Go to the documentation of this file.
   86                     double sigmae, 
double *detection,
 
   87                     double *acoefficients, uint8_t *click, 
int *
index,
 
   88                     const double *
src, 
double *dst);
 
   91 #define OFFSET(x) offsetof(AudioDeclickContext, x) 
   92 #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM 
  123     s->window_size = 
FFMAX(100, 
inlink->sample_rate * 
s->w / 1000.);
 
  124     s->ar_order = 
FFMAX(
s->window_size * 
s->ar / 100., 1);
 
  125     s->nb_burst_samples = 
s->window_size * 
s->burst / 1000.;
 
  126     s->hop_size = 
FFMAX(1, 
s->window_size * (1. - (
s->overlap / 100.)));
 
  128     s->window_func_lut = 
av_calloc(
s->window_size, 
sizeof(*
s->window_func_lut));
 
  129     if (!
s->window_func_lut)
 
  133         double *tx_in[2], *tx_out[2];
 
  139         tx_size = 1 << (32 - 
ff_clz(
s->window_size));
 
  146         scale = 1.0 / tx_size;
 
  151         tx_in[0]  = 
av_calloc(tx_size + 2, 
sizeof(*tx_in[0]));
 
  152         tx_in[1]  = 
av_calloc(tx_size + 2, 
sizeof(*tx_in[1]));
 
  153         tx_out[0] = 
av_calloc(tx_size + 2, 
sizeof(*tx_out[0]));
 
  154         tx_out[1] = 
av_calloc(tx_size + 2, 
sizeof(*tx_out[1]));
 
  155         if (!tx_in[0] || !tx_in[1] || !tx_out[0] || !tx_out[1])
 
  158         for (
int n = 0; n < 
s->window_size - 
s->hop_size; n++)
 
  161         for (
int n = 0; n < 
s->hop_size; n++)
 
  164         tx_fn(tx, tx_out[0], tx_in[0], 
sizeof(
double));
 
  165         tx_fn(tx, tx_out[1], tx_in[1], 
sizeof(
double));
 
  167         for (
int n = 0; n <= tx_size/2; n++) {
 
  168             double re0 = tx_out[0][2*n];
 
  169             double im0 = tx_out[0][2*n+1];
 
  170             double re1 = tx_out[1][2*n];
 
  171             double im1 = tx_out[1][2*n+1];
 
  173             tx_in[0][2*n]   = re0 * re1 - im0 * im1;
 
  174             tx_in[0][2*n+1] = re0 * im1 + re1 * im0;
 
  179         scale = 1.0 / (
s->window_size - 
s->hop_size);
 
  180         for (
int n = 0; n < 
s->window_size; n++)
 
  181             s->window_func_lut[n] = tx_out[0][n] * 
scale;
 
  201     if (!
s->in || !
s->out || !
s->buffer || !
s->is || !
s->enabled)
 
  210     s->overlap_skip = 
s->method ? (
s->window_size - 
s->hop_size) / 2 : 0;
 
  211     if (
s->overlap_skip > 0) {
 
  216     s->nb_channels = 
inlink->ch_layout.nb_channels;
 
  221     for (
i = 0; 
i < 
inlink->ch_layout.nb_channels; 
i++) {
 
  224         c->detection = 
av_calloc(
s->window_size, 
sizeof(*
c->detection));
 
  225         c->auxiliary = 
av_calloc(
s->ar_order + 1, 
sizeof(*
c->auxiliary));
 
  226         c->acoefficients = 
av_calloc(
s->ar_order + 1, 
sizeof(*
c->acoefficients));
 
  227         c->acorrelation = 
av_calloc(
s->ar_order + 1, 
sizeof(*
c->acorrelation));
 
  229         c->click = 
av_calloc(
s->window_size, 
sizeof(*
c->click));
 
  230         c->index = 
av_calloc(
s->window_size, 
sizeof(*
c->index));
 
  231         c->interpolated = 
av_calloc(
s->window_size, 
sizeof(*
c->interpolated));
 
  232         if (!
c->auxiliary || !
c->acoefficients || !
c->detection || !
c->click ||
 
  233             !
c->index || !
c->interpolated || !
c->acorrelation || !
c->tmp)
 
