
130  int16_t sh_gain_num, sh_gain_den;
131  int gain_num_square;
132 
133  int16_t gain_long_num,gain_long_den; //filtered through long interpolation filter signal's gain numerator and denominator
134  int16_t sh_gain_long_num, sh_gain_long_den;
135 
136  int16_t best_delay_int, best_delay_frac;
137 
138  int16_t delayed_signal_offset;
139  int lt_filt_factor_a, lt_filt_factor_b;
140 
141  int16_t * selected_signal;
142  const int16_t * selected_signal_const; //Necessary to avoid compiler warning
143 
144  int16_t sig_scaled[SUBFRAME_SIZE + RES_PREV_DATA_SIZE];
145  int16_t delayed_signal[ANALYZED_FRAC_DELAYS][SUBFRAME_SIZE+1];
146  int corr_den[ANALYZED_FRAC_DELAYS][2];
147 
148  tmp = 0;
149  for(i=0; i<subframe_size + RES_PREV_DATA_SIZE; i++)
150  tmp |= FFABS(residual[i]);
151 
152  if(!tmp)
153  shift = 3;
154  else
155  shift = av_log2(tmp) - 11;
156 
157  if (shift > 0)
158  for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
159  sig_scaled[i] = residual[i] >> shift;
160  else
161  for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
162  sig_scaled[i] = (unsigned)residual[i] << -shift;
163 
164  /* Start of best delay searching code */
165  gain_num = 0;
166 
167  ener = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
168  sig_scaled + RES_PREV_DATA_SIZE,
169  subframe_size);
170  if (ener) {
171  sh_ener = av_log2(ener) - 14;
172  sh_ener = FFMAX(sh_ener, 0);
173  ener >>= sh_ener;
174  /* Search for best pitch delay.
175 
176  sum{ r(n) * r(k,n) ] }^2
177  R'(k)^2 := -------------------------
178  sum{ r(k,n) * r(k,n) }
179 
180 
181  R(T) := sum{ r(n) * r(n-T) ] }
182 
183 
184  where
185  r(n-T) is integer delayed signal with delay T
186  r(k,n) is non-integer delayed signal with integer delay best_delay
187  and fractional delay k */
188 
189  /* Find integer delay best_delay which maximizes correlation R(T).
190 
191  This is also equals to numerator of R'(0),
192  since the fine search (second step) is done with 1/8
193  precision around best_delay. */
194  corr_int_num = 0;
195  best_delay_int = pitch_delay_int - 1;
196  for (i = pitch_delay_int - 1; i <= pitch_delay_int + 1; i++) {
197  sum = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
198  sig_scaled + RES_PREV_DATA_SIZE - i,
199  subframe_size);
200  if (sum > corr_int_num) {
201  corr_int_num = sum;
202  best_delay_int = i;
203  }
204  }
205  if (corr_int_num) {
206  /* Compute denominator of pseudo-normalized correlation R'(0). */
207  corr_int_den = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE - best_delay_int,
208  sig_scaled + RES_PREV_DATA_SIZE - best_delay_int,
209  subframe_size);
210 
211  /* Compute signals with non-integer delay k (with 1/8 precision),
212  where k is in [0;6] range.
213  Entire delay is qual to best_delay+(k+1)/8
214  This is archieved by applying an interpolation filter of
215  legth 33 to source signal. */
216  for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
217  ff_acelp_interpolate(&delayed_signal[k][0],
218  &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int],
221  8 - k - 1,
223  subframe_size + 1);
224  }
225 
226  /* Compute denominator of pseudo-normalized correlation R'(k).
