Go to the documentation of this file.
47 int jobnr,
int nb_jobs);
50 static inline float lerpf(
float v0,
float v1,
float f)
52 return v0 + (v1 -
v0) *
f;
67 const float scale = 1.f / 255.f;
68 const float gc =
s->lcoeffs[0];
69 const float bc =
s->lcoeffs[1];
70 const float rc =
s->lcoeffs[2];
71 const float intensity =
s->intensity;
72 const float alternate =
s->alternate ? 1.f : -1.f;
73 const float gintensity = intensity *
s->balance[0];
74 const float bintensity = intensity *
s->balance[1];
75 const float rintensity = intensity *
s->balance[2];
76 const float sgintensity = alternate *
FFSIGN(gintensity);
77 const float sbintensity = alternate *
FFSIGN(bintensity);
78 const float srintensity = alternate *
FFSIGN(rintensity);
79 const int slice_start = (
height * jobnr) / nb_jobs;
81 const int glinesize =
frame->linesize[0];
82 const int blinesize =
frame->linesize[1];
83 const int rlinesize =
frame->linesize[2];
84 const int alinesize =
frame->linesize[3];
85 const int gslinesize = in->
linesize[0];
86 const int bslinesize = in->
linesize[1];
87 const int rslinesize = in->
linesize[2];
88 const int aslinesize = in->
linesize[3];
89 const uint8_t *gsrc = in->
data[0] + slice_start * glinesize;
90 const uint8_t *bsrc = in->
data[1] + slice_start * blinesize;
91 const uint8_t *rsrc = in->
data[2] + slice_start * rlinesize;
92 uint8_t *gptr =
frame->data[0] + slice_start * glinesize;
93 uint8_t *bptr =
frame->data[1] + slice_start * blinesize;
94 uint8_t *rptr =
frame->data[2] + slice_start * rlinesize;
95 const uint8_t *asrc = in->
data[3];
96 uint8_t *aptr =
frame->data[3];
98 for (
int y = slice_start; y <
slice_end; y++) {
99 for (
int x = 0; x <
width; x++) {
100 float g = gsrc[x] *
scale;
101 float b = bsrc[x] *
scale;
102 float r = rsrc[x] *
scale;
105 float color_saturation = max_color - min_color;
106 float luma =
g * gc +
r * rc +
b * bc;
107 const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
108 const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
109 const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
120 if (aptr && alinesize &&
frame != in)
121 memcpy(aptr + alinesize * y, asrc + aslinesize * y,
width);
140 const int depth =
s->depth;
141 const float max = (1 << depth) - 1;
143 const float gc =
s->lcoeffs[0];
144 const float bc =
s->lcoeffs[1];
145 const float rc =
s->lcoeffs[2];
148 const float intensity =
s->intensity;
149 const float alternate =
s->alternate ? 1.f : -1.f;
150 const float gintensity = intensity *
s->balance[0];
151 const float bintensity = intensity *
s->balance[1];
152 const float rintensity = intensity *
s->balance[2];
153 const float sgintensity = alternate *
FFSIGN(gintensity);
154 const float sbintensity = alternate *
FFSIGN(bintensity);
155 const float srintensity = alternate *
FFSIGN(rintensity);
156 const int slice_start = (
height * jobnr) / nb_jobs;
158 const int gslinesize = in->
linesize[0] / 2;
159 const int bslinesize = in->
linesize[1] / 2;
160 const int rslinesize = in->
linesize[2] / 2;
161 const int aslinesize = in->
linesize[3] / 2;
162 const int glinesize =
frame->linesize[0] / 2;
163 const int blinesize =
frame->linesize[1] / 2;
164 const int rlinesize =
frame->linesize[2] / 2;
165 const int alinesize =
frame->linesize[3] / 2;
166 const uint16_t *gsrc = (
const uint16_t *)in->
data[0] + slice_start * gslinesize;
167 const uint16_t *bsrc = (
const uint16_t *)in->
data[1] + slice_start * bslinesize;
168 const uint16_t *rsrc = (
const uint16_t *)in->
data[2] + slice_start * rslinesize;
169 uint16_t *gptr = (uint16_t *)
frame->data[0] + slice_start * glinesize;
170 uint16_t *bptr = (uint16_t *)
frame->data[1] + slice_start * blinesize;
171 uint16_t *rptr = (uint16_t *)
frame->data[2] + slice_start * rlinesize;
172 const uint16_t *asrc = (
const uint16_t *)in->
data[3];
173 uint16_t *aptr = (uint16_t *)
frame->data[3];
175 for (
int y = slice_start; y <
slice_end; y++) {
176 for (
int x = 0; x <
width; x++) {
177 float g = gsrc[x] *
scale;
178 float b = bsrc[x] *
scale;
179 float r = rsrc[x] *
scale;
182 float color_saturation = max_color - min_color;
183 float luma =
g * gc +
r * rc +
b * bc;
184 const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
185 const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
186 const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
197 if (aptr && alinesize &&
frame != in)
198 memcpy(aptr + alinesize * y, asrc + aslinesize * y,
width * 2);
217 const int step =
s->step;
220 const float scale = 1.f / 255.f;
221 const float gc =
s->lcoeffs[0];
222 const float bc =
s->lcoeffs[1];
223 const float rc =
s->lcoeffs[2];
224 const uint8_t roffset =
s->rgba_map[
R];
225 const uint8_t goffset =
s->rgba_map[
G];
226 const uint8_t boffset =
s->rgba_map[
B];
227 const uint8_t aoffset =
s->rgba_map[
A];
228 const float intensity =
s->intensity;
229 const float alternate =
s->alternate ? 1.f : -1.f;
230 const float gintensity = intensity *
s->balance[0];
231 const float bintensity = intensity *
s->balance[1];
232 const float rintensity = intensity *
s->balance[2];
233 const float sgintensity = alternate *
FFSIGN(gintensity);
234 const float sbintensity = alternate *
FFSIGN(bintensity);
235 const float srintensity = alternate *
FFSIGN(rintensity);
236 const int slice_start = (
