Go to the documentation of this file.
55 int k, previous, present;
58 base =
powf((
float)stop / start, 1.0
f / num_bands);
62 for (k = 0; k < num_bands-1; k++) {
65 bands[k] = present - previous;
68 bands[num_bands-1] = stop - previous;
76 static const double exp2_tab[2] = {1,
M_SQRT2};
81 float temp1, temp2, fac;
96 fac = temp1 / (1.0f + temp2);
102 for (k = 0; k < sbr->
n_q; k++) {
107 fac = temp1 / (1.0f + temp2);
113 for (ch = 0; ch < (id_aac ==
TYPE_CPE) + 1; ch++) {
128 for (k = 0; k < sbr->
n_q; k++)
140 float (*alpha0)[2],
float (*alpha1)[2],
141 const float X_low[32][40][2],
int k0)
144 for (k = 0; k < k0; k++) {
150 dk = phi[2][1][0] * phi[1][0][0] -
151 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001
f;
157 float temp_real, temp_im;
158 temp_real = phi[0][0][0] * phi[1][1][0] -
159 phi[0][0][1] * phi[1][1][1] -
160 phi[0][1][0] * phi[1][0][0];
161 temp_im = phi[0][0][0] * phi[1][1][1] +
162 phi[0][0][1] * phi[1][1][0] -
163 phi[0][1][1] * phi[1][0][0];
165 alpha1[k][0] = temp_real / dk;
166 alpha1[k][1] = temp_im / dk;
173 float temp_real, temp_im;
174 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
175 alpha1[k][1] * phi[1][1][1];
176 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
177 alpha1[k][0] * phi[1][1][1];
179 alpha0[k][0] = -temp_real / phi[1][0][0];
180 alpha0[k][1] = -temp_im / phi[1][0][0];
183 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0
f ||
184 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0
f) {
198 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
200 for (
i = 0;
i < sbr->
n_q;
i++) {
206 if (new_bw < ch_data->bw_array[
i]) {
207 new_bw = 0.75f * new_bw + 0.25f * ch_data->
bw_array[
i];
209 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->
bw_array[
i];
210 ch_data->
bw_array[
i] = new_bw < 0.015625f ? 0.0f : new_bw;
219 SBRData *ch_data,
const int e_a[2])
223 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
226 int delta = !((e == e_a[1]) || (e == e_a[0]));
227 for (k = 0; k < sbr->
n_lim; k++) {
228 float gain_boost, gain_max;
229 float sum[2] = { 0.0f, 0.0f };
230 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
236 ((1.0f + sbr->
e_curr[e][m]) *
240 ((1.0f + sbr->
e_curr[e][m]) *
243 sbr->
gain[e][m] += FLT_MIN;
245 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
247 sum[1] += sbr->
e_curr[e][m];
250 gain_max =
FFMIN(100000.
