Go to the documentation of this file.
29 #define LONG_BITSTREAM_READER
31 #include "config_components.h"
47 static void permute(uint8_t *dst,
const uint8_t *
src,
const uint8_t permutation[64])
50 for (
i = 0;
i < 64;
i++)
51 dst[
i] = permutation[
src[
i]];
54 #define ALPHA_SHIFT_16_TO_10(alpha_val) (alpha_val >> 6)
55 #define ALPHA_SHIFT_8_TO_10(alpha_val) ((alpha_val << 2) | (alpha_val >> 6))
56 #define ALPHA_SHIFT_16_TO_12(alpha_val) (alpha_val >> 4)
57 #define ALPHA_SHIFT_8_TO_12(alpha_val) ((alpha_val << 4) | (alpha_val >> 4))
60 const int num_bits,
const int decode_precision) {
61 const int mask = (1 << num_bits) - 1;
62 int i, idx,
val, alpha_val;
78 alpha_val = (alpha_val +
val) &
mask;
80 if (decode_precision == 10) {
86 if (decode_precision == 10) {
92 if (idx >= num_coeffs)
98 if (idx +
val > num_coeffs)
99 val = num_coeffs - idx;
100 if (num_bits == 16) {
101 for (
i = 0;
i <
val;
i++) {
102 if (decode_precision == 10) {
109 for (
i = 0;
i <
val;
i++) {
110 if (decode_precision == 10) {
117 }
while (idx < num_coeffs);
123 if (num_bits == 16) {
133 if (num_bits == 16) {
144 uint8_t idct_permutation[64];
149 case MKTAG(
'a',
'p',
'c',
'o'):
152 case MKTAG(
'a',
'p',
'c',
's'):
155 case MKTAG(
'a',
'p',
'c',
'n'):
158 case MKTAG(
'a',
'p',
'c',
'h'):
161 case MKTAG(
'a',
'p',
'4',
'h'):
165 case MKTAG(
'a',
'p',
'4',
'x'):
175 av_log(avctx,
AV_LOG_DEBUG,
"Auto bitdepth precision. Use 10b decoding based on codec tag.\n");
177 av_log(avctx,
AV_LOG_DEBUG,
"Auto bitdepth precision. Use 12b decoding based on codec tag.\n");
188 ctx->prodsp.idct_permutation_type);
215 ff_dlog(avctx,
"header size %d\n", hdr_size);
216 if (hdr_size > data_size) {
240 ctx->frame_type = (buf[12] >> 2) & 3;
241 ctx->alpha_info = buf[17] & 0xf;
243 if (
ctx->alpha_info > 2) {
249 ff_dlog(avctx,
"frame type %d\n",
ctx->frame_type);
251 if (
ctx->frame_type == 0) {
252 ctx->scan =
ctx->progressive_scan;
254 ctx->scan =
ctx->interlaced_scan;
255 ctx->frame->interlaced_frame = 1;
256 ctx->frame->top_field_first =
ctx->frame_type == 1;
259 if (
ctx->alpha_info) {
274 #define HWACCEL_MAX (CONFIG_PRORES_VIDEOTOOLBOX_HWACCEL)
280 #if CONFIG_PRORES_VIDEOTOOLBOX_HWACCEL
283 *fmtp++ =
ctx->pix_fmt;
292 ctx->frame->color_primaries = buf[14];
293 ctx->frame->color_trc = buf[15];
294 ctx->frame->colorspace = buf[16];
302 if(buf + data_size - ptr < 64) {
309 memset(
ctx->qmat_luma, 4, 64);
313 if(buf + data_size - ptr < 64) {
317 permute(
ctx->qmat_chroma,
ctx->prodsp.idct_permutation, ptr);
319 memcpy(
ctx->qmat_chroma,
ctx->qmat_luma, 64);
328 int i, hdr_size, slice_count;
329 unsigned pic_data_size;
330 int log2_slice_mb_width, log2_slice_mb_height;
331 int slice_mb_count, mb_x, mb_y;
332 const uint8_t *data_ptr, *index_ptr;
334 hdr_size = buf[0] >> 3;
335 if (hdr_size < 8 || hdr_size > buf_size) {
340 pic_data_size =
AV_RB32(buf + 1);
341 if (pic_data_size > buf_size) {
346 log2_slice_mb_width = buf[7] >> 4;
347 log2_slice_mb_height = buf[7] & 0xF;
348 if (log2_slice_mb_width > 3 || log2_slice_mb_height) {
350 1 << log2_slice_mb_width, 1 << log2_slice_mb_height);
354 ctx->mb_width = (avctx->
width + 15) >> 4;
356 ctx->mb_height = (avctx->
height + 31) >> 5;
358 ctx->mb_height = (avctx->
height + 15) >> 4;
362 slice_count =
ctx->mb_height * ((
ctx->mb_width >> log2_slice_mb_width) +
365 if (
ctx->slice_count != slice_count || !
