Go to the documentation of this file.
33 #include "config_components.h"
86 ht[
i].bits, ht[
i].values,
87 ht[
i].class == 1,
s->avctx);
91 if (ht[
i].
class < 2) {
92 memcpy(
s->raw_huffman_lengths[ht[
i].class][ht[
i].index],
94 memcpy(
s->raw_huffman_values[ht[
i].class][ht[
i].index],
95 ht[
i].values, ht[
i].length);
105 if (
len > 14 && buf[12] == 1)
106 s->interlace_polarity = 1;
107 if (
len > 14 && buf[12] == 2)
108 s->interlace_polarity = 0;
119 s->idsp.idct_permutation);
127 if (!
s->picture_ptr) {
131 s->picture_ptr =
s->picture;
141 s->first_picture = 1;
151 if (
s->extern_huff) {
157 "error using external huffman table, switching back to internal\n");
163 s->interlace_polarity = 1;
167 s->interlace_polarity = 1;
174 if (
s->smv_frames_per_jpeg <= 0) {
218 for (
i = 0;
i < 64;
i++) {
220 if (
s->quant_matrixes[
index][
i] == 0) {
222 av_log(
s->avctx, log_level,
"dqt: 0 quant value\n");
230 s->quant_matrixes[
index][8]) >> 1;
233 len -= 1 + 64 * (1+pr);
242 uint8_t bits_table[17];
243 uint8_t val_table[256];
263 for (
i = 1;
i <= 16;
i++) {
268 if (len < n || n > 256)
271 for (
i = 0;
i < n;
i++) {
282 val_table,
class > 0,
s->avctx)) < 0)
288 val_table, 0,
s->avctx)) < 0)
292 for (
i = 0;
i < 16;
i++)
293 s->raw_huffman_lengths[
class][
index][
i] = bits_table[
i + 1];
295 s->raw_huffman_values[
class][
index][
i] = val_table[
i];
308 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
309 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
319 if (
s->avctx->bits_per_raw_sample !=
bits) {
321 s->avctx->bits_per_raw_sample =
bits;
326 if (
bits == 9 && !
s->pegasus_rct)
329 if(
s->lossless &&
s->avctx->lowres){
338 if (
s->interlaced &&
s->width ==
width &&
s->height ==
height + 1)
344 if (
s->buf_size && (
width + 7) / 8 * ((
height + 7) / 8) >
s->buf_size * 4LL)
348 if (nb_components <= 0 ||
351 if (
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
352 if (nb_components !=
s->nb_components) {
354 "nb_components changing in interlaced picture\n");
358 if (
s->ls && !(
bits <= 8 || nb_components == 1)) {
360 "JPEG-LS that is not <= 8 "
361 "bits/component or 16-bit gray");
364 if (
len != 8 + 3 * nb_components) {
365 av_log(
s->avctx,
AV_LOG_ERROR,
"decode_sof0: error, len(%d) mismatch %d components\n",
len, nb_components);
369 s->nb_components = nb_components;
372 for (
i = 0;
i < nb_components;
i++) {
378 if (h_count[
i] >
s->h_max)
379 s->h_max = h_count[
i];
380 if (v_count[
i] >
s->v_max)
381 s->v_max = v_count[
i];
383 if (
s->quant_index[
i] >= 4) {
387 if (!h_count[
i] || !v_count[
i]) {
389 "Invalid sampling factor in component %d %d:%d\n",
390 i, h_count[
i], v_count[
i]);
395 i, h_count[
i], v_count[
i],
396 s->component_id[
i],
s->quant_index[
i]);
398 if ( nb_components == 4
399 &&
s->component_id[0] ==
'C'
400 &&
s->component_id[1] ==
'M'
401 &&
s->component_id[2] ==
'Y'
402 &&
s->component_id[3] ==
'K')
403 s->adobe_transform = 0;
405 if (
s->ls && (
s->h_max > 1 ||
s->v_max > 1)) {
411 if (nb_components == 2) {
425 memcmp(
s->h_count, h_count,
sizeof(h_count)) ||
426 memcmp(
s->v_count, v_count,
sizeof(v_count))) {
432 memcpy(
s->h_count, h_count,
sizeof(h_count));
433 memcpy(
s->v_count, v_count,
sizeof(v_count));
438 if (
s->first_picture &&
439 (
s->multiscope != 2 ||
s->avctx->pkt_timebase.den >= 25 *
s->avctx->pkt_timebase.num) &&
440 s->orig_height != 0 &&
441 s->height < ((
s->orig_height * 3) / 4)) {
443 s->bottom_field =
s->interlace_polarity;
444 s->picture_ptr->interlaced_frame = 1;
445 s->picture_ptr->top_field_first = !
s->interlace_polarity;
454 (
s->avctx->codec_tag ==
MKTAG(
'A',
'V',
'R',
'n') ||
455 s->avctx->codec_tag ==
MKTAG(
'A',
'V',
'D',
'J')) &&
459 s->first_picture = 0;
465 s->avctx->height =
s->avctx->coded_height /
s->smv_frames_per_jpeg;
466 if (
s->avctx->height <= 0)
470 if (
s->got_picture &&
s->interlaced && (
s->bottom_field == !
s->interlace_polarity)) {
471 if (
s->progressive) {
476 if (
s->v_max == 1 &&
s->h_max == 1 &&
s->lossless==1 && (nb_components==3 || nb_components==4))
478 else if (!