height * jobnr) / nb_jobs;
238 const int linesize =
frame->linesize[0];
239 const int slinesize = in->
linesize[0];
240 const uint8_t *
src = in->
data[0] + slice_start * slinesize;
241 uint8_t *ptr =
frame->data[0] + slice_start * linesize;
243 for (
int y = slice_start; y <
slice_end; y++) {
244 for (
int x = 0; x <
width; x++) {
250 float color_saturation = max_color - min_color;
251 float luma =
g * gc +
r * rc +
b * bc;
252 const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
253 const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
254 const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
281 const int step =
s->step;
282 const int depth =
s->depth;
283 const float max = (1 << depth) - 1;
285 const float gc =
s->lcoeffs[0];
286 const float bc =
s->lcoeffs[1];
287 const float rc =
s->lcoeffs[2];
288 const uint8_t roffset =
s->rgba_map[
R];
289 const uint8_t goffset =
s->rgba_map[
G];
290 const uint8_t boffset =
s->rgba_map[
B];
291 const uint8_t aoffset =
s->rgba_map[
A];
294 const float intensity =
s->intensity;
295 const float alternate =
s->alternate ? 1.f : -1.f;
296 const float gintensity = intensity *
s->balance[0];
297 const float bintensity = intensity *
s->balance[1];
298 const float rintensity = intensity *
s->balance[2];
299 const float sgintensity = alternate *
FFSIGN(gintensity);
300 const float sbintensity = alternate *
FFSIGN(bintensity);
301 const float srintensity = alternate *
FFSIGN(rintensity);
302 const int slice_start = (
height * jobnr) / nb_jobs;
304 const int linesize =
frame->linesize[0] / 2;
305 const int slinesize = in->
linesize[0] / 2;
306 const uint16_t *
src = (
const uint16_t *)in->
data[0] + slice_start * slinesize;
307 uint16_t *ptr = (uint16_t *)
frame->data[0] + slice_start * linesize;
309 for (
int y = slice_start; y <
slice_end; y++) {
310 for (
int x = 0; x <
width; x++) {
316 float color_saturation = max_color - min_color;
317 float luma =
g * gc +
r * rc +
b * bc;
318 const float cg = 1.f + gintensity * (1.f - sgintensity * color_saturation);
319 const float cb = 1.f + bintensity * (1.f - sbintensity * color_saturation);
320 const float cr = 1.f + rintensity * (1.f - srintensity * color_saturation);
393 s->step =
desc->nb_components;
400 s->depth =
desc->comp[0].depth;
426 #define OFFSET(x) offsetof(VibranceContext, x)
427 #define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
447 .priv_class = &vibrance_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AV_PIX_FMT_GBRAP16
static int filter_frame(AVFilterLink *link, AVFrame *in)
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
const AVFilter ff_vf_vibrance
static double cb(void *priv, double x, double y)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
#define FILTER_PIXFMTS_ARRAY(array)
static enum AVPixelFormat pixel_fmts[]
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p)
Clip a signed integer to an unsigned power of two range.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
static const AVOption vibrance_options[]
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
const char * name
Filter name.
A link between two filters.
int(* do_slice)(AVFilterContext *s, void *arg, int jobnr, int nb_jobs)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define AV_PIX_FMT_GBRP14
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
void * priv
private data for use by the filter
#define AV_PIX_FMT_GBRP10
static av_always_inline float scale(float x, float s)
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
A filter pad used for either input or output.
#define AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP12
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
AVFILTER_DEFINE_CLASS(vibrance)
static const AVFilterPad vibrance_inputs[]
#define FILTER_INPUTS(array)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a link
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
#define AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_RGBA64
Describe the class of an AVClass context structure.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
static int vibrance_slice8(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
@ AV_PIX_FMT_BGR0
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
static float lerpf(float v0, float v1, float f)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
static int vibrance_slice16(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
#define AV_PIX_FMT_BGRA64
int w
agreed upon image width
#define AV_PIX_FMT_GBRP12
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
const char * name
Pad name.
static int vibrance_slice16p(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
@ AV_PIX_FMT_0BGR
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static av_cold int config_input(AVFilterLink *inlink)
int h
agreed upon image height
static const AVFilterPad vibrance_outputs[]
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static double cr(void *priv, double x, double y)
#define FILTER_OUTPUTS(array)
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
@ AV_PIX_FMT_0RGB
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
static int vibrance_slice8p(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
AVFilterLink ** outputs
array of pointers to output links