Go to the documentation of this file.
56 #define OFFSET(x) offsetof(DatascopeContext, x)
57 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
58 #define FLAGSR AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
86 int x0,
int y0,
const uint8_t *text,
int vertical)
90 for (; *text; text++) {
112 color->rgba[3] = 255;
113 for (p = 0; p <
draw->nb_planes; p++) {
114 if (
draw->nb_planes == 1) {
115 for (
i = 0;
i < 4;
i++) {
130 color->rgba[3] = 255;
131 for (p = 0; p <
draw->nb_planes; p++) {
132 if (
draw->nb_planes == 1) {
133 for (
i = 0;
i < 4;
i++) {
148 reverse->
rgba[3] = 255;
149 for (p = 0; p <
draw->nb_planes; p++) {
150 reverse->
comp[p].
u8[0] =
color->comp[p].u8[0] > 127 ? 0 : 255;
151 reverse->
comp[p].
u8[1] =
color->comp[p].u8[1] > 127 ? 0 : 255;
152 reverse->
comp[p].
u8[2] =
color->comp[p].u8[2] > 127 ? 0 : 255;
160 reverse->
rgba[3] = 255;
161 for (p = 0; p <
draw->nb_planes; p++) {
162 const unsigned max = (1 <<
draw->desc->comp[p].depth) - 1;
163 const unsigned mid = (
max + 1) / 2;
184 const int PP =
td->PP;
185 const int xoff =
td->xoff;
186 const int yoff =
td->yoff;
187 const int P =
FFMAX(
s->nb_planes,
s->nb_comps);
188 const int C =
s->chars;
189 const int D = ((
s->chars -
s->dformat) >> 2) +
s->dformat * 2;
190 const int W = (outlink->
w - xoff) / (
C * 10);
191 const int H = (outlink->
h - yoff) / (PP * 12);
192 const char *
format[4] = {
"%02X\n",
"%04X\n",
"%03d\n",
"%05d\n"};
193 const int slice_start = (
W * jobnr) / nb_jobs;
194 const int slice_end = (
W * (jobnr+1)) / nb_jobs;
197 for (y = 0; y <
H && (y +
s->y <
inlink->h); y++) {
201 int value[4] = { 0 }, pp = 0;
204 s->reverse_color(&
s->draw, &
color, &reverse);
206 xoff + x *
C * 10, yoff + y * PP * 12,
C * 10, PP * 12);
208 for (p = 0; p <
P; p++) {
211 if (!(
s->components & (1 << p)))
214 draw_text(&
s->draw,
out, &reverse, xoff + x *
C * 10 + 2, yoff + y * PP * 12 + pp * 10 + 2, text, 0);
231 const int PP =
td->PP;
232 const int xoff =
td->xoff;
233 const int yoff =
td->yoff;
234 const int P =
FFMAX(
s->nb_planes,
s->nb_comps);
235 const int C =
s->chars;
236 const int D = ((
s->chars -
s->dformat) >> 2) +
s->dformat * 2;
237 const int W = (outlink->
w - xoff) / (
C * 10);
238 const int H = (outlink->
h - yoff) / (PP * 12);
239 const char *
format[4] = {
"%02X\n",
"%04X\n",
"%03d\n",
"%05d\n"};
240 const int slice_start = (
W * jobnr) / nb_jobs;
241 const int slice_end = (
W * (jobnr+1)) / nb_jobs;
244 for (y = 0; y <
H && (y +
s->y <
inlink->h); y++) {
247 int value[4] = { 0 }, pp = 0;
251 for (p = 0; p <
P; p++) {
254 if (!(
s->components & (1 << p)))
257 draw_text(&
s->draw,
out, &
color, xoff + x *
C * 10 + 2, yoff + y * PP * 12 + pp * 10 + 2, text, 0);
274 const int PP =
td->PP;
275 const int xoff =
td->xoff;
276 const int yoff =
td->yoff;
277 const int P =
FFMAX(
s->nb_planes,
s->nb_comps);
278 const int C =
s->chars;
279 const int D = ((
s->chars -
s->dformat) >> 2) +
s->dformat * 2;
280 const int W = (outlink->
w - xoff) / (
C * 10);
281 const int H = (outlink->
h - yoff) / (PP * 12);
282 const char *
format[4] = {
"%02X\n",
"%04X\n",
"%03d\n",
"%05d\n"};
283 const int slice_start = (
W * jobnr) / nb_jobs;
284 const int slice_end = (