ctx->slices) {
367 ctx->slice_count = 0;
371 ctx->slice_count = slice_count;
377 if (hdr_size + slice_count*2 > buf_size) {
383 index_ptr = buf + hdr_size;
384 data_ptr = index_ptr + slice_count*2;
386 slice_mb_count = 1 << log2_slice_mb_width;
390 for (
i = 0;
i < slice_count;
i++) {
393 slice->
data = data_ptr;
394 data_ptr +=
AV_RB16(index_ptr +
i*2);
396 while (
ctx->mb_width - mb_x < slice_mb_count)
397 slice_mb_count >>= 1;
409 mb_x += slice_mb_count;
410 if (mb_x ==
ctx->mb_width) {
411 slice_mb_count = 1 << log2_slice_mb_width;
415 if (data_ptr > buf + buf_size) {
421 if (mb_x || mb_y !=
ctx->mb_height) {
423 mb_y,
ctx->mb_height);
427 return pic_data_size;
430 #define DECODE_CODEWORD(val, codebook, SKIP) \
432 unsigned int rice_order, exp_order, switch_bits; \
433 unsigned int q, buf, bits; \
435 UPDATE_CACHE(re, gb); \
436 buf = GET_CACHE(re, gb); \
439 switch_bits = codebook & 3; \
440 rice_order = codebook >> 5; \
441 exp_order = (codebook >> 2) & 7; \
443 q = 31 - av_log2(buf); \
445 if (q > switch_bits) { \
446 bits = exp_order - switch_bits + (q<<1); \
447 if (bits > FFMIN(MIN_CACHE_BITS, 31)) \
448 return AVERROR_INVALIDDATA; \
449 val = SHOW_UBITS(re, gb, bits) - (1 << exp_order) + \
450 ((switch_bits + 1) << rice_order); \
451 SKIP(re, gb, bits); \
452 } else if (rice_order) { \
453 SKIP_BITS(re, gb, q+1); \
454 val = (q << rice_order) + SHOW_UBITS(re, gb, rice_order); \
455 SKIP(re, gb, rice_order); \
462 #define TOSIGNED(x) (((x) >> 1) ^ (-((x) & 1)))
464 #define FIRST_DC_CB 0xB8
466 static const uint8_t
dc_codebook[7] = { 0x04, 0x28, 0x28, 0x4D, 0x4D, 0x70, 0x70};
469 int blocks_per_slice)
484 for (
i = 1;
i < blocks_per_slice;
i++,
out += 64) {
488 prev_dc += (((
code + 1) >> 1) ^ sign) - sign;
496 static const uint8_t
run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C };
497 static const uint8_t
lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28, 0x28, 0x28, 0x28, 0x4C };
500 int16_t *
out,
int blocks_per_slice)
503 int block_mask, sign;
506 int log2_block_count =
av_log2(blocks_per_slice);
513 max_coeffs = 64 << log2_block_count;
514 block_mask = blocks_per_slice - 1;
516 for (
pos = block_mask;;) {
523 if (
pos >= max_coeffs) {
531 i =
pos >> log2_block_count;
535 out[((
pos & block_mask) << 6) +
ctx->scan[
i]] = ((
level ^ sign) - sign);
543 uint16_t *dst,
int dst_stride,
544 const uint8_t *buf,
unsigned buf_size,
551 int i, blocks_per_slice = slice->
mb_count<<2;
554 for (
i = 0;
i < blocks_per_slice;
i++)
555 ctx->bdsp.clear_block(blocks+(
i<<6));
566 ctx->prodsp.idct_put(dst, dst_stride,
block+(0<<6), qmat);
567 ctx->prodsp.idct_put(dst +8, dst_stride,
block+(1<<6), qmat);
568 ctx->prodsp.idct_put(dst+4*dst_stride , dst_stride,
block+(2<<6), qmat);
569 ctx->prodsp.idct_put(dst+4*dst_stride+8, dst_stride,
block+(3<<6), qmat);
577 uint16_t *dst,
int dst_stride,