s->lossless)
481 pix_fmt_id = ((unsigned)
s->h_count[0] << 28) | (
s->v_count[0] << 24) |
482 (
s->h_count[1] << 20) | (
s->v_count[1] << 16) |
483 (
s->h_count[2] << 12) | (
s->v_count[2] << 8) |
484 (
s->h_count[3] << 4) |
s->v_count[3];
488 if (!(pix_fmt_id & 0xD0D0D0D0))
489 pix_fmt_id -= (pix_fmt_id & 0xF0F0F0F0) >> 1;
490 if (!(pix_fmt_id & 0x0D0D0D0D))
491 pix_fmt_id -= (pix_fmt_id & 0x0F0F0F0F) >> 1;
493 for (
i = 0;
i < 8;
i++) {
494 int j = 6 + (
i&1) - (
i&6);
495 int is = (pix_fmt_id >> (4*
i)) & 0xF;
496 int js = (pix_fmt_id >> (4*j)) & 0xF;
498 if (
is == 1 && js != 2 && (i < 2 || i > 5))
499 js = (pix_fmt_id >> ( 8 + 4*(
i&1))) & 0xF;
500 if (
is == 1 && js != 2 && (i < 2 || i > 5))
501 js = (pix_fmt_id >> (16 + 4*(
i&1))) & 0xF;
503 if (
is == 1 && js == 2) {
504 if (
i & 1)
s->upscale_h[j/2] = 1;
505 else s->upscale_v[j/2] = 1;
510 if (pix_fmt_id != 0x11110000 && pix_fmt_id != 0x11000000)
514 switch (pix_fmt_id) {
524 if (
s->adobe_transform == 0
525 ||
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
539 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
550 if (
s->adobe_transform == 0 &&
s->bits <= 8) {
552 s->upscale_v[1] =
s->upscale_v[2] = 1;
553 s->upscale_h[1] =
s->upscale_h[2] = 1;
554 }
else if (
s->adobe_transform == 2 &&
s->bits <= 8) {
556 s->upscale_v[1] =
s->upscale_v[2] = 1;
557 s->upscale_h[1] =
s->upscale_h[2] = 1;
598 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
602 s->upscale_v[0] =
s->upscale_v[1] = 1;
604 if (pix_fmt_id == 0x14111100)
605 s->upscale_v[1] =
s->upscale_v[2] = 1;
613 if (
s->component_id[0] ==
'R' &&
s->component_id[1] ==
'G' &&
s->component_id[2] ==
'B') {
617 s->upscale_h[0] =
s->upscale_h[1] = 1;
629 s->upscale_h[1] =
s->upscale_h[2] = 2;
645 if (pix_fmt_id == 0x42111100) {
648 s->upscale_h[1] =
s->upscale_h[2] = 1;
649 }
else if (pix_fmt_id == 0x24111100) {
652 s->upscale_v[1] =
s->upscale_v[2] = 1;
653 }
else if (pix_fmt_id == 0x23111100) {
656 s->upscale_v[1] =
s->upscale_v[2] = 2;
668 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
669 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
681 memset(
s->upscale_h, 0,
sizeof(
s->upscale_h));
682 memset(
s->upscale_v, 0,
sizeof(
s->upscale_v));
683 if (
s->nb_components == 3) {
685 }
else if (
s->nb_components != 1) {
688 }
else if ((
s->palette_index ||
s->force_pal8) &&
s->bits <= 8)
690 else if (
s->bits <= 8)
702 if (
s->avctx->pix_fmt ==
s->hwaccel_sw_pix_fmt && !size_change) {
703 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
706 #if CONFIG_MJPEG_NVDEC_HWACCEL
709 #if CONFIG_MJPEG_VAAPI_HWACCEL
716 if (
s->hwaccel_pix_fmt < 0)
719 s->hwaccel_sw_pix_fmt =
s->avctx->pix_fmt;
720 s->avctx->pix_fmt =
s->hwaccel_pix_fmt;
725 s->picture_ptr->key_frame = 1;
734 s->picture_ptr->key_frame = 1;
739 memset(
s->picture_ptr->data[1], 0, 1024);
741 for (
i = 0;
i < 4;
i++)
742 s->linesize[
i] =
s->picture_ptr->linesize[
i] <<
s->interlaced;
744 ff_dlog(
s->avctx,
"%d %d %d %d %d %d\n",
745 s->width,
s->height,
s->linesize[0],
s->linesize[1],
746 s->interlaced,
s->avctx->height);
750 if ((
s->rgb && !
s->lossless && !
s->ls) ||
751 (!
s->rgb &&
s->ls &&
s->nb_components > 1) ||
759 if (
s->progressive) {
760 int bw = (
width +
s->h_max * 8 - 1) / (
s->h_max * 8);
761 int bh = (
height +
s->v_max * 8 - 1) / (
s->v_max * 8);
762 for (
i = 0;
i <
s->nb_components;
i++) {
763 int size = bw * bh *
s->h_count[
i] *
s->v_count[
i];
768 if (!
s->blocks[
i] || !
s->last_nnz[
i])
770 s->block_stride[
i] = bw *
s->h_count[
i];
772 memset(
s->coefs_finished, 0,
sizeof(
s->coefs_finished));
775 if (
s->avctx->hwaccel) {
776 s->hwaccel_picture_private =
777 av_mallocz(
s->avctx->hwaccel->frame_priv_data_size);
778 if (!
s->hwaccel_picture_private)
781 ret =
s->avctx->hwaccel->start_frame(
s->avctx,
s->raw_image_buffer,
782 s->raw_image_buffer_size);
794 if (code < 0 || code > 16) {
796 "mjpeg_decode_dc: bad vlc: %d:%d (%p)\n",
797 0, dc_index, &
s->vlcs[0][dc_index]);
809 int dc_index,
int ac_index, uint16_t *quant_matrix)
815 if (
val == 0xfffff) {
819 val =
val * (unsigned)quant_matrix[0] +
s->last_dc[component];
821 s->last_dc[component] =
val;
830 i += ((unsigned)
code) >> 4;
838 int sign = (~cache) >> 31;
848 j =
s->permutated_scantable[
i];
858 int component,
int dc_index,
859 uint16_t *quant_matrix,
int Al)
862 s->bdsp.clear_block(
block);
864 if (
val == 0xfffff) {
868 val = (
val * (quant_matrix[0] << Al)) +
s->last_dc[component];
869 s->last_dc[component] =
val;
876 uint8_t *last_nnz,
int ac_index,
877 uint16_t *quant_matrix,
878 int ss,
int se,
int Al,
int *EOBRUN)
890 for (
i =
ss; ;
i++) {
903 int sign = (~cache) >> 31;
911 j =
s->permutated_scantable[
se];
918 j =
s->permutated_scantable[
i];
948 #define REFINE_BIT(j) { \
949 UPDATE_CACHE(re, &s->gb); \
950 sign = block[j] >> 15; \
951 block[j] += SHOW_UBITS(re, &s->gb, 1) * \
952 ((quant_matrix[i] ^ sign) - sign) << Al; \
953 LAST_SKIP_BITS(re, &s->gb, 1); \
961 av_log(s->avctx, AV_LOG_ERROR, "error count: %d\n", i); \
966 j = s->permutated_scantable[i]; \
969 else if (run-- == 0) \
976 int ac_index, uint16_t *quant_matrix,
977 int ss,
int se,
int Al,
int *EOBRUN)
980 int last =
FFMIN(
se, *last_nnz);
996 j =
s->permutated_scantable[
i];
1027 for (;
i <= last;
i++) {
1028 j =
s->permutated_scantable[
i];
1044 if (
s->restart_interval) {
1048 for (
i = 0;
i < nb_components;
i++)
1049 s->last_dc[
i] = (4 <<
s->bits);
1054 if (
s->restart_count == 0) {
1062 for (
i = 0;
i < nb_components;
i++)
1063 s->last_dc[
i] = (4 <<
s->bits);
1079 int left[4], top[4], topleft[4];
1080 const int linesize =
s->linesize[0];
1081 const int mask = ((1 <<
s->bits) - 1) << point_transform;
1082 int resync_mb_y = 0;
1083 int resync_mb_x = 0;
1086 if (!
s->bayer &&
s->nb_components < 3)
1088 if (
s->bayer &&
s->nb_components > 2)
1090 if (
s->nb_components <= 0 ||
s->nb_components > 4)
1092 if (
s->v_max != 1 ||
s->h_max != 1 || !