227 
228  corr_den[k][0] is square root of R'(k) denominator, for int(T) == int(T0)
229  corr_den[k][1] is square root of R'(k) denominator, for int(T) == int(T0)+1
230 
231  Also compute maximum value of above denominators over all k. */
232  tmp = corr_int_den;
233  for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
234  sum = adsp->scalarproduct_int16(&delayed_signal[k][1],
235  &delayed_signal[k][1],
236  subframe_size - 1);
237  corr_den[k][0] = sum + delayed_signal[k][0 ] * delayed_signal[k][0 ];
238  corr_den[k][1] = sum + delayed_signal[k][subframe_size] * delayed_signal[k][subframe_size];
239 
240  tmp = FFMAX3(tmp, corr_den[k][0], corr_den[k][1]);
241  }
242 
243  sh_gain_den = av_log2(tmp) - 14;
244  if (sh_gain_den >= 0) {
245 
246  sh_gain_num = FFMAX(sh_gain_den, sh_ener);
247  /* Loop through all k and find delay that maximizes
248  R'(k) correlation.
249  Search is done in [int(T0)-1; intT(0)+1] range
250  with 1/8 precision. */
251  delayed_signal_offset = 1;
252  best_delay_frac = 0;
253  gain_den = corr_int_den >> sh_gain_den;
254  gain_num = corr_int_num >> sh_gain_num;
255  gain_num_square = gain_num * gain_num;
256  for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
257  for (i = 0; i < 2; i++) {
258  int16_t gain_num_short, gain_den_short;
259  int gain_num_short_square;
260  /* Compute numerator of pseudo-normalized
261  correlation R'(k). */
262  sum = adsp->scalarproduct_int16(&delayed_signal[k][i],
263  sig_scaled + RES_PREV_DATA_SIZE,
264  subframe_size);
265  gain_num_short = FFMAX(sum >> sh_gain_num, 0);
266 
267  /*
268  gain_num_short_square gain_num_square
269  R'(T)^2 = -----------------------, max R'(T)^2= --------------
270  den gain_den
271  */
272  gain_num_short_square = gain_num_short * gain_num_short;
273  gain_den_short = corr_den[k][i] >> sh_gain_den;
274 
275  tmp = MULL(gain_num_short_square, gain_den, FRAC_BITS);
276  tmp2 = MULL(gain_num_square, gain_den_short, FRAC_BITS);
277 
278  // R'(T)^2 > max R'(T)^2
279  if (tmp > tmp2) {
280  gain_num = gain_num_short;
281  gain_den = gain_den_short;
282  gain_num_square = gain_num_short_square;
283  delayed_signal_offset = i;
284  best_delay_frac = k + 1;
285  }
286  }
287  }
288 
289  /*
290  R'(T)^2
291  2 * --------- < 1
292  R(0)
293  */
294  L64_temp0 = (int64_t)gain_num_square << ((sh_gain_num << 1) + 1);
295  L64_temp1 = ((int64_t)gain_den * ener) << (sh_gain_den + sh_ener);
296  if (L64_temp0 < L64_temp1)
297  gain_num = 0;
298  } // if(sh_gain_den >= 0)
299  } // if(corr_int_num)
300  } // if(ener)
301  /* End of best delay searching code */
302 
303  if (!gain_num) {
304  memcpy(residual_filt, residual + RES_PREV_DATA_SIZE, subframe_size * sizeof(int16_t));
305 
306  /* Long-term prediction gain is less than 3dB. Long-term postfilter is disabled. */
307  return 0;
308  }
309  if (best_delay_frac) {
310  /* Recompute delayed signal with an interpolation filter of length 129. */
311  ff_acelp_interpolate(residual_filt,
312  &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int + delayed_signal_offset],
315  8 - best_delay_frac,
317  subframe_size + 1);
318  /* Compute R'(k) correlation's numerator. */
319  sum = adsp->scalarproduct_int16(residual_filt,
320  sig_scaled + RES_PREV_DATA_SIZE,
321  subframe_size);
322 
323  if (sum < 0) {
324  gain_long_num = 0;
325  sh_gain_long_num = 0;
326  } else {
327  tmp = av_log2(sum) - 14;
328  tmp = FFMAX(tmp, 0);
329  sum >>= tmp;
330  gain_long_num = sum;
331  sh_gain_long_num = tmp;
332  }
333 
334  /* Compute R'(k) correlation's denominator. */
335  sum = adsp->scalarproduct_int16(residual_filt, residual_filt, subframe_size);
336 
337  tmp = av_log2(sum) - 14;
338  tmp = FFMAX(tmp, 0);
339  sum >>= tmp;
340  gain_long_den = sum;
341  sh_gain_long_den = tmp;
342 
343  /* Select between original and delayed signal.