  245     for (
i = 0; 
i <= order; 
i++) {
 
  248         for (j = 
i; j < 
size; j++)
 
  266     k[0] = 
a[0] = -
r[1] / 
r[0];
 
  267     alpha = 
r[0] * (1. - k[0] * k[0]);
 
  271         for (j = 0; j < 
i; j++)
 
  272             epsilon += 
a[j] * 
r[
i - j];
 
  277         for (j = 
i - 1; j >= 0; j--)
 
  278             k[j] = 
a[j] + k[
i] * 
a[
i - j - 1];
 
  279         for (j = 0; j <= 
i; j++)
 
  311     while (start <= end) {
 
  312         i = (end + start) / 2;
 
  328     for (
i = 0; 
i < n; 
i++) {
 
  329         const int in = 
i * n;
 
  333         for (j = 0; j < 
i; j++)
 
  341         for (j = 
i + 1; j < n; j++) {
 
  342             const int jn = j * n;
 
  346             for (k = 0; k < 
i; k++)
 
  356                             double *vector, 
int n, 
double *
out)
 
  370     for (
i = 0; 
i < n; 
i++) {
 
  371         const int in = 
i * n;
 
  375         for (j = 0; j < 
i; j++)
 
  380     for (
i = n - 1; 
i >= 0; 
i--) {
 
  382         for (j = 
i + 1; j < n; j++)
 
  390                          double *acoefficients, 
int *
index, 
int nb_errors,
 
  391                          double *auxiliary, 
double *interpolated)
 
  396     av_fast_malloc(&
c->matrix, &
c->matrix_size, nb_errors * nb_errors * 
sizeof(*
c->matrix));
 
  408     for (
i = 0; 
i < nb_errors; 
i++) {
 
  409         const int im = 
i * nb_errors;
 
  411         for (j = 
i; j < nb_errors; j++) {
 
  420     for (
i = 0; 
i < nb_errors; 
i++) {
 
  435                         double *unused1, 
double *unused2,
 
  437                         const double *
src, 
double *dst)
 
  440     double max_amplitude = 0;
 
  444     av_fast_malloc(&
c->histogram, &
c->histogram_size, 
s->nb_hbins * 
sizeof(*
c->histogram));
 
  447     histogram = 
c->histogram;
 
  448     memset(histogram, 0, 
sizeof(*histogram) * 
s->nb_hbins);
 
  450     for (
i = 0; 
i < 
s->window_size; 
i++) {
 
  458     for (
i = 
s->nb_hbins - 1; 
i > 1; 
i--) {
 
  461                 max_amplitude = 
i / (
double)
s->nb_hbins;
 
  467     if (max_amplitude > 0.) {
 
  468         for (
i = 0; 
i < 
s->window_size; 
i++) {
 
  473     memset(
clip, 0, 
s->ar_order * 
sizeof(*
clip));
 
  474     memset(
clip + (
s->window_size - 
s->ar_order), 0, 
s->ar_order * 
sizeof(*
clip));
 
  485                          double *detection, 
double *acoefficients,
 
  486                          uint8_t *click, 
int *
index,
 
  487                          const double *
src, 
double *dst)
 
  490     int i, j, nb_clicks = 0, prev = -1;
 
  492     memset(detection, 0, 
s->window_size * 
sizeof(*detection));
 
  495         for (j = 0; j <= 
s->ar_order; j++) {
 
  496             detection[
i] += acoefficients[j] * 
src[
i - j];
 
  500     for (
i = 0; 
i < 
s->window_size; 
i++) {
 
  505     for (
i = 0; 
i < 
s->window_size; 
i++) {
 
  510             for (j = prev + 1; j < 
i; j++)
 
  515     memset(click, 0, 
s->ar_order * 
sizeof(*click));
 
  516     memset(click + (
s->window_size - 
s->ar_order), 0, 
s->ar_order * 
sizeof(*click));
 
  534     const double *
src = (
const double *)
s->in->extended_data[ch];
 
  535     double *
is = (
double *)
s->is->extended_data[ch];
 
  536     double *dst = (
double *)
s->out->extended_data[ch];
 
  537     double *ptr = (
double *)
out->extended_data[ch];
 
  538     double *buf = (
double *)
s->buffer->extended_data[ch];
 
  539     const double *
w = 
s->window_func_lut;
 