s->lossless)
1095 if (
s->rct ||
s->pegasus_rct)
1100 s->restart_count =
s->restart_interval;
1102 if (
s->restart_interval == 0)
1103 s->restart_interval = INT_MAX;
1106 width =
s->mb_width / nb_components;
1111 if (!
s->ljpeg_buffer)
1116 for (
i = 0;
i < 4;
i++)
1119 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1120 uint8_t *ptr =
s->picture_ptr->data[0] + (linesize * mb_y);
1122 if (
s->interlaced &&
s->bottom_field)
1123 ptr += linesize >> 1;
1125 for (
i = 0;
i < 4;
i++)
1128 if ((mb_y *
s->width) %
s->restart_interval == 0) {
1129 for (
i = 0;
i < 6;
i++)
1130 vpred[
i] = 1 << (
s->bits-1);
1133 for (mb_x = 0; mb_x <
width; mb_x++) {
1141 if (
s->restart_interval && !
s->restart_count){
1142 s->restart_count =
s->restart_interval;
1146 top[
i] =
left[
i]= topleft[
i]= 1 << (
s->bits - 1);
1148 if (mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || !mb_x)
1149 modified_predictor = 1;
1151 for (
i=0;
i<nb_components;
i++) {
1154 topleft[
i] = top[
i];
1161 if (!
s->bayer || mb_x) {
1171 mask & (
pred + (unsigned)(
dc * (1 << point_transform)));
1174 if (
s->restart_interval && !--
s->restart_count) {
1179 if (
s->rct &&
s->nb_components == 4) {
1180 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1181 ptr[4*mb_x + 2] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1182 ptr[4*mb_x + 1] =
buffer[mb_x][1] + ptr[4*mb_x + 2];
1183 ptr[4*mb_x + 3] =
buffer[mb_x][2] + ptr[4*mb_x + 2];
1184 ptr[4*mb_x + 0] =
buffer[mb_x][3];
1186 }
else if (
s->nb_components == 4) {
1187 for(
i=0;
i<nb_components;
i++) {
1188 int c=
s->comp_index[
i];
1190 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1193 }
else if(
s->bits == 9) {
1196 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1197 ((uint16_t*)ptr)[4*mb_x+
c] =
buffer[mb_x][
i];
1201 }
else if (
s->rct) {
1202 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1203 ptr[3*mb_x + 1] =
buffer[mb_x][0] - ((
buffer[mb_x][1] +
buffer[mb_x][2] - 0x200) >> 2);
1204 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1205 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1207 }
else if (
s->pegasus_rct) {
1208 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1210 ptr[3*mb_x + 0] =
buffer[mb_x][1] + ptr[3*mb_x + 1];
1211 ptr[3*mb_x + 2] =
buffer[mb_x][2] + ptr[3*mb_x + 1];
1213 }
else if (
s->bayer) {
1216 if (nb_components == 1) {
1218 for (mb_x = 0; mb_x <
width; mb_x++)
1219 ((uint16_t*)ptr)[mb_x] =
buffer[mb_x][0];
1220 }
else if (nb_components == 2) {
1221 for (mb_x = 0; mb_x <
width; mb_x++) {
1222 ((uint16_t*)ptr)[2*mb_x + 0] =
buffer[mb_x][0];
1223 ((uint16_t*)ptr)[2*mb_x + 1] =
buffer[mb_x][1];
1227 for(
i=0;
i<nb_components;
i++) {
1228 int c=
s->comp_index[
i];
1230 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1233 }
else if(
s->bits == 9) {
1236 for(mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1237 ((uint16_t*)ptr)[3*mb_x+2-
c] =
buffer[mb_x][
i];
1247 int point_transform,
int nb_components)
1249 int i, mb_x, mb_y,
mask;
1250 int bits= (
s->bits+7)&~7;
1251 int resync_mb_y = 0;
1252 int resync_mb_x = 0;
1254 point_transform +=
bits -
s->bits;
1255 mask = ((1 <<
s->bits) - 1) << point_transform;
1257 av_assert0(nb_components>=1 && nb_components<=4);
1259 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1260 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1265 if (
s->restart_interval && !
s->restart_count){
1266 s->restart_count =
s->restart_interval;
1271 if(!mb_x || mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x || s->
interlaced){
1272 int toprow = mb_y == resync_mb_y || mb_y == resync_mb_y+1 && mb_x < resync_mb_x;
1273 int leftcol = !mb_x || mb_y == resync_mb_y && mb_x == resync_mb_x;
1274 for (
i = 0;
i < nb_components;
i++) {
1277 int n,
h, v, x, y,
c, j, linesize;
1278 n =
s->nb_blocks[
i];
1279 c =
s->comp_index[
i];
1284 linesize=
s->linesize[
c];
1286 if(
bits>8) linesize /= 2;
1288 for(j=0; j<n; j++) {
1294 if (
h * mb_x + x >=
s->width
1295 || v * mb_y + y >=
s->height) {
1297 }
else if (
bits<=8) {
1298 ptr =
s->picture_ptr->data[
c] + (linesize * (v * mb_y + y)) + (
h * mb_x + x);
1300 if(x==0 && leftcol){
1306 if(x==0 && leftcol){
1307 pred= ptr[-linesize];
1313 if (
s->interlaced &&
s->bottom_field)
1314 ptr += linesize >> 1;
1316 *ptr=
pred + ((unsigned)
dc << point_transform);
1318 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1320 if(x==0 && leftcol){
1326 if(x==0 && leftcol){
1327 pred= ptr16[-linesize];
1333 if (
s->interlaced &&
s->bottom_field)
1334 ptr16 += linesize >> 1;
1336 *ptr16=
pred + ((unsigned)
dc << point_transform);
1345 for (
i = 0;
i < nb_components;
i++) {
1348 int n,
h, v, x, y,
c, j, linesize,
dc;
1349 n =
s->nb_blocks[
i];
1350 c =
s->comp_index[
i];
1355 linesize =
s->linesize[
c];
1357 if(
bits>8) linesize /= 2;
1359 for (j = 0; j < n; j++) {
1365 if (
h * mb_x + x >=
s->width
1366 || v * mb_y + y >=
s->height) {
1368 }
else if (
bits<=8) {
1369 ptr =
s->picture_ptr->data[
c] +
1370 (linesize * (v * mb_y + y)) +
1375 *ptr =
pred + ((unsigned)
dc << point_transform);
1377 ptr16 = (uint16_t*)(
s->picture_ptr->data[
c] + 2*(linesize * (v * mb_y + y)) + 2*(
h * mb_x + x));
1381 *ptr16=
pred + ((unsigned)
dc << point_transform);
1391 if (
s->restart_interval && !--
s->restart_count) {
1401 uint8_t *dst,
const uint8_t *
src,
1402 int linesize,
int lowres)
1405 case 0:
s->hdsp.put_pixels_tab[1][0](dst,
src, linesize, 8);
1411 case 3: *dst = *
src;
1418 int block_x, block_y;
1419 int size = 8 >>
s->avctx->lowres;
1421 for (block_y=0; block_y<
size; block_y++)
1422 for (block_x=0; block_x<
size; block_x++)
1423 *(uint16_t*)(ptr + 2*block_x + block_y*linesize) <<= 16 -
s->bits;
1425 for (block_y=0; block_y<
size; block_y++)
1426 for (block_x=0; block_x<
size; block_x++)
1427 *(ptr + block_x + block_y*linesize) <<= 8 -
s->bits;
1432 int Al,
const uint8_t *mb_bitmask,
1433 int mb_bitmask_size,
1436 int i, mb_x, mb_y, chroma_h_shift, chroma_v_shift, chroma_width, chroma_height;
1441 int bytes_per_pixel = 1 + (
s->bits > 8);
1444 if (mb_bitmask_size != (
s->mb_width *
s->mb_height + 7)>>3) {
1448 init_get_bits(&mb_bitmask_gb, mb_bitmask,
s->mb_width *
s->mb_height);
1451 s->restart_count = 0;
1458 for (
i = 0;
i < nb_components;
i++) {
1459 int c =
s->comp_index[
i];
1460 data[
c] =
s->picture_ptr->data[
c];
1461 reference_data[
c] = reference ? reference->
data[
c] :
NULL;
1462 linesize[
c] =
s->linesize[
c];
1463 s->coefs_finished[
c] |= 1;
1466 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1467 for (mb_x = 0; mb_x <
s->mb_width; mb_x++) {
1470 if (
s->restart_interval && !