578 const uint8_t *buf,
unsigned buf_size,
579 const int16_t *qmat,
int log2_blocks_per_mb)
585 int i, j, blocks_per_slice = slice->
mb_count << log2_blocks_per_mb;
588 for (
i = 0;
i < blocks_per_slice;
i++)
589 ctx->bdsp.clear_block(blocks+(
i<<6));
600 for (j = 0; j < log2_blocks_per_mb; j++) {
601 ctx->prodsp.idct_put(dst, dst_stride,
block+(0<<6), qmat);
602 ctx->prodsp.idct_put(dst+4*dst_stride, dst_stride,
block+(1<<6), qmat);
614 uint16_t *dst,
int dst_stride,
615 const uint8_t *buf,
int buf_size,
616 int blocks_per_slice)
623 for (
i = 0;
i < blocks_per_slice<<2;
i++)
624 ctx->bdsp.clear_block(blocks+(
i<<6));
628 if (
ctx->alpha_info == 2) {
629 ctx->unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 16);
631 ctx->unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 8);
636 for (
i = 0;
i < 16;
i++) {
637 memcpy(dst,
block, 16 * blocks_per_slice *
sizeof(*dst));
638 dst += dst_stride >> 1;
639 block += 16 * blocks_per_slice;
647 const uint8_t *buf = slice->
data;
649 int i, hdr_size, qscale, log2_chroma_blocks_per_mb;
650 int luma_stride, chroma_stride;
651 int y_data_size, u_data_size, v_data_size, a_data_size,
offset;
652 uint8_t *dest_y, *dest_u, *dest_v;
657 uint16_t val_no_chroma;
664 hdr_size = buf[0] >> 3;
665 qscale =
av_clip(buf[1], 1, 224);
666 qscale = qscale > 128 ? qscale - 96 << 2: qscale;
667 y_data_size =
AV_RB16(buf + 2);
668 u_data_size =
AV_RB16(buf + 4);
669 v_data_size = slice->
data_size - y_data_size - u_data_size - hdr_size;
670 if (hdr_size > 7) v_data_size =
AV_RB16(buf + 6);
671 a_data_size = slice->
data_size - y_data_size - u_data_size -
672 v_data_size - hdr_size;
674 if (y_data_size < 0 || u_data_size < 0 || v_data_size < 0
675 || hdr_size+y_data_size+u_data_size+v_data_size > slice->
data_size){
682 for (
i = 0;
i < 64;
i++) {
683 qmat_luma_scaled [
i] =
ctx->qmat_luma [
i] * qscale;
684 qmat_chroma_scaled[
i] =
ctx->qmat_chroma[
i] * qscale;
687 if (
ctx->frame_type == 0) {
691 luma_stride = pic->
linesize[0] << 1;
692 chroma_stride = pic->
linesize[1] << 1;
698 log2_chroma_blocks_per_mb = 2;
701 log2_chroma_blocks_per_mb = 1;
706 dest_u = pic->
data[1] + (slice->
mb_y << 4) * chroma_stride + (slice->
mb_x << mb_x_shift);
707 dest_v = pic->
data[2] + (slice->
mb_y << 4) * chroma_stride + (slice->
mb_x << mb_x_shift);
709 if (
ctx->frame_type &&
ctx->first_field ^
ctx->frame->top_field_first) {
717 buf, y_data_size, qmat_luma_scaled);
723 buf + y_data_size, u_data_size,
724 qmat_chroma_scaled, log2_chroma_blocks_per_mb);
729 buf + y_data_size + u_data_size, v_data_size,
730 qmat_chroma_scaled, log2_chroma_blocks_per_mb);
735 size_t mb_max_x = slice->
mb_count << (mb_x_shift - 1);
740 val_no_chroma = 511 * 4;
742 for (
i = 0;
i < 16; ++
i)
743 for (j = 0; j < mb_max_x; ++j) {
744 *(uint16_t*)(dest_u + (
i * chroma_stride) + (j << 1)) = val_no_chroma;
745 *(uint16_t*)(dest_v + (