  547         double *interpolated = 
c->interpolated;
 
  551         nb_errors = 
s->detector(
s, 
c, sigmae, 
c->detection, 
c->acoefficients,
 
  554             double *enabled = (
double *)
s->enabled->extended_data[0];
 
  557                                 nb_errors, 
c->auxiliary, interpolated);
 
  563             for (j = 0; j < nb_errors; j++) {
 
  564                 if (enabled[
index[j]]) {
 
  565                     dst[
index[j]] = interpolated[j];
 
  571         memcpy(dst, 
src, 
s->window_size * 
sizeof(*dst));
 
  574     if (
s->method == 0) {
 
  575         for (j = 0; j < 
s->window_size; j++)
 
  576             buf[j] += dst[j] * 
w[j];
 
  578         const int skip = 
s->overlap_skip;
 
  580         for (j = 0; j < 
s->hop_size; j++)
 
  581             buf[j] = dst[
skip + j];
 
  583     for (j = 0; j < 
s->hop_size; j++)
 
  586     memmove(buf, buf + 
s->hop_size, (
s->window_size * 2 - 
s->hop_size) * 
sizeof(*buf));
 
  587     memmove(
is, 
is + 
s->hop_size, (
s->window_size - 
s->hop_size) * 
sizeof(*
is));
 
  588     memset(buf + 
s->window_size * 2 - 
s->hop_size, 0, 
s->hop_size * 
sizeof(*buf));
 
  589     memset(
is + 
s->window_size - 
s->hop_size, 0, 
s->hop_size * 
sizeof(*
is));
 
  600     int ret = 0, j, ch, detected_errors = 0;
 
  617     for (ch = 0; ch < 
s->in->ch_layout.nb_channels; ch++) {
 
  618         double *
is = (
double *)
s->is->extended_data[ch];
 
  620         for (j = 0; j < 
s->hop_size; j++) {
 
  629     if (
s->samples_left > 0)
 
  630         out->nb_samples = 
FFMIN(
s->hop_size, 
s->samples_left);
 
  635     s->detected_errors += detected_errors;
 
  636     s->nb_samples += 
out->nb_samples * 
inlink->ch_layout.nb_channels;
 
  642     if (
s->samples_left > 0) {
 
  643         s->samples_left -= 
s->hop_size;
 
  644         if (
s->samples_left <= 0)
 
  669         double *e = (
double *)
s->enabled->extended_data[0];
 
  677             e[
i] = !
ctx->is_disabled;
 
  703     if (
s->eof && 
s->samples_left <= 0) {
 
  718     s->is_declip = !strcmp(
ctx->filter->name, 
"adeclip");
 
  733     if (
s->nb_samples > 0)
 
  735                s->is_declip ? 
"clips" : 
"clicks", 
s->detected_errors,
 
  736                s->nb_samples, 100. * 
s->detected_errors / 
s->nb_samples);
 
  748         for (
i = 0; 
i < 
s->nb_channels; 
i++) {
 
  762             c->histogram_size = 0;
 
  785     .priv_class    = &adeclick_class,
 
  821     .priv_class    = &adeclip_class,
 
  
void av_audio_fifo_free(AVAudioFifo *af)
Free an AVAudioFifo.
 
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
The official guide to swscale for confused that is
 
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
 
#define AVERROR_EOF
End of file.
 
int av_audio_fifo_write(AVAudioFifo *af, void *const *data, int nb_samples)
Write data to an AVAudioFifo.
 
#define FILTER_SINGLE_SAMPLEFMT(sample_fmt_)
 
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce output
 
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
 
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
 
This structure describes decoded (raw) audio or video data.
 
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
 
static av_cold int init(AVFilterContext *ctx)
 
const char * name
Filter name.
 
A link between two filters.
 
static int activate(AVFilterContext *ctx)
 
#define FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink)
Forward the status on an output link to an input link.
 
const AVFilter ff_af_adeclip
 
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type, int inv, int len, const void *scale, uint64_t flags)
Initialize a transform context with the given configuration (i)MDCTs with an odd length are currently...
 
Context for an Audio FIFO Buffer.
 
int av_audio_fifo_drain(AVAudioFifo *af, int nb_samples)
Drain data from an AVAudioFifo.
 
static av_always_inline float scale(float x, float s)
 
A filter pad used for either input or output.
 
void(* av_tx_fn)(AVTXContext *s, void *out, void *in, ptrdiff_t stride)
Function pointer to a function to perform the transform.
 