s->restart_count)
1471 s->restart_count =
s->restart_interval;
1478 for (
i = 0;
i < nb_components;
i++) {
1480 int n,
h, v, x, y,
c, j;
1482 n =
s->nb_blocks[
i];
1483 c =
s->comp_index[
i];
1488 for (j = 0; j < n; j++) {
1489 block_offset = (((linesize[
c] * (v * mb_y + y) * 8) +
1490 (
h * mb_x + x) * 8 * bytes_per_pixel) >>
s->avctx->lowres);
1492 if (
s->interlaced &&
s->bottom_field)
1493 block_offset += linesize[
c] >> 1;
1494 if ( 8*(
h * mb_x + x) < ((
c == 1) || (
c == 2) ? chroma_width :
s->width)
1495 && 8*(v * mb_y + y) < ((
c == 1) || (
c == 2) ? chroma_height :
s->height)) {
1496 ptr =
data[
c] + block_offset;
1499 if (!
s->progressive) {
1503 linesize[
c],
s->avctx->lowres);
1506 s->bdsp.clear_block(
s->block);
1508 s->dc_index[
i],
s->ac_index[
i],
1509 s->quant_matrixes[
s->quant_sindex[
i]]) < 0) {
1511 "error y=%d x=%d\n", mb_y, mb_x);
1514 if (ptr && linesize[
c]) {
1515 s->idsp.idct_put(ptr, linesize[
c],
s->block);
1521 int block_idx =
s->block_stride[
c] * (v * mb_y + y) +
1523 int16_t *
block =
s->blocks[
c][block_idx];
1526 s->quant_matrixes[
s->quant_sindex[
i]][0] << Al;
1528 s->quant_matrixes[
s->quant_sindex[
i]],
1531 "error y=%d x=%d\n", mb_y, mb_x);
1535 ff_dlog(
s->avctx,
"mb: %d %d processed\n", mb_y, mb_x);
1536 ff_dlog(
s->avctx,
"%d %d %d %d %d %d %d %d \n",
1537 mb_x, mb_y, x, y,
c,
s->bottom_field,
1538 (v * mb_y + y) * 8, (
h * mb_x + x) * 8);
1553 int se,
int Ah,
int Al)
1557 int c =
s->comp_index[0];
1558 uint16_t *quant_matrix =
s->quant_matrixes[
s->quant_sindex[0]];
1561 if (se < ss || se > 63) {
1568 s->coefs_finished[
c] |= (2ULL <<
se) - (1ULL <<
ss);
1570 s->restart_count = 0;
1572 for (mb_y = 0; mb_y <
s->mb_height; mb_y++) {
1573 int block_idx = mb_y *
s->block_stride[
c];
1574 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1575 uint8_t *last_nnz = &
s->last_nnz[
c][block_idx];
1577 av_log(
s->avctx,
AV_LOG_ERROR,
"bitstream truncated in mjpeg_decode_scan_progressive_ac\n");
1580 for (mb_x = 0; mb_x <
s->mb_width; mb_x++,
block++, last_nnz++) {
1582 if (
s->restart_interval && !
s->restart_count)
1583 s->restart_count =
s->restart_interval;
1587 quant_matrix,
ss,
se, Al, &EOBRUN);
1590 quant_matrix,
ss,
se, Al, &EOBRUN);
1596 "error y=%d x=%d\n", mb_y, mb_x);
1611 const int bytes_per_pixel = 1 + (
s->bits > 8);
1612 const int block_size =
s->lossless ? 1 : 8;
1614 for (
c = 0;
c <
s->nb_components;
c++) {
1615 uint8_t *
data =
s->picture_ptr->data[
c];
1616 int linesize =
s->linesize[
c];
1617 int h =
s->h_max /
s->h_count[
c];
1618 int v =
s->v_max /
s->v_count[
c];
1619 int mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1620 int mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1622 if (~
s->coefs_finished[
c])
1625 if (
s->interlaced &&
s->bottom_field)
1626 data += linesize >> 1;
1628 for (mb_y = 0; mb_y < mb_height; mb_y++) {
1629 uint8_t *ptr =
data + (mb_y * linesize * 8 >>
s->avctx->lowres);
1630 int block_idx = mb_y *
s->block_stride[
c];
1631 int16_t (*
block)[64] = &
s->blocks[
c][block_idx];
1632 for (mb_x = 0; mb_x < mb_width; mb_x++,
block++) {
1633 s->idsp.idct_put(ptr, linesize, *
block);
1636 ptr += bytes_per_pixel*8 >>
s->avctx->lowres;
1643 int mb_bitmask_size,
const AVFrame *reference)
1647 const int block_size =
s->lossless ? 1 : 8;
1648 int ilv, prev_shift;
1650 if (!