W * (jobnr+1)) / nb_jobs;
287 for (y = 0; y <
H && (y +
s->y <
inlink->h); y++) {
290 int value[4] = { 0 }, pp = 0;
293 for (p = 0; p <
P; p++) {
296 if (!(
s->components & (1 << p)))
299 draw_text(&
s->draw,
out, &
s->white, xoff + x *
C * 10 + 2, yoff + y * PP * 12 + pp * 10 + 2, text, 0);
313 const int P =
FFMAX(
s->nb_planes,
s->nb_comps);
328 0, 0, outlink->
w, outlink->
h);
330 for (
int p = 0; p <
P; p++) {
331 if (
s->components & (1 << p))
337 const int C =
s->chars;
338 int Y = outlink->
h / (PP * 12);
339 int X = outlink->
w / (
C * 10);
340 char text[256] = { 0 };
344 ymaxlen = strlen(text);
347 xmaxlen = strlen(text);
350 Y = (outlink->
h - xmaxlen) / (PP * 12);
351 X = (outlink->
w - ymaxlen) / (
C * 10);
353 for (y = 0; y <
Y; y++) {
354 snprintf(text,
sizeof(text),
"%d",
s->y + y);
357 0, xmaxlen + y * PP * 12 + (PP + 1) * PP - 2, ymaxlen, 10);
359 draw_text(&
s->draw,
out, &
s->yellow, 2, xmaxlen + y * PP * 12 + (PP + 1) * PP, text, 0);
362 for (x = 0; x <
X; x++) {
363 snprintf(text,
sizeof(text),
"%d",
s->x + x);
366 ymaxlen + x *
C * 10 + 2 *
C - 2, 0, 10, xmaxlen);
368 draw_text(&
s->draw,
out, &
s->yellow, ymaxlen + x *
C * 10 + 2 *
C, 2, text, 1);
372 td.in = in;
td.out =
out,
td.yoff = xmaxlen,
td.xoff = ymaxlen,
td.PP = PP;
383 uint8_t
alpha =
s->opacity * 255;
391 s->chars = (
s->draw.desc->comp[0].depth + 7) / 8 * 2 +
s->dformat;
392 s->nb_comps =
s->draw.desc->nb_components;
400 if (
s->draw.desc->comp[0].depth <= 8) {
423 char *res,
int res_len,
int flags)
455 .priv_class = &datascope_class,
492 #define POFFSET(x) offsetof(PixscopeContext, x)
519 s->nb_comps =
s->draw.desc->nb_components;
523 s->colors[0] = &
s->red;
524 s->colors[1] = &
s->green;
525 s->colors[2] = &
s->blue;
526 s->colors[3] = &
s->white;
529 s->colors[0] = &
s->white;
530 s->colors[1] = &
s->blue;
531 s->colors[2] = &
s->red;
532 s->colors[3] = &
s->white;
539 if (
s->draw.desc->comp[0].depth <= 8) {
563 #define SQR(x) ((x)*(x))
571 int max[4] = { 0 },
min[4] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
572 float average[4] = { 0 };
573 double std[4] = { 0 }, rms[4] = { 0 };
574 const char rgba[4] = {
'R',
'G',
'B',
'A' };
575 const char yuva[4] = {
'Y',
'U',
'V',
'A' };
576 int x, y,
X,
Y,
i,
w,
h;
601 if (
s->x +
s->w >=
X && (
s->x +
s->w <=
X +
s->ww) &&
602 s->y +
s->h >=
Y && (
s->y +
s->h <=
Y +
s->wh)) {
603 X = (in->
width -
s->ww) * (1 +
s->wx);
608 if (
s->x +
s->w >=
X && (
s->x +
s->w <=
X +
s->ww) &&
609 s->y +
s->h >=
Y && (
s->y +
s->h <=
Y +
s->wh)) {
621 for (y = 0; y <
s->h; y++) {
622 for (x = 0; x <
s->w; x++) {
624 int value[4] = { 0 };
628 x *
w + (
s->ww - 4 - (
s->w *
w)) / 2 +
X, y *
h + 2 +
Y,
w,
h);
629 for (
i = 0;
i < 4;
i++) {
641 s->x - 2,
s->y - 2,
s->w + 4, 1);
645 s->x - 1,
s->y - 1,
s->w + 2, 1);
649 s->x - 1,
s->y - 1, 1,
s->h + 2);
653 s->x - 2,
s->y - 2, 1,
s->h + 4);
657 s->x - 1,
s->y + 1 +
s->h,
s->w + 3, 1);
661 s->x - 2,
s->y + 2 +
s->h,
s->w + 4, 1);
665 s->x + 1 +
s->w,
s->y - 1, 1,
s->h + 2);
669 s->x + 2 +
s->w,
s->y - 2, 1,
s->h + 5);
671 for (
i = 0;
i < 4;
i++) {
672 rms[
i] /=
s->w *
s->h;
673 rms[
i] = sqrt(rms[
i]);
674 average[
i] /=
s->w *
s->h;
677 for (y = 0; y <
s->h; y++) {
678 for (x = 0; x <