f, gain_max);
251 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
252 float q_m_max = sbr->
q_m[e][m] * gain_max / sbr->
gain[e][m];
256 sum[0] = sum[1] = 0.0f;
257 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
260 + sbr->
s_m[e][m] * sbr->
s_m[e][m]
263 gain_boost =
sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
264 gain_boost =
FFMIN(1.584893192
f, gain_boost);
265 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
266 sbr->
gain[e][m] *= gain_boost;
267 sbr->
q_m[e][m] *= gain_boost;
268 sbr->
s_m[e][m] *= gain_boost;
276 const float X_high[64][40][2],
282 const int kx = sbr->
kx[1];
283 const int m_max = sbr->
m[1];
284 static const float h_smooth[5] = {
296 for (
i = 0;
i < h_SL;
i++) {
297 memcpy(g_temp[
i + 2*ch_data->
t_env[0]], sbr->
gain[0], m_max *
sizeof(sbr->
gain[0][0]));
298 memcpy(q_temp[
i + 2*ch_data->
t_env[0]], sbr->
q_m[0], m_max *
sizeof(sbr->
q_m[0][0]));
301 for (
i = 0;
i < 4;
i++) {
302 memcpy(g_temp[
i + 2 * ch_data->
t_env[0]],
305 memcpy(q_temp[
i + 2 * ch_data->
t_env[0]],
312 for (
i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1];
i++) {
313 memcpy(g_temp[h_SL +
i], sbr->
gain[e], m_max *
sizeof(sbr->
gain[0][0]));
314 memcpy(q_temp[h_SL +
i], sbr->
q_m[e], m_max *
sizeof(sbr->
q_m[0][0]));
319 for (
i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1];
i++) {
322 float *g_filt, *q_filt;
324 if (h_SL && e != e_a[0] && e != e_a[1]) {
327 for (m = 0; m < m_max; m++) {
328 const int idx1 =
i + h_SL;
331 for (j = 0; j <= h_SL; j++) {
332 g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
333 q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
337 g_filt = g_temp[
i + h_SL];
344 if (e != e_a[0] && e != e_a[1]) {
349 int idx = indexsine&1;
350 int A = (1-((indexsine+(kx & 1))&2));
351 int B = (
A^(-idx)) + idx;
352 float *
out = &Y1[
i][kx][idx];
353 float *in = sbr->
s_m[e];
354 for (m = 0; m+1 < m_max; m+=2) {
355 out[2*m ] += in[m ] *
A;
356 out[2*m+2] += in[m+1] *
B;
359 out[2*m ] += in[m ] *
A;
361 indexnoise = (indexnoise + m_max) & 0x1ff;
362 indexsine = (indexsine + 1) & 3;
unsigned bs_limiter_gains
AAC_FLOAT e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
AAC_FLOAT env_facs[6][48]
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, float(*alpha0)[2], float(*alpha1)[2], const float X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
AAC_SIGNE m[2]
M' and M respectively, M is the number of QMF subbands that use SBR.
AAC_FLOAT q_m[7][48]
Amplitude adjusted noise scalefactors.
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
uint8_t t_env[8]
Envelope time borders.
AAC_FLOAT noise_facs[3][5]
static void sbr_hf_assemble(float Y1[38][64][2], const float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static av_always_inline float ff_exp2fi(int x)
2^(x) for integer x
#define LOCAL_ALIGNED_16(t, v,...)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
#define NOISE_FLOOR_OFFSET
void(* autocorrelate)(const INTFLOAT x[40][2], AAC_FLOAT phi[3][2][2])
static const float bands[]
AAC_FLOAT s_m[7][48]
Sinusoidal levels.
AAC_SIGNE n_lim
Number of limiter bands.
uint8_t env_facs_q[6][48]
Envelope scalefactors.
uint16_t f_tablelim[30]
Frequency borders for the limiter.
aacsbr functions pointers
static __device__ float sqrtf(float a)
void(* hf_g_filt)(INTFLOAT(*Y)[2], const INTFLOAT(*X_high)[40][2], const AAC_FLOAT *g_filt, int m_max, intptr_t ixh)
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
AAC_SIGNE n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
uint8_t s_indexmapped[8][48]
unsigned bs_smoothing_mode
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Spectral Band Replication.
uint8_t bs_invf_mode[2][5]
void(* hf_apply_noise[4])(INTFLOAT(*Y)[2], const AAC_FLOAT *s_m, const AAC_FLOAT *q_filt, int noise, int kx, int m_max)
AAC_SIGNE n_q
Number of noise floor bands.
AAC_FLOAT e_curr[7][48]
Estimated envelope.
#define i(width, name, range_min, range_max)
Spectral Band Replication per channel data.
INTFLOAT bw_array[5]
Chirp factors.
static void aacsbr_func_ptr_init(AACSBRContext *c)
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
uint8_t noise_facs_q[3][5]
Noise scalefactors.
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
#define ENVELOPE_ADJUSTMENT_OFFSET
AAC_FLOAT q_mapped[7][48]
Dequantized noise scalefactors, remapped.
AAC_SIGNE kx[2]
kx', and kx respectively, kx is the first QMF subband where SBR is used.
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.