s->got_picture) {
1652 "Can not process SOS before SOF, skipping\n");
1657 if (reference->
width !=
s->picture_ptr->width ||
1658 reference->
height !=
s->picture_ptr->height ||
1659 reference->
format !=
s->picture_ptr->format) {
1670 "decode_sos: nb_components (%d)",
1674 if (
len != 6 + 2 * nb_components) {
1678 for (
i = 0;
i < nb_components;
i++) {
1683 if (
id ==
s->component_id[
index])
1685 if (
index ==
s->nb_components) {
1687 "decode_sos: index(%d) out of components\n",
index);
1691 if (
s->avctx->codec_tag ==
MKTAG(
'M',
'T',
'S',
'J')
1692 && nb_components == 3 &&
s->nb_components == 3 &&
i)
1695 s->quant_sindex[
i] =
s->quant_index[
index];
1697 s->h_scount[
i] =
s->h_count[
index];
1698 s->v_scount[
i] =
s->v_count[
index];
1700 if((nb_components == 1 || nb_components == 3) &&
s->nb_components == 3 &&
s->avctx->pix_fmt ==
AV_PIX_FMT_GBR24P)
1708 if (
s->dc_index[
i] < 0 ||
s->ac_index[
i] < 0 ||
1709 s->dc_index[
i] >= 4 ||
s->ac_index[
i] >= 4)
1711 if (!
s->vlcs[0][
s->dc_index[
i]].table || !(
s->progressive ?
s->vlcs[2][
s->ac_index[0]].table :
s->vlcs[1][
s->ac_index[
i]].table))
1717 if(
s->avctx->codec_tag !=
AV_RL32(
"CJPG")){
1721 prev_shift = point_transform = 0;
1723 if (nb_components > 1) {
1725 s->mb_width = (
s->width +
s->h_max * block_size - 1) / (
s->h_max * block_size);
1726 s->mb_height = (
s->height +
s->v_max * block_size - 1) / (
s->v_max * block_size);
1727 }
else if (!
s->ls) {
1728 h =
s->h_max /
s->h_scount[0];
1729 v =
s->v_max /
s->v_scount[0];
1730 s->mb_width = (
s->width +
h * block_size - 1) / (
h * block_size);
1731 s->mb_height = (
s->height + v * block_size - 1) / (v * block_size);
1732 s->nb_blocks[0] = 1;
1739 s->lossless ?
"lossless" :
"sequential DCT",
s->rgb ?
"RGB" :
"",
1740 predictor, point_transform, ilv,
s->bits,
s->mjpb_skiptosod,
1741 s->pegasus_rct ?
"PRCT" : (
s->rct ?
"RCT" :
""), nb_components);
1745 for (
i =
s->mjpb_skiptosod;
i > 0;
i--)
1749 for (
i = 0;
i < nb_components;
i++)
1750 s->last_dc[
i] = (4 <<
s->bits);
1752 if (
s->avctx->hwaccel) {
1755 s->raw_scan_buffer_size >= bytes_to_start);
1757 ret =
s->avctx->hwaccel->decode_slice(
s->avctx,
1758 s->raw_scan_buffer + bytes_to_start,
1759 s->raw_scan_buffer_size - bytes_to_start);
1763 }
else if (
s->lossless) {
1765 if (CONFIG_JPEGLS_DECODER &&
s->ls) {
1770 point_transform, ilv)) < 0)
1773 if (
s->rgb ||
s->bayer) {
1779 nb_components)) < 0)
1788 point_transform)) < 0)
1792 prev_shift, point_transform,
1793 mb_bitmask, mb_bitmask_size, reference)) < 0)
1798 if (
s->interlaced &&
1807 s->bottom_field ^= 1;
1825 s->restart_count = 0;
1827 s->restart_interval);
1874 int t_w, t_h, v1, v2;
1882 s->avctx->sample_aspect_ratio.num =
get_bits(&
s->gb, 16);
1883 s->avctx->sample_aspect_ratio.den =
get_bits(&
s->gb, 16);
1884 if (
s->avctx->sample_aspect_ratio.num <= 0
1885 ||
s->avctx->sample_aspect_ratio.den <= 0) {
1886 s->avctx->sample_aspect_ratio.num = 0;
1887 s->avctx->sample_aspect_ratio.den = 1;
1892 "mjpeg: JFIF header found (version: %x.%x) SAR=%d/%d\n",
1894 s->avctx->sample_aspect_ratio.num,
1895 s->avctx->sample_aspect_ratio.den);
1903 if (
len -10 - (t_w * t_h * 3) > 0)
1904 len -= t_w * t_h * 3;
1921 av_log(
s->avctx,
AV_LOG_INFO,
"mjpeg: Adobe header found, transform=%d\n",
s->adobe_transform);
1928 int pegasus_rct =
s->pegasus_rct;
1931 "Pegasus lossless jpeg header found\n");
1953 if (
rgb !=
s->rgb || pegasus_rct !=
s->pegasus_rct) {
1959 s->pegasus_rct = pegasus_rct;
1999 }
else if (
type == 1) {
2011 if (!(
flags & 0x04)) {
2021 int ret, le, ifd_offset, bytes_read;
2054 if ((
s->start_code ==
APP1) && (
len > (0x28 - 8))) {
2077 unsigned nummarkers;
2097 if (nummarkers == 0) {
2100 }
else if (
s->iccnum != 0 && nummarkers !=
s->iccnum) {
2103 }
else if (seqno > nummarkers) {
2109 if (
s->iccnum == 0) {
2114 s->iccnum = nummarkers;
2117 if (
s->iccentries[seqno - 1].data) {
2122 s->iccentries[seqno - 1].length =
len;
2124 if (!