i * chroma_stride) + (j << 1)) = val_no_chroma;
750 if (
ctx->alpha_info && pic->
data[3] && a_data_size) {
753 buf + y_data_size + u_data_size + v_data_size,
769 for (
i = 0;
i <
ctx->slice_count;
i++)
774 if (error < ctx->slice_count)
777 return ctx->slices[0].ret;
784 const uint8_t *buf = avpkt->
data;
785 int buf_size = avpkt->
size;
786 int frame_hdr_size, pic_size,
ret;
795 ctx->frame->key_frame = 1;
796 ctx->first_field = 1;
802 if (frame_hdr_size < 0)
803 return frame_hdr_size;
805 buf += frame_hdr_size;
806 buf_size -= frame_hdr_size;
838 buf_size -= pic_size;
840 if (
ctx->frame_type && buf_size > 0 &&
ctx->first_field) {
841 ctx->first_field = 0;
885 #if CONFIG_PRORES_VIDEOTOOLBOX_HWACCEL
static void error(const char *err)
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
#define AV_LOG_WARNING
Something somehow does not look correct.
#define DECODE_CODEWORD(val, codebook, SKIP)
AVPixelFormat
Pixel format.
#define FF_PROFILE_PRORES_XQ
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
#define ff_thread_get_format
const AVProfile ff_prores_profiles[]
av_cold int ff_proresdsp_init(ProresDSPContext *dsp, AVCodecContext *avctx)
This structure describes decoded (raw) audio or video data.
#define UPDATE_CACHE(name, gb)
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
#define AV_PIX_FMT_YUVA422P10
const uint8_t ff_prores_progressive_scan[64]
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
AVCodec p
The public AVCodec.
enum AVPixelFormat pix_fmt
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have so the codec calls ff_thread_report set FF_CODEC_CAP_ALLOCATE_PROGRESS in AVCodec caps_internal and use ff_thread_get_buffer() to allocate frames. The frames must then be freed with ff_thread_release_buffer(). Otherwise decode directly into the user-supplied frames. Call ff_thread_report_progress() after some part of the current picture has decoded. A good place to put this is where draw_horiz_band() is called - add this if it isn 't called anywhere
int flags
AV_CODEC_FLAG_*.
static double val(void *priv, double ch)
#define FF_PROFILE_PRORES_LT
#define ALPHA_SHIFT_8_TO_10(alpha_val)
#define AV_PIX_FMT_YUV444P10
static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits, const int decode_precision)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
const FFCodec ff_prores_decoder
static const uint16_t mask[17]
#define CLOSE_READER(name, gb)
static int decode_picture_header(AVCodecContext *avctx, const uint8_t *buf, const int buf_size)
#define FF_CODEC_DECODE_CB(func)
av_cold void ff_blockdsp_init(BlockDSPContext *c)
static enum AVPixelFormat pix_fmt
static int decode_picture(AVCodecContext *avctx)
#define SHOW_SBITS(name, gb, num)
int(* init)(AVBSFContext *ctx)
static void permute(uint8_t *dst, const uint8_t *src, const uint8_t permutation[64])
#define LOCAL_ALIGNED_16(t, v,...)