344  Delayed signal will be selected if it increases R'(k)
345  correlation. */
346  L_temp0 = gain_num * gain_num;
347  L_temp0 = MULL(L_temp0, gain_long_den, FRAC_BITS);
348 
349  L_temp1 = gain_long_num * gain_long_num;
350  L_temp1 = MULL(L_temp1, gain_den, FRAC_BITS);
351 
352  tmp = ((sh_gain_long_num - sh_gain_num) * 2) - (sh_gain_long_den - sh_gain_den);
353  if (tmp > 0)
354  L_temp0 >>= tmp;
355  else
356  L_temp1 >>= -tmp;
357 
358  /* Check if longer filter increases the values of R'(k). */
359  if (L_temp1 > L_temp0) {
360  /* Select long filter. */
361  selected_signal = residual_filt;
362  gain_num = gain_long_num;
363  gain_den = gain_long_den;
364  sh_gain_num = sh_gain_long_num;
365  sh_gain_den = sh_gain_long_den;
366  } else
367  /* Select short filter. */
368  selected_signal = &delayed_signal[best_delay_frac-1][delayed_signal_offset];
369 
370  /* Rescale selected signal to original value. */
371  if (shift > 0)
372  for (i = 0; i < subframe_size; i++)
373  selected_signal[i] *= 1 << shift;
374  else
375  for (i = 0; i < subframe_size; i++)
376  selected_signal[i] >>= -shift;
377 
378  /* necessary to avoid compiler warning */
379  selected_signal_const = selected_signal;
380  } // if(best_delay_frac)
381  else
382  selected_signal_const = residual + RES_PREV_DATA_SIZE - (best_delay_int + 1 - delayed_signal_offset);
383 #ifdef G729_BITEXACT
384  tmp = sh_gain_num - sh_gain_den;
385  if (tmp > 0)
386  gain_den >>= tmp;
387  else
388  gain_num >>= -tmp;
389 
390  if (gain_num > gain_den)
391  lt_filt_factor_a = MIN_LT_FILT_FACTOR_A;
392  else {
393  gain_num >>= 2;
394  gain_den >>= 1;
395  lt_filt_factor_a = (gain_den << 15) / (gain_den + gain_num);
396  }
397 #else
398  L64_temp0 = (((int64_t)gain_num) << sh_gain_num) >> 1;
399  L64_temp1 = ((int64_t)gain_den) << sh_gain_den;
400  lt_filt_factor_a = FFMAX((L64_temp1 << 15) / (L64_temp1 + L64_temp0), MIN_LT_FILT_FACTOR_A);
401 #endif
402 
403  /* Filter through selected filter. */
404  lt_filt_factor_b = 32767 - lt_filt_factor_a + 1;
405 
406  ff_acelp_weighted_vector_sum(residual_filt, residual + RES_PREV_DATA_SIZE,
407  selected_signal_const,
408  lt_filt_factor_a, lt_filt_factor_b,
409  1<<14, 15, subframe_size);
410 
411  // Long-term prediction gain is larger than 3dB.
412  return 1;
413 }
414 
415 /**
416  * \brief Calculate reflection coefficient for tilt compensation filter (4.2.3).
417  * \param dsp initialized DSP context
418  * \param lp_gn (3.12) coefficients of A(z/FORMANT_PP_FACTOR_NUM) filter
419  * \param lp_gd (3.12) coefficients of A(z/FORMANT_PP_FACTOR_DEN) filter
420  * \param speech speech to update
421  * \param subframe_size size of subframe
422  *
423  * \return (3.12) reflection coefficient
424  *
425  * \remark The routine also calculates the gain term for the short-term
426  * filter (gf) and multiplies the speech data by 1/gf.