s->iccentries[seqno - 1].data) {
2134 if (
s->iccread >
s->iccnum)
2142 "mjpeg: error, decode_app parser read over the end\n");
2158 for (
i = 0;
i <
len - 2;
i++)
2160 if (
i > 0 && cbuf[
i - 1] ==
'\n')
2169 if (!strncmp(cbuf,
"AVID", 4)) {
2171 }
else if (!strcmp(cbuf,
"CS=ITU601"))
2173 else if ((!strncmp(cbuf,
"Intel(R) JPEG Library, version 1", 32) &&
s->avctx->codec_tag) ||
2174 (!strncmp(cbuf,
"Metasoft MJPEG Codec", 20)))
2176 else if (!strcmp(cbuf,
"MULTISCOPE II")) {
2177 s->avctx->sample_aspect_ratio = (
AVRational) { 1, 2 };
2189 static int find_marker(
const uint8_t **pbuf_ptr,
const uint8_t *buf_end)
2191 const uint8_t *buf_ptr;
2196 buf_ptr = *pbuf_ptr;
2197 while (buf_end - buf_ptr > 1) {
2200 if ((v == 0xff) && (v2 >=
SOF0) && (v2 <=
COM) && buf_ptr < buf_end) {
2209 ff_dlog(
NULL,
"find_marker skipped %d bytes\n", skipped);
2210 *pbuf_ptr = buf_ptr;
2215 const uint8_t **buf_ptr,
const uint8_t *buf_end,
2216 const uint8_t **unescaped_buf_ptr,
2217 int *unescaped_buf_size)
2228 const uint8_t *
src = *buf_ptr;
2229 const uint8_t *ptr =
src;
2230 uint8_t *dst =
s->buffer;
2232 #define copy_data_segment(skip) do { \
2233 ptrdiff_t length = (ptr - src) - (skip); \
2235 memcpy(dst, src, length); \
2245 while (ptr < buf_end) {
2246 uint8_t x = *(ptr++);
2250 while (ptr < buf_end && x == 0xff) {
2265 if (x < RST0 || x >
RST7) {
2275 #undef copy_data_segment
2277 *unescaped_buf_ptr =
s->buffer;
2278 *unescaped_buf_size = dst -
s->buffer;
2279 memset(
s->buffer + *unescaped_buf_size, 0,
2283 (buf_end - *buf_ptr) - (dst -
s->buffer));
2285 const uint8_t *
src = *buf_ptr;
2286 uint8_t *dst =
s->buffer;
2292 while (
src + t < buf_end) {
2293 uint8_t x =
src[t++];
2295 while ((
src + t < buf_end) && x == 0xff)
2308 uint8_t x =
src[
b++];
2310 if (x == 0xFF &&
b < t) {
2322 *unescaped_buf_ptr = dst;
2323 *unescaped_buf_size = (bit_count + 7) >> 3;
2324 memset(
s->buffer + *unescaped_buf_size, 0,
2327 *unescaped_buf_ptr = *buf_ptr;
2328 *unescaped_buf_size = buf_end - *buf_ptr;
2338 if (
s->iccentries) {
2339 for (
i = 0;
i <
s->iccnum;
i++)
2349 int *got_frame,
const AVPacket *avpkt,
2350 const uint8_t *buf,
const int buf_size)
2353 const uint8_t *buf_end, *buf_ptr;
2354 const uint8_t *unescaped_buf_ptr;
2356 int unescaped_buf_size;
2365 s->buf_size = buf_size;
2369 s->adobe_transform = -1;
2376 buf_end = buf + buf_size;
2377 while (buf_ptr < buf_end) {
2381 &unescaped_buf_size);
2385 }
else if (unescaped_buf_size > INT_MAX / 8) {
2387 "MJPEG packet 0x%x too big (%d/%d), corrupt data?\n",
2427 if (!CONFIG_JPEGLS_DECODER &&
2451 s->restart_interval = 0;
2452 s->restart_count = 0;
2453 s->raw_image_buffer = buf_ptr;
2454 s->raw_image_buffer_size = buf_end - buf_ptr;
2502 if (!CONFIG_JPEGLS_DECODER ||
2511 s->progressive &&
s->cur_scan &&
s->got_picture)
2514 if (!
s->got_picture) {
2516 "Found EOI before any SOF, ignoring\n");
2519 if (
s->interlaced) {
2520 s->bottom_field ^= 1;
2522 if (
s->bottom_field == !
s->interlace_polarity)
2527 goto the_end_no_picture;
2529 if (
s->avctx->hwaccel) {
2530 ret =
s->avctx->hwaccel->end_frame(
s->avctx);
2551 s->raw_scan_buffer = buf_ptr;
2552 s->raw_scan_buffer_size = buf_end - buf_ptr;
2579 "mjpeg: unsupported coding type (%x)\n",
start_code);
2587 "marker parser used %d bytes (%d bits)\n",
2590 if (
s->got_picture &&
s->cur_scan) {
2623 for (p = 0; p<
s->nb_components; p++) {
2624 uint8_t *
line =
s->picture_ptr->data[p];
2627 if (!
s->upscale_h[p])
2633 if (
s->upscale_v[p] == 1)
2636 for (
i = 0;
i <
h;
i++) {
2637 if (
s->upscale_h[p] == 1) {
2638 if (is16bit) ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 2];
2646 }
else if (
s->upscale_h[p] == 2) {
2648 ((uint16_t*)
line)[
w - 1] = ((uint16_t*)
line)[(
w - 1) / 3];
2650 ((uint16_t*)
line)[
w - 2] = ((uint16_t*)
line)[
w - 1];
2660 line +=
s->linesize[p];
2685 for (p = 0; p <
s->nb_components; p++) {
2689 if (!
s->upscale_v[p])
2695 dst = &((uint8_t *)
s->picture_ptr->data[p])[(
h - 1) *
s->linesize[p]];
2697 uint8_t *
src1 = &((uint8_t *)
s->picture_ptr->data[p])[
i *
s->upscale_v[p] / (
s->upscale_v[p] + 1) *
s->linesize[p]];
2698 uint8_t *
src2 = &((uint8_t *)
s->picture_ptr->data[p])[(
i + 1) *
s->upscale_v[p] / (
s->upscale_v[p] + 1) *
s->linesize[p]];
2700 memcpy(dst,
src1,
w);
2705 dst -=
s->linesize[p];
2709 if (
s->flipped && !
s->rgb) {
2726 int w =
s->picture_ptr->width;
2727 int h =
s->picture_ptr->height;
2729 for (
i=0;
i<
h;
i++) {
2734 +
s->picture_ptr->linesize[
index]*
i;
2736 for (j=0; j<
w; j++) {
2738 int r = dst[0][j] * k;
2739 int g = dst[1][j] * k;
2740 int b = dst[2][j] * k;
2741 dst[0][j] =
g*257 >> 16;
2742 dst[1][j] =
b*257 >> 16;
2743 dst[2][j] =
r*257 >> 16;
2749 int w =
s->picture_ptr->width;
2750 int h =
s->picture_ptr->height;
2752 for (
i=0;
i<
h;
i++) {
2757 +
s->picture_ptr->linesize[
index]*
i;
2759 for (j=0; j<
w; j++) {
2761 int r = (255 - dst[0][j]) * k;
2762 int g = (128 - dst[1][j]) * k;
2763 int b = (128 - dst[2][j]) * k;
2764 dst[0][j] =
r*257 >> 16;
2765 dst[1][j] = (
g*257 >> 16) + 128;
2766 dst[2][j] = (
b*257 >> 16) + 128;
2775 stereo->
type =
s->stereo3d->type;
2776 stereo->
flags =
s->stereo3d->flags;
2781 if (
s->iccnum != 0 &&
s->iccnum ==
s->iccread) {
2788 for (
i = 0;
i <
s->iccnum;
i++)
2789 total_size +=
s->iccentries[
i].length;
2798 for (
i = 0;
i <
s->iccnum;
i++) {
2799 memcpy(sd->
data +
offset,
s->iccentries[
i].data,
s->iccentries[
i].length);
2806 int orientation = strtol(
value, &endptr, 0);
2811 if (orientation >= 2 && orientation <= 8) {
2822 switch (orientation) {
2869 return buf_ptr - buf;
2887 if (
s->interlaced &&
s->bottom_field == !