s->w; x++) {
679 for (
i = 0;
i < 4;
i++)
680 std[
i] +=
SQR(
s->values[
i][x][y] - average[
i]);
684 for (
i = 0;
i < 4;
i++) {
685 std[
i] /=
s->w *
s->h;
686 std[
i] = sqrt(std[
i]);
689 snprintf(text,
sizeof(text),
"CH AVG MIN MAX RMS\n");
691 for (
i = 0;
i <
s->nb_comps;
i++) {
692 int c =
s->rgba_map[
i];
694 snprintf(text,
sizeof(text),
"%c %07.1f %05d %05d %07.1f\n",
s->is_rgb ? rgba[
i] : yuva[
i], average[
c],
min[
c],
max[
c], rms[
c]);
697 snprintf(text,
sizeof(text),
"CH STD\n");
699 for (
i = 0;
i <
s->nb_comps;
i++) {
700 int c =
s->rgba_map[
i];
702 snprintf(text,
sizeof(text),
"%c %07.2f\n",
s->is_rgb ? rgba[
i] : yuva[
i], std[
c]);
711 char *res,
int res_len,
int flags)
742 .priv_class = &pixscope_class,
796 #define OOFFSET(x) offsetof(OscilloscopeContext, x)
827 int dx =
FFABS(
x1 - x0), sx = x0 <
x1 ? 1 : -1;
828 int dy =
FFABS(
y1 - y0), sy = y0 <
y1 ? 1 : -1;
829 int err = (dx > dy ? dx : -dy) / 2, e2;
833 if (x0 >= 0 && y0 >= 0 && x0 < out->
width && y0 < out->
height) {
834 for (p = 0; p <
draw->nb_planes; p++) {
835 if (
draw->desc->comp[p].depth == 8) {
836 if (
draw->nb_planes == 1) {
837 for (
i = 0;
i <
draw->desc->nb_components;
i++) {
838 out->data[0][y0 *
out->linesize[0] + x0 *
draw->pixelstep[0] +
i] =
color->comp[0].u8[
i];
841 out->data[p][
out->linesize[p] * (y0 >>
draw->vsub[p]) + (x0 >>
draw->hsub[p])] =
color->comp[p].u8[0];
844 if (
draw->nb_planes == 1) {
845 for (
i = 0;
i <
draw->desc->nb_components;
i++) {
855 if (x0 ==
x1 && y0 ==
y1)
876 for (
i = 1;
i <
s->nb_values;
i++) {
877 for (
c = 0;
c <
s->nb_comps;
c++) {
878 if ((1 <<
c) &
s->components) {
879 int x =
i *
s->width /
s->nb_values;
880 int px = (
i - 1) *
s->width /
s->nb_values;
881 int py =
s->height -
s->values[
i-1].p[
s->rgba_map[
c]] *
s->height / 256;
882 int y =
s->height -
s->values[
i].p[
s->rgba_map[
c]] *
s->height / 256;
895 for (
i = 1;
i <
s->nb_values;
i++) {
896 for (
c = 0;
c <
s->nb_comps;
c++) {
897 if ((1 <<
c) &
s->components) {
898 int x =
i *
s->width /
s->nb_values;
899 int px = (
i - 1) *
s->width /
s->nb_values;
900 int py =
s->height -
s->values[
i-1].p[
s->rgba_map[
c]] *
s->height /
s->max;
901 int y =
s->height -
s->values[
i].p[
s->rgba_map[
c]] *
s->height /
s->max;
922 cx =
s->xpos * (
inlink->w - 1);
923 cy =
s->ypos * (
inlink->h - 1);
947 s->nb_comps =
s->draw.desc->nb_components;
951 s->colors[0] = &
s->red;
952 s->colors[1] = &
s->green;
953 s->colors[2] = &
s->blue;
954 s->colors[3] = &
s->white;
957 s->colors[0] = &
s->white;
958 s->colors[1] = &
s->cyan;
959 s->colors[2] = &
s->magenta;
960 s->colors[3] = &
s->white;
967 if (
s->draw.desc->comp[0].depth <= 8) {
975 s->max = (1 <<
s->draw.desc->comp[0].depth);
990 int dx =
FFABS(
x1 - x0), sx = x0 <
x1 ? 1 : -1;
991 int dy =
FFABS(
y1 - y0), sy = y0 <
y1 ? 1 : -1;
992 int err = (dx > dy ? dx : -dy) / 2, e2;
995 if (x0 >= 0 && y0 >= 0 && x0 < out->
width && y0 < out->
height) {
997 int value[4] = { 0 };
1000 s->values[
s->nb_values].p[0] =
value[0];
1001 s->values[
s->nb_values].p[1] =
value[1];
1002 s->values[
s->nb_values].p[2] =
value[2];
1003 s->values[
s->nb_values].p[3] =
value[3];
1007 if (
s->draw.desc->comp[0].depth == 8) {
1008 if (