427  *
428  * \note All members of lp_gn, except 10-19 must be equal to zero.
429  */
430 static int16_t get_tilt_comp(AudioDSPContext *adsp, int16_t *lp_gn,
431  const int16_t *lp_gd, int16_t* speech,
432  int subframe_size)
433 {
434  int rh1,rh0; // (3.12)
435  int temp;
436  int i;
437  int gain_term;
438 
439  lp_gn[10] = 4096; //1.0 in (3.12)
440 
441  /* Apply 1/A(z/FORMANT_PP_FACTOR_DEN) filter to hf. */
442  ff_celp_lp_synthesis_filter(lp_gn + 11, lp_gd + 1, lp_gn + 11, 22, 10, 0, 0, 0x800);
443  /* Now lp_gn (starting with 10) contains impulse response
444  of A(z/FORMANT_PP_FACTOR_NUM)/A(z/FORMANT_PP_FACTOR_DEN) filter. */
445 
446  rh0 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 10, 20);
447  rh1 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 11, 20);
448 
449  /* downscale to avoid overflow */
450  temp = av_log2(rh0) - 14;
451  if (temp > 0) {
452  rh0 >>= temp;
453  rh1 >>= temp;
454  }
455 
456  if (FFABS(rh1) > rh0 || !rh0)
457  return 0;
458 
459  gain_term = 0;
460  for (i = 0; i < 20; i++)
461  gain_term += FFABS(lp_gn[i + 10]);
462  gain_term >>= 2; // (3.12) -> (5.10)
463 
464  if (gain_term > 0x400) { // 1.0 in (5.10)
465  temp = 0x2000000 / gain_term; // 1.0/gain_term in (0.15)
466  for (i = 0; i < subframe_size; i++)
467  speech[i] = (speech[i] * temp + 0x4000) >> 15;
468  }
469 
470  return -(rh1 * (1 << 15)) / rh0;
471 }
472 
473 /**
474  * \brief Apply tilt compensation filter (4.2.3).
475  * \param res_pst [in/out] residual signal (partially filtered)
476  * \param k1 (3.12) reflection coefficient
477  * \param subframe_size size of subframe
478  * \param ht_prev_data previous data for 4.2.3, equation 86
479  *
480  * \return new value for ht_prev_data
481 */
482 static int16_t apply_tilt_comp(int16_t* out, int16_t* res_pst, int refl_coeff,
483  int subframe_size, int16_t ht_prev_data)
484 {
485  int tmp, tmp2;
486  int i;
487  int gt, ga;
488  int fact, sh_fact;
489 
490  if (refl_coeff > 0) {
491  gt = (refl_coeff * G729_TILT_FACTOR_PLUS + 0x4000) >> 15;
492  fact = 0x2000; // 0.5 in (0.15)
493  sh_fact = 14;
494  } else {
495  gt = (refl_coeff * G729_TILT_FACTOR_MINUS + 0x4000) >> 15;
496  fact = 0x400; // 0.5 in (3.12)
497  sh_fact = 11;
498  }
499  ga = (fact << 16) / av_clip_int16(32768 - FFABS(gt));
500  gt >>= 1;
501 
502  /* Apply tilt compensation filter to signal. */
503  tmp = res_pst[subframe_size - 1];
504 
505  for (i = subframe_size - 1; i >= 1; i--) {
506  tmp2 = (gt * res_pst[i-1]) * 2 + 0x4000;
507  tmp2 = res_pst[i] + (tmp2 >> 15);
508 
509  tmp2 = (tmp2 * ga + fact) >> sh_fact;
510  out[i] = tmp2;
511  }
512  tmp2 = (gt * ht_prev_data) * 2 + 0x4000;
513  tmp2 = res_pst[0] + (tmp2 >> 15);
514  tmp2 = (tmp2 * ga + fact) >> sh_fact;
515  out[0] = tmp2;
516 
517  return tmp;
518 }
519 
520 void ff_g729_postfilter(AudioDSPContext *adsp, int16_t* ht_prev_data, int* voicing,
521  const int16_t *lp_filter_coeffs, int pitch_delay_int,