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
 
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
 
static int detect_clicks(AudioDeclickContext *s, DeclickChannel *c, double sigmae, double *detection, double *acoefficients, uint8_t *click, int *index, const double *src, double *dst)
 
static av_cold void uninit(AVFilterContext *ctx)
 
#define FILTER_INPUTS(array)
 
static int config_input(AVFilterLink *inlink)
 
static void autocorrelation(const double *input, int order, int size, double *output, double scale)
 
Describe the class of an AVClass context structure.
 
static __device__ float fabs(float a)
 
int ff_inlink_consume_samples(AVFilterLink *link, unsigned min, unsigned max, AVFrame **rframe)
Take samples from the link's FIFO and update the link's stats.
 
Rational number (pair of numerator and denominator).
 
AVAudioFifo * av_audio_fifo_alloc(enum AVSampleFormat sample_fmt, int channels, int nb_samples)
Allocate an AVAudioFifo.
 
const AVFilterPad ff_audio_default_filterpad[1]
An AVFilterPad array whose only entry has name "default" and is of type AVMEDIA_TYPE_AUDIO.
 
int(* detector)(struct AudioDeclickContext *s, DeclickChannel *c, double sigmae, double *detection, double *acoefficients, uint8_t *click, int *index, const double *src, double *dst)
 
int ff_inlink_acknowledge_status(AVFilterLink *link, int *rstatus, int64_t *rpts)
Test and acknowledge the change of status on the link.
 
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
 
static int filter_channel(AVFilterContext *ctx, void *arg, int ch, int nb_jobs)
 
static const AVOption adeclick_options[]
 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
 
double fmin(double, double)
 
#define AV_NOPTS_VALUE
Undefined timestamp value.
 
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
 
int av_audio_fifo_peek(const AVAudioFifo *af, void *const *data, int nb_samples)
Peek data from an AVAudioFifo.
 
FF_FILTER_FORWARD_WANTED(outlink, inlink)
 
int av_audio_fifo_size(AVAudioFifo *af)
Get the current number of samples in the AVAudioFifo available for reading.
 
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
 
static double autoregression(const double *samples, int ar_order, int nb_samples, double *k, double *r, double *a)
 
static int interpolation(DeclickChannel *c, const double *src, int ar_order, double *acoefficients, int *index, int nb_errors, double *auxiliary, double *interpolated)
 
av_cold void av_tx_uninit(AVTXContext **ctx)
Frees a context and sets *ctx to NULL, does nothing when *ctx == NULL.
 
#define AV_LOG_INFO
Standard information.
 
static int detect_clips(AudioDeclickContext *s, DeclickChannel *c, double unused0, double *unused1, double *unused2, uint8_t *clip, int *index, const double *src, double *dst)
 
int nb_samples
number of audio samples (per channel) described by this frame
 
static int filter_frame(AVFilterLink *inlink)
 
#define i(width, name, range_min, range_max)
 
static int find_index(int *index, int value, int size)
 
static const AVOption adeclip_options[]
 
uint8_t ** extended_data
pointers to the data planes/channels.
 
Used for passing data between threads.
 
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
 
const char * name
Pad name.
 
void * av_calloc(size_t nmemb, size_t size)
 
static int factorization(double *matrix, int n)
 
AVFILTER_DEFINE_CLASS(adeclick)
 
static const AVFilterPad inputs[]
 
@ AV_SAMPLE_FMT_DBLP
double, planar
 
Filter the word “frame” indicates either a video frame or a group of audio samples
 
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
 
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
 
static const int16_t alpha[]
 
static int do_interpolation(DeclickChannel *c, double *matrix, double *vector, int n, double *out)
 
#define FILTER_OUTPUTS(array)
 
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
 
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
 
const AVFilter ff_af_adeclick
 
static int isfinite_array(double *samples, int nb_samples)
 
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
 
static void BS_FUNC() skip(BSCTX *bc, unsigned int n)
Skip n bits in the buffer.
 
void ff_filter_set_ready(AVFilterContext *filter, unsigned priority)
Mark a filter ready and schedule it for activation.