s->interlace_polarity &&
s->got_picture && !avctx->
frame_num) {
2893 s->picture_ptr =
NULL;
2894 }
else if (
s->picture_ptr)
2902 s->ljpeg_buffer_size = 0;
2904 for (
i = 0;
i < 3;
i++) {
2905 for (j = 0; j < 4; j++)
2927 s->smv_next_frame = 0;
2931 #if CONFIG_MJPEG_DECODER
2932 #define OFFSET(x) offsetof(MJpegDecodeContext, x)
2933 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2935 {
"extern_huff",
"Use external huffman table.",
2940 static const AVClass mjpegdec_class = {
2959 .p.priv_class = &mjpegdec_class,
2965 #if CONFIG_MJPEG_NVDEC_HWACCEL
2968 #if CONFIG_MJPEG_VAAPI_HWACCEL
2975 #if CONFIG_THP_DECODER
2992 #if CONFIG_SMVJPEG_DECODER
3006 s->smv_next_frame = (
s->smv_next_frame + 1) %
s->smv_frames_per_jpeg;
3008 if (
s->smv_next_frame == 0)
3020 if (
s->smv_next_frame > 0) {
3026 smv_process_frame(avctx,
frame);
3043 frame->pkt_dts = pkt_dts;
3051 smv_process_frame(avctx,
frame);
3056 .
p.
name =
"smvjpeg",
#define FF_ALLOCZ_TYPED_ARRAY(p, nelem)
void av_packet_unref(AVPacket *pkt)
Wipe the packet.
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
int ff_decode_get_packet(AVCodecContext *avctx, AVPacket *pkt)
Called by decoders to get the next packet for decoding.
#define AV_LOG_WARNING
Something somehow does not look correct.
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
AVPixelFormat
Pixel format.
#define AV_EF_EXPLODE
abort decoding on minor error detection
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static unsigned int show_bits_long(GetBitContext *s, int n)
Show 0-32 bits.
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
enum AVColorSpace colorspace
YUV colorspace type.
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
static av_always_inline void mjpeg_copy_block(MJpegDecodeContext *s, uint8_t *dst, const uint8_t *src, int linesize, int lowres)
The official guide to swscale for confused that is
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, size_t size)
Add a new side data to a frame.
static void decode_flush(AVCodecContext *avctx)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
#define GET_VLC(code, name, gb, table, bits, max_depth)
If the vlc code is invalid and max_depth=1, then no bits will be removed.
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
const FFCodec ff_smvjpeg_decoder
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
#define se(name, range_min, range_max)
static int get_bits_count(const GetBitContext *s)
static void init_idct(AVCodecContext *avctx)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
#define AV_PIX_FMT_YUVA420P16
@ AVCOL_RANGE_JPEG
Full range content.
const FFCodec ff_mjpeg_decoder
#define FF_PROFILE_MJPEG_JPEG_LS
void av_display_matrix_flip(int32_t matrix[9], int hflip, int vflip)
Flip the input matrix horizontally and/or vertically.
enum AVFieldOrder field_order
Field order.
static int mjpeg_decode_dc(MJpegDecodeContext *s, int dc_index)
int step
Number of elements between 2 horizontally consecutive pixels.
#define AV_DICT_IGNORE_SUFFIX
Return first entry in a dictionary whose first part corresponds to the search key,...
const uint8_t ff_mjpeg_val_dc[]
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
void av_display_rotation_set(int32_t matrix[9], double angle)
Initialize a transformation matrix describing a pure clockwise rotation by the specified angle (in de...
@ AV_FRAME_DATA_DISPLAYMATRIX
This side data contains a 3x3 transformation matrix describing an affine transformation that needs to...
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
#define UPDATE_CACHE(name, gb)
const uint8_t ff_mjpeg_bits_ac_chrominance[]
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
av_cold void ff_idctdsp_init(IDCTDSPContext *c, AVCodecContext *avctx)
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define GET_CACHE(name, gb)
static void skip_bits(GetBitContext *s, int n)
av_cold void ff_permute_scantable(uint8_t dst[64], const uint8_t src[64], const uint8_t permutation[64])
@ AV_STEREO3D_SIDEBYSIDE
Views are next to each other.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
int ff_mjpeg_decode_dht(MJpegDecodeContext *s)
static int ljpeg_decode_yuv_scan(MJpegDecodeContext *s, int predictor, int point_transform, int nb_components)
static void shift_output(MJpegDecodeContext *s, uint8_t *ptr, int linesize)
AVCodec p
The public AVCodec.
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
const struct AVCodec * codec
av_cold int ff_mjpeg_decode_init(AVCodecContext *avctx)
enum AVDiscard skip_frame
Skip decoding for selected frames.
@ AV_STEREO3D_2D
Video is not stereoscopic (and metadata has to be there).
#define AV_PIX_FMT_YUVA444P16
#define FF_PROFILE_MJPEG_HUFFMAN_BASELINE_DCT
int ff_mjpeg_decode_frame_from_buf(AVCodecContext *avctx, AVFrame *frame, int *got_frame, const AVPacket *avpkt, const uint8_t *buf, const int buf_size)
static int mjpeg_decode_com(MJpegDecodeContext *s)
static int init_default_huffman_tables(MJpegDecodeContext *s)
int flags
AV_CODEC_FLAG_*.
static double val(void *priv, double ch)
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
#define AV_PIX_FMT_GRAY16
#define ss(width, name, subs,...)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
const AVProfile ff_mjpeg_profiles[]
int ff_exif_decode_ifd(void *logctx, GetByteContext *gbytes, int le, int depth, AVDictionary **metadata)
static int aligned(int val)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int decode_dc_progressive(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, uint16_t *quant_matrix, int Al)
#define AV_PIX_FMT_YUV422P16
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
#define FF_CODEC_PROPERTY_LOSSLESS
#define FF_PROFILE_MJPEG_HUFFMAN_PROGRESSIVE_DCT
static const uint16_t mask[17]
AVDictionaryEntry * av_dict_get(const AVDictionary *m, const char *key, const AVDictionaryEntry *prev, int flags)
Get a dictionary entry with matching key.
static int handle_rstn(MJpegDecodeContext *s, int nb_components)
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define CLOSE_READER(name, gb)
#define FF_CODEC_DECODE_CB(func)
@ AV_STEREO3D_LINES
Views are packed per line, as if interlaced.
av_cold void ff_blockdsp_init(BlockDSPContext *c)
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
static void parse_avid(MJpegDecodeContext *s, uint8_t *buf, int len)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
#define FF_PROFILE_MJPEG_HUFFMAN_LOSSLESS
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
int ff_jpegls_decode_picture(MJpegDecodeContext *s, int near, int point_transform, int ilv)
int(* init)(AVBSFContext *ctx)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static enum AVPixelFormat pix_fmts[]
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define AV_PIX_FMT_YUV420P16
static void reset_icc_profile(MJpegDecodeContext *s)
av_cold int ff_mjpeg_decode_end(AVCodecContext *avctx)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define CODEC_LONG_NAME(str)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
int flags
Additional information about the frame packing.