522  int16_t* residual, int16_t* res_filter_data,
523  int16_t* pos_filter_data, int16_t *speech, int subframe_size)
524 {
525  int16_t residual_filt_buf[SUBFRAME_SIZE+11];
526  int16_t lp_gn[33]; // (3.12)
527  int16_t lp_gd[11]; // (3.12)
528  int tilt_comp_coeff;
529  int i;
530 
531  /* Zero-filling is necessary for tilt-compensation filter. */
532  memset(lp_gn, 0, 33 * sizeof(int16_t));
533 
534  /* Calculate A(z/FORMANT_PP_FACTOR_NUM) filter coefficients. */
535  for (i = 0; i < 10; i++)
536  lp_gn[i + 11] = (lp_filter_coeffs[i + 1] * formant_pp_factor_num_pow[i] + 0x4000) >> 15;
537 
538  /* Calculate A(z/FORMANT_PP_FACTOR_DEN) filter coefficients. */
539  for (i = 0; i < 10; i++)
540  lp_gd[i + 1] = (lp_filter_coeffs[i + 1] * formant_pp_factor_den_pow[i] + 0x4000) >> 15;
541 
542  /* residual signal calculation (one-half of short-term postfilter) */
543  memcpy(speech - 10, res_filter_data, 10 * sizeof(int16_t));
544  residual_filter(residual + RES_PREV_DATA_SIZE, lp_gn + 11, speech, subframe_size);
545  /* Save data to use it in the next subframe. */
546  memcpy(res_filter_data, speech + subframe_size - 10, 10 * sizeof(int16_t));
547 
548  /* long-term filter. If long-term prediction gain is larger than 3dB (returned value is
549  nonzero) then declare current subframe as periodic. */
550  i = long_term_filter(adsp, pitch_delay_int,
551  residual, residual_filt_buf + 10,
552  subframe_size);
553  *voicing = FFMAX(*voicing, i);
554 
555  /* shift residual for using in next subframe */
556  memmove(residual, residual + subframe_size, RES_PREV_DATA_SIZE * sizeof(int16_t));
557 
558  /* short-term filter tilt compensation */
559  tilt_comp_coeff = get_tilt_comp(adsp, lp_gn, lp_gd, residual_filt_buf + 10, subframe_size);
560 
561  /* Apply second half of short-term postfilter: 1/A(z/FORMANT_PP_FACTOR_DEN) */
562  ff_celp_lp_synthesis_filter(pos_filter_data + 10, lp_gd + 1,
563  residual_filt_buf + 10,
564  subframe_size, 10, 0, 0, 0x800);
565  memcpy(pos_filter_data, pos_filter_data + subframe_size, 10 * sizeof(int16_t));
566 
567  *ht_prev_data = apply_tilt_comp(speech, pos_filter_data + 10, tilt_comp_coeff,
568  subframe_size, *ht_prev_data);
569 }
570 
571 /**
572  * \brief Adaptive gain control (4.2.4)
573  * \param gain_before gain of speech before applying postfilters
574  * \param gain_after gain of speech after applying postfilters
575  * \param speech [in/out] signal buffer
576  * \param subframe_size length of subframe
577  * \param gain_prev (3.12) previous value of gain coefficient
578  *
579  * \return (3.12) last value of gain coefficient
580  */
581 int16_t ff_g729_adaptive_gain_control(int gain_before, int gain_after, int16_t *speech,
582  int subframe_size, int16_t gain_prev)
583 {
584  int gain; // (3.12)
585  int n;
586  int exp_before, exp_after;
587 
588  if(!gain_after && gain_before)
589  return 0;
590 
591  if (gain_before) {
592 
593  exp_before = 14 - av_log2(gain_before);