s->draw.nb_planes == 1) {
1011 for (
i = 0;
i <
s->nb_comps;
i++)
1012 out->data[0][
out->linesize[0] * y0 + x0 *
s->draw.pixelstep[0] +
i] = 255 * ((
s->nb_values +
state) & 1);
1014 out->data[0][
out->linesize[0] * y0 + x0] = 255 * ((
s->nb_values +
state) & 1);
1017 if (
s->draw.nb_planes == 1) {
1020 for (
i = 0;
i <
s->nb_comps;
i++)
1021 AV_WN16(
out->data[0] +
out->linesize[0] * y0 + x0 *
s->draw.pixelstep[0] +
i, (
s->max - 1) * ((
s->nb_values +
state) & 1));
1023 AV_WN16(
out->data[0] +
out->linesize[0] * y0 + 2 * x0, (
s->max - 1) * ((
s->nb_values +
state) & 1));
1029 if (x0 ==
x1 && y0 ==
y1)
1051 float average[4] = { 0 };
1053 int min[4] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
1060 s->ox,
s->oy,
s->width,
s->height + 20 *
s->statistics);
1062 if (
s->grid && outlink->
h >= 10) {
1064 s->ox,
s->oy,
s->width - 1, 1);
1066 for (
i = 1;
i < 5;
i++) {
1068 s->ox,
s->oy +
i * (
s->height - 1) / 4,
s->width, 1);
1071 for (
i = 0;
i < 10;
i++) {
1073 s->ox +
i * (
s->width - 1) / 10,
s->oy, 1,
s->height);
1077 s->ox +
s->width - 1,
s->oy, 1,
s->height);
1082 for (
i = 0;
i <
s->nb_values;
i++) {
1083 for (
c = 0;
c <
s->nb_comps;
c++) {
1084 if ((1 <<
c) &
s->components) {
1087 average[
c] +=
s->values[
i].p[
s->rgba_map[
c]];
1091 for (
c = 0;
c <
s->nb_comps;
c++) {
1092 average[
c] /=
s->nb_values;
1095 if (
s->statistics &&
s->height > 10 &&
s->width > 280 *
av_popcount(
s->components)) {
1096 for (
c = 0,
i = 0;
c <
s->nb_comps;
c++) {
1097 if ((1 <<
c) &
s->components) {
1098 const char rgba[4] = {
'R',
'G',
'B',
'A' };
1099 const char yuva[4] = {
'Y',
'U',
'V',
'A' };
1102 snprintf(text,
sizeof(text),
"%c avg:%.1f min:%d max:%d\n",
s->is_rgb ? rgba[
c] : yuva[
c], average[
c],
min[
c],
max[
c]);
1112 char *res,
int res_len,
int flags)
1143 .
name =
"oscilloscope",
1146 .priv_class = &oscilloscope_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AV_LOG_WARNING
Something somehow does not look correct.
static void reverse_color8(FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse)
static const AVFilterPad pixscope_inputs[]
static int filter_mono(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static const AVFilterPad pixscope_outputs[]
static int pixscope_process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static int filter_color2(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
#define FILTER_QUERY_FUNC(func)
const char * name
Filter name.
static void pick_color8(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
A link between two filters.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
void(* draw_trace)(struct OscilloscopeContext *s, AVFrame *frame)
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
void * priv
private data for use by the filter
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
void ff_blend_mask(FFDrawContext *draw, FFDrawColor *color, uint8_t *dst[], int dst_linesize[], int dst_w, int dst_h, const uint8_t *mask, int mask_linesize, int mask_w, int mask_h, int l2depth, unsigned endianness, int x0, int y0)
Blend an alpha mask with an uniform color.
void(* reverse_color)(FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse)
A filter pad used for either input or output.