#define FF_PROFILE_UNKNOWN
static enum AVPixelFormat pix_fmts[]
#define AV_PIX_FMT_YUVA444P12
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define SKIP_BITS(name, gb, num)
const uint8_t ff_prores_interlaced_scan[64]
#define CODEC_LONG_NAME(str)
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
#define FF_DECODE_ERROR_INVALID_BITSTREAM
#define LOCAL_ALIGNED_32(t, v,...)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static av_always_inline int decode_ac_coeffs(AVCodecContext *avctx, GetBitContext *gb, int16_t *out, int blocks_per_slice)
int(* end_frame)(AVCodecContext *avctx)
Called at the end of each frame or field picture.
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
static const uint8_t run_to_cb[16]
#define LAST_SKIP_BITS(name, gb, num)
#define UPDATE_THREAD_CONTEXT(func)
#define AV_PIX_FMT_YUV422P10
static int decode_slice_chroma(AVCodecContext *avctx, SliceContext *slice, uint16_t *dst, int dst_stride, const uint8_t *buf, unsigned buf_size, const int16_t *qmat, int log2_blocks_per_mb)
static int decode_slice_luma(AVCodecContext *avctx, SliceContext *slice, uint16_t *dst, int dst_stride, const uint8_t *buf, unsigned buf_size, const int16_t *qmat)
static const uint8_t dc_codebook[7]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
#define FF_PROFILE_PRORES_HQ
#define FF_PROFILE_PRORES_STANDARD
#define AV_PIX_FMT_YUV422P12
#define ALPHA_SHIFT_16_TO_12(alpha_val)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
#define AV_PIX_FMT_YUV444P12
#define ALPHA_SHIFT_8_TO_12(alpha_val)
int skip_alpha
Skip processing alpha if supported by codec.
static av_cold int decode_close(AVCodecContext *avctx)
static int decode_frame_header(ProresContext *ctx, const uint8_t *buf, const int data_size, AVCodecContext *avctx)
#define OPEN_READER(name, gb)
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
#define AV_PIX_FMT_YUVA444P10
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
@ AV_PIX_FMT_VIDEOTOOLBOX
hardware decoding through Videotoolbox
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
int(* decode_slice)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Callback for each slice.
static int decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static void decode_slice_alpha(const ProresContext *ctx, uint16_t *dst, int dst_stride, const uint8_t *buf, int buf_size, int blocks_per_slice)
Decode alpha slice plane.
const char * name
Name of the codec implementation.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call have update_thread_context() run it in the next thread. Add AV_CODEC_CAP_FRAME_THREADS to the codec capabilities. There will be very little speed gain at this point but it should work. If there are inter-frame dependencies
static const uint8_t lev_to_cb[10]
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
void * av_calloc(size_t nmemb, size_t size)
#define HWACCEL_VIDEOTOOLBOX(codec)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define FF_PROFILE_PRORES_4444
#define FF_PROFILE_PRORES_PROXY
static void unpack_alpha_10(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits)
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
main external API structure.
#define ALPHA_SHIFT_16_TO_10(alpha_val)
#define SHOW_UBITS(name, gb, num)
#define AV_PIX_FMT_YUVA422P12
static av_always_inline int decode_dc_coeffs(GetBitContext *gb, int16_t *out, int blocks_per_slice)
int(* start_frame)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Called at the beginning of each frame or field picture.
static int decode_slice_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
av_cold void ff_init_scantable_permutation(uint8_t *idct_permutation, enum idct_permutation_type perm_type)
static av_cold int decode_init(AVCodecContext *avctx)
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
This structure stores compressed data.
static void unpack_alpha_12(GetBitContext *gb, uint16_t *dst, int num_coeffs, const int num_bits)
int width
picture width / height.
#define flags(name, subs,...)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define MKTAG(a, b, c, d)
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_WB32 unsigned int_TMPL AV_WB24 unsigned int_TMPL AV_RB16