594  gain_before = bidir_sal(gain_before, exp_before);
595 
596  exp_after = 14 - av_log2(gain_after);
597  gain_after = bidir_sal(gain_after, exp_after);
598 
599  if (gain_before < gain_after) {
600  gain = (gain_before << 15) / gain_after;
601  gain = bidir_sal(gain, exp_after - exp_before - 1);
602  } else {
603  gain = ((gain_before - gain_after) << 14) / gain_after + 0x4000;
604  gain = bidir_sal(gain, exp_after - exp_before);
605  }
606  gain = av_clip_int16(gain);
607  gain = (gain * G729_AGC_FAC1 + 0x4000) >> 15; // gain * (1-0.9875)
608  } else
609  gain = 0;
610 
611  for (n = 0; n < subframe_size; n++) {
612  // gain_prev = gain + 0.9875 * gain_prev
613  gain_prev = (G729_AGC_FACTOR * gain_prev + 0x4000) >> 15;
614  gain_prev = av_clip_int16(gain + gain_prev);
615  speech[n] = av_clip_int16((speech[n] * gain_prev + 0x2000) >> 14);
616  }
617  return gain_prev;
618 }
formant_pp_factor_den_pow
static const int16_t formant_pp_factor_den_pow[10]
formant_pp_factor_den_pow[i] = FORMANT_PP_FACTOR_DEN^(i+1)
Definition: g729postfilter.c:74
acelp_vectors.h
long_term_filter
static int16_t long_term_filter(AudioDSPContext *adsp, int pitch_delay_int, const int16_t *residual, int16_t *residual_filt, int subframe_size)
long-term postfilter (4.2.1)
Definition: g729postfilter.c:113
out
FILE * out
Definition: movenc.c:54
get_tilt_comp
static int16_t get_tilt_comp(AudioDSPContext *adsp, int16_t *lp_gn, const int16_t *lp_gd, int16_t *speech, int subframe_size)
Calculate reflection coefficient for tilt compensation filter (4.2.3).
Definition: g729postfilter.c:430
G729_TILT_FACTOR_PLUS
#define G729_TILT_FACTOR_PLUS
tilt compensation factor (G.729, k1>0) 0.2 in Q15
Definition: g729postfilter.h:32
ff_acelp_interpolate
void ff_acelp_interpolate(int16_t *out, const int16_t *in, const int16_t *filter_coeffs, int precision, int frac_pos, int filter_length, int length)
Generic FIR interpolation routine.
Definition: acelp_filters.c:46
tmp
static uint8_t tmp[11]
Definition: aes_ctr.c:28
ff_celp_lp_synthesis_filter
int ff_celp_lp_synthesis_filter(int16_t *out, const int16_t *filter_coeffs, const int16_t *in, int buffer_length, int filter_length, int stop_on_overflow, int shift, int rounder)
LP synthesis filter.
Definition: celp_filters.c:61
formant_pp_factor_num_pow
static const int16_t formant_pp_factor_num_pow[10]
formant_pp_factor_num_pow[i] = FORMANT_PP_FACTOR_NUM^(i+1)
Definition: g729postfilter.c:66
FFMAX
#define FFMAX(a, b)
Definition: macros.h:47
ff_g729_interp_filt_short
static const int16_t ff_g729_interp_filt_short[(ANALYZED_FRAC_DELAYS+1) *SHORT_INT_FILT_LEN]
short interpolation filter (of length 33, according to spec) for computing signal with non-integer de...
Definition: g729postfilter.c:43
g729postfilter.h
ff_g729_interp_filt_long
static const int16_t ff_g729_interp_filt_long[(ANALYZED_FRAC_DELAYS+1) *LONG_INT_FILT_LEN]
long interpolation filter (of length 129, according to spec) for computing signal with non-integer de...