@ AVDISCARD_ALL
discard all
#define AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_RGBA64
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
#define PTRDIFF_SPECIFIER
static void mjpeg_idct_scan_progressive_ac(MJpegDecodeContext *s)
static void copy_block2(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Rational number (pair of numerator and denominator).
int ff_mjpeg_decode_dqt(MJpegDecodeContext *s)
struct AVCodecInternal * internal
Private context used for internal data.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
const char * av_default_item_name(void *ptr)
Return the context name.
static unsigned int get_bits1(GetBitContext *s)
@ AV_PICTURE_TYPE_I
Intra.
@ AV_FRAME_DATA_ICC_PROFILE
The data contains an ICC profile as an opaque octet buffer following the format described by ISO 1507...
#define LAST_SKIP_BITS(name, gb, num)
static int mjpeg_decode_scan(MJpegDecodeContext *s, int nb_components, int Ah, int Al, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
static int decode_block_refinement(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
static int mjpeg_decode_scan_progressive_ac(MJpegDecodeContext *s, int ss, int se, int Ah, int Al)
const uint8_t ff_mjpeg_val_ac_chrominance[]
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static av_always_inline int bytestream2_tell(GetByteContext *g)
#define copy_data_segment(skip)
int lowres
low resolution decoding, 1-> 1/2 size, 2->1/4 size
const OptionDef options[]
static void copy_mb(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4])
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static int ljpeg_decode_rgb_scan(MJpegDecodeContext *s, int nb_components, int predictor, int point_transform)
const uint8_t ff_mjpeg_val_ac_luminance[]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
int ff_jpegls_decode_lse(MJpegDecodeContext *s)
Decode LSE block with initialization parameters.
int ff_mjpeg_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static int decode_block_progressive(MJpegDecodeContext *s, int16_t *block, uint8_t *last_nnz, int ac_index, uint16_t *quant_matrix, int ss, int se, int Al, int *EOBRUN)
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
int ff_mjpeg_decode_sos(MJpegDecodeContext *s, const uint8_t *mb_bitmask, int mb_bitmask_size, const AVFrame *reference)
const uint8_t ff_mjpeg_bits_ac_luminance[]
#define FF_CODEC_CAP_EXPORTS_CROPPING
The decoder sets the cropping fields in the output frames manually.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
#define FF_CODEC_CAP_SKIP_FRAME_FILL_PARAM
The decoder extracts and fills its parameters even if the frame is skipped due to the skip_frame sett...
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
#define OPEN_READER(name, gb)
int64_t dts
Decompression timestamp in AVStream->time_base units; the time at which the packet is decompressed.
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static int get_xbits(GetBitContext *s, int n)
Read MPEG-1 dc-style VLC (sign bit + mantissa with no MSB).
void av_dict_free(AVDictionary **pm)
Free all the memory allocated for an AVDictionary struct and all keys and values.
#define HWACCEL_NVDEC(codec)
static void predictor(uint8_t *src, ptrdiff_t size)
static int find_marker(const uint8_t **pbuf_ptr, const uint8_t *buf_end)
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
@ AV_PIX_FMT_VAAPI
Hardware acceleration through VA-API, data[3] contains a VASurfaceID.
#define AV_LOG_INFO
Standard information.
const FFCodec ff_thp_decoder
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel layout
static void copy_block4(uint8_t *dst, const uint8_t *src, ptrdiff_t dstStride, ptrdiff_t srcStride, int h)
static int decode_block(MJpegDecodeContext *s, int16_t *block, int component, int dc_index, int ac_index, uint16_t *quant_matrix)
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
#define FF_PROFILE_MJPEG_HUFFMAN_EXTENDED_SEQUENTIAL_DCT
@ AV_STEREO3D_TOPBOTTOM
Views are on top of each other.
static int mjpeg_decode_dri(MJpegDecodeContext *s)
AVPacket * in_pkt
This packet is used to hold the packet given to decoders implementing the .decode API; it is unused b...
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
#define FF_DEBUG_STARTCODE
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
#define FF_CODEC_CAP_SETS_PKT_DTS
Decoders marked with FF_CODEC_CAP_SETS_PKT_DTS want to set AVFrame.pkt_dts manually.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
void * av_calloc(size_t nmemb, size_t size)
void ff_free_vlc(VLC *vlc)
#define FF_CODEC_CAP_ICC_PROFILES
Codec supports embedded ICC profiles (AV_FRAME_DATA_ICC_PROFILE).
const uint8_t ff_zigzag_direct[64]
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
int64_t frame_num
Frame counter, set by libavcodec.
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
static const float pred[4]
AVStereo3D * av_stereo3d_alloc(void)
Allocate an AVStereo3D structure and set its fields to default values.
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
enum AVStereo3DType type
How views are packed within the video.
static const uint8_t * align_get_bits(GetBitContext *s)
@ LSE
JPEG-LS extension parameters.
#define AV_INPUT_BUFFER_PADDING_SIZE
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
int ff_mjpeg_find_marker(MJpegDecodeContext *s, const uint8_t **buf_ptr, const uint8_t *buf_end, const uint8_t **unescaped_buf_ptr, int *unescaped_buf_size)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option keep it simple and lowercase description are in without and describe what they for example set the foo of the bar offset is the offset of the field in your see the OFFSET() macro
main external API structure.
#define FF_CODEC_RECEIVE_FRAME_CB(func)
#define SHOW_UBITS(name, gb, num)
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
@ AVCHROMA_LOC_CENTER
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
int ff_tdecode_header(GetByteContext *gb, int *le, int *ifd_offset)
Decodes a TIFF header from the input bytestream and sets the endianness in *le and the offset to the ...
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
const uint8_t ff_mjpeg_bits_dc_chrominance[]
int ff_mjpeg_decode_sof(MJpegDecodeContext *s)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
int coded_width
Bitstream width / height, may be different from width/height e.g.
@ AV_PIX_FMT_GRAY16LE
Y , 16bpp, little-endian.
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
static int mjpeg_decode_app(MJpegDecodeContext *s)
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
#define avpriv_request_sample(...)
Structure to hold side data for an AVFrame.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
const FF_VISIBILITY_PUSH_HIDDEN uint8_t ff_mjpeg_bits_dc_luminance[]
int ff_mjpeg_build_vlc(VLC *vlc, const uint8_t *bits_table, const uint8_t *val_table, int is_ac, void *logctx)
This structure stores compressed data.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
int av_dict_copy(AVDictionary **dst, const AVDictionary *src, int flags)
Copy entries from one AVDictionary struct into another.
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define HWACCEL_VAAPI(codec)
@ AV_FIELD_BB
Bottom coded first, bottom displayed first.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define flags(name, subs,...)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
static const SheerTable rgb[2]
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define MKTAG(a, b, c, d)
Stereo 3D type: this structure describes how two videos are packed within a single video surface,...
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_RB24
#define PREDICT(ret, topleft, top, left, predictor)
static void BS_FUNC() skip(BSCTX *bc, unsigned int n)
Skip n bits in the buffer.
#define av_fourcc2str(fourcc)