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static void update_oscilloscope(AVFilterContext *ctx)
uint16_t values[4][80][80]
static int filter_color(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
int(* filter)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static void oscilloscope_uninit(AVFilterContext *ctx)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample format(the sample packing is implied by the sample format) and sample rate. The lists are not just lists
static int config_input(AVFilterLink *inlink)
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
static const AVFilterPad inputs[]
static const AVFilterPad oscilloscope_outputs[]
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
int ff_draw_init(FFDrawContext *draw, enum AVPixelFormat format, unsigned flags)
static void pick_color16(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
#define FILTER_INPUTS(array)
static void reverse_color16(FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse)
static int query_formats(AVFilterContext *ctx)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Describe the class of an AVClass context structure.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Rational number (pair of numerator and denominator).
@ AV_OPT_TYPE_IMAGE_SIZE
offset must point to two consecutive integers
static const AVOption datascope_options[]
static const AVOption oscilloscope_options[]
void(* pick_color)(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
static void draw_trace8(OscilloscopeContext *s, AVFrame *frame)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
AVFILTER_DEFINE_CLASS(datascope)
static void draw_trace16(OscilloscopeContext *s, AVFrame *frame)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
#define AV_PIX_FMT_FLAG_RGB
The pixel format contains RGB-like data (as opposed to YUV/grayscale).
void ff_blend_rectangle(FFDrawContext *draw, FFDrawColor *color, uint8_t *dst[], int dst_linesize[], int dst_w, int dst_h, int x0, int y0, int w, int h)
Blend a rectangle with an uniform color.
int av_frame_copy(AVFrame *dst, const AVFrame *src)
Copy the frame data from src to dst.
union FFDrawColor::@222 comp[MAX_PLANES]
static int oscilloscope_process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
static av_const double hypot(double x, double y)
static const AVFilterPad outputs[]
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
static void draw_text(FFDrawContext *draw, AVFrame *frame, FFDrawColor *color, int x0, int y0, const uint8_t *text, int vertical)
static const AVFilterPad oscilloscope_inputs[]
void ff_fill_rectangle(FFDrawContext *draw, FFDrawColor *color, uint8_t *dst[], int dst_linesize[], int dst_x, int dst_y, int w, int h)
Fill a rectangle with an uniform color.
AVFilterContext * src
source filter
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
static int pixscope_filter_frame(AVFilterLink *inlink, AVFrame *in)
void(* pick_color)(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
const AVFilter ff_vf_pixscope
static int draw(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
#define i(width, name, range_min, range_max)
int w
agreed upon image width
AVFilterFormats * ff_draw_supported_pixel_formats(unsigned flags)
Return the list of pixel formats supported by the draw functions.
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
const char * name
Pad name.
void * av_calloc(size_t nmemb, size_t size)
void ff_draw_color(FFDrawContext *draw, FFDrawColor *color, const uint8_t rgba[4])
Prepare a color.
void(* pick_color)(FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
const AVFilter ff_vf_oscilloscope
int h
agreed upon image height
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
const AVFilter ff_vf_datascope
static void draw_scope(OscilloscopeContext *s, int x0, int y0, int x1, int y1, AVFrame *out, PixelValues *p, int state)
const uint8_t avpriv_cga_font[2048]
static const int16_t alpha[]
static int config_output(AVFilterLink *outlink)
#define FILTER_OUTPUTS(array)
static void draw_line(FFDrawContext *draw, int x0, int y0, int x1, int y1, AVFrame *out, FFDrawColor *color)
static const AVOption pixscope_options[]
static int pixscope_config_input(AVFilterLink *inlink)
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
static av_cold int uninit(AVCodecContext *avctx)
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
static int oscilloscope_filter_frame(AVFilterLink *inlink, AVFrame *frame)
static int oscilloscope_config_input(AVFilterLink *inlink)
#define AVFILTERPAD_FLAG_NEEDS_WRITABLE
The filter expects writable frames from its input link, duplicating data buffers if needed.