Definition: g729postfilter.c:52
G729_AGC_FACTOR
#define G729_AGC_FACTOR
gain adjustment factor (G.729, 4.2.4) 0.9875 in Q15
Definition: g729postfilter.h:48
ff_g729_postfilter
void ff_g729_postfilter(AudioDSPContext *adsp, int16_t *ht_prev_data, int *voicing, const int16_t *lp_filter_coeffs, int pitch_delay_int, int16_t *residual, int16_t *res_filter_data, int16_t *pos_filter_data, int16_t *speech, int subframe_size)
Signal postfiltering (4.2)
Definition: g729postfilter.c:520
RES_PREV_DATA_SIZE
#define RES_PREV_DATA_SIZE
Amount of past residual signal data stored in buffer.
Definition: g729postfilter.h:77
G729_AGC_FAC1
#define G729_AGC_FAC1
Definition: g729postfilter.h:49
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:64
av_clip_int16
#define av_clip_int16
Definition: common.h:110
ANALYZED_FRAC_DELAYS
#define ANALYZED_FRAC_DELAYS
Number of analyzed fractional pitch delays in second stage of long-term postfilter.
Definition: g729postfilter.h:72
ff_g729_adaptive_gain_control
int16_t ff_g729_adaptive_gain_control(int gain_before, int gain_after, int16_t *speech, int subframe_size, int16_t gain_prev)
Adaptive gain control (4.2.4)
Definition: g729postfilter.c:581
mathops.h
celp_filters.h
G729_TILT_FACTOR_MINUS
#define G729_TILT_FACTOR_MINUS
tilt compensation factor (G.729, k1<0) 0.9 in Q15
Definition: g729postfilter.h:38
shift
static int shift(int a, int b)
Definition: bonk.c:257
celp_math.h
AudioDSPContext::scalarproduct_int16
int32_t(* scalarproduct_int16)(const int16_t *v1, const int16_t *v2, int len)
Calculate scalar product of two vectors.
Definition: audiodsp.h:29
fact
static double fact(double i)
Definition: af_aiir.c:941
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
SHORT_INT_FILT_LEN
#define SHORT_INT_FILT_LEN
Short interpolation filter length.
Definition: g729postfilter.h:61
residual_filter
static void residual_filter(int16_t *out, const int16_t *filter_coeffs, const int16_t *in, int subframe_size)
Residual signal calculation (4.2.1 if G.729)
Definition: g729postfilter.c:89
g729.h
common.h
LONG_INT_FILT_LEN
#define LONG_INT_FILT_LEN
Long interpolation filter length.
Definition: g729postfilter.h:66
acelp_filters.h
FRAC_BITS
#define FRAC_BITS
Definition: g729postfilter.c:36
temp
else temp
Definition: vf_mcdeint.c:248
SUBFRAME_SIZE
#define SUBFRAME_SIZE
Definition: evrcdec.c:43
ff_acelp_weighted_vector_sum
void ff_acelp_weighted_vector_sum(int16_t *out, const int16_t *in_a, const int16_t *in_b, int16_t weight_coeff_a, int16_t weight_coeff_b, int16_t rounder, int shift, int length)
weighted sum of two vectors with rounding.
Definition: acelp_vectors.c:162
apply_tilt_comp
static int16_t apply_tilt_comp(int16_t *out, int16_t *res_pst, int refl_coeff, int subframe_size, int16_t ht_prev_data)
Apply tilt compensation filter (4.2.3).
Definition: g729postfilter.c:482
audiodsp.h
bidir_sal
static int bidir_sal(int value, int offset)
Shift value left or right depending on sign of offset parameter.
Definition: celp_math.h:81
AudioDSPContext
Definition: audiodsp.h:24
FFMAX3
#define FFMAX3(a, b, c)
Definition: macros.h:48
MULL
#define MULL(a, b, s)
Definition: mathops.h:59
MIN_LT_FILT_FACTOR_A
#define MIN_LT_FILT_FACTOR_A
1.0 / (1.0 + 0.5) in Q15 where 0.5 is the minimum value of weight factor, controlling amount of long-...
Definition: g729postfilter.h:56
av_log2
int av_log2(unsigned v)
Definition: intmath.c:26
intmath.h