Go to the documentation of this file.
43 #define MAX_CHANNELS 2
44 #define MAX_BYTESPERSAMPLE 3
46 #define APE_FRAMECODE_MONO_SILENCE 1
47 #define APE_FRAMECODE_STEREO_SILENCE 3
48 #define APE_FRAMECODE_PSEUDO_STEREO 4
50 #define HISTORY_SIZE 512
51 #define PREDICTOR_ORDER 8
53 #define PREDICTOR_SIZE 50
55 #define YDELAYA (18 + PREDICTOR_ORDER*4)
56 #define YDELAYB (18 + PREDICTOR_ORDER*3)
57 #define XDELAYA (18 + PREDICTOR_ORDER*2)
58 #define XDELAYB (18 + PREDICTOR_ORDER)
60 #define YADAPTCOEFFSA 18
61 #define XADAPTCOEFFSA 14
62 #define YADAPTCOEFFSB 10
63 #define XADAPTCOEFFSB 5
78 #define APE_FILTER_LEVELS 3
232 s->decoded_size =
s->data_size = 0;
264 s->interim_mode = -1;
268 "%d bits per coded sample",
s->bps);
278 s->compression_level,
s->flags);
280 !
s->compression_level ||
283 s->compression_level);
286 s->fset =
s->compression_level / 1000 - 1;
294 if (
s->fileversion < 3860) {
297 }
else if (
s->fileversion < 3900) {
300 }
else if (
s->fileversion < 3930) {
303 }
else if (
s->fileversion < 3990) {
311 if (
s->fileversion < 3930) {
314 }
else if (
s->fileversion < 3950) {
337 #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
338 #define SHIFT_BITS (CODE_BITS - 9)
339 #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
340 #define BOTTOM_VALUE (TOP_VALUE >> 8)
345 ctx->rc.buffer = bytestream_get_byte(&
ctx->ptr);
354 ctx->rc.buffer <<= 8;
355 if(
ctx->ptr <
ctx->data_end) {
356 ctx->rc.buffer += *
ctx->ptr;
361 ctx->rc.low = (
ctx->rc.low << 8) | ((
ctx->rc.buffer >> 1) & 0xFF);
375 ctx->rc.help =
ctx->rc.range / tot_f;
376 return ctx->rc.low /
ctx->rc.help;
388 return ctx->rc.low /
ctx->rc.help;
400 ctx->rc.low -=
ctx->rc.help * lt_f;
401 ctx->rc.range =
ctx->rc.help * sy_f;
413 #define MODEL_ELEMENTS 64
419 0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
420 62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
421 65450, 65469, 65480, 65487, 65491, 65493,
428 14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
429 1104, 677, 415, 248, 150, 89, 54, 31,
437 0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
438 64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
439 65485, 65488, 65490, 65491, 65492, 65493,
446 19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
447 261, 119, 65, 31, 19, 10, 6, 3,
458 const uint16_t counts[],
459 const uint16_t counts_diff[])
466 symbol= cf - 65535 + 63;
473 for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
483 int lim = rice->
k ? (1 << (rice->
k + 4)) : 0;
484 rice->
ksum += ((x + 1) / 2) - ((rice->
ksum + 16) >> 5);
486 if (rice->
ksum < lim)
488 else if (rice->
ksum >= (1 << (rice->
k + 5)) && rice->
k < 24)
511 if (
ctx->fileversion > 3880) {
527 rice->
ksum += x - (rice->
ksum + 8 >> 4);
528 if (rice->
ksum < (rice->
k ? 1 << (rice->
k + 4) : 0))
530 else if (rice->
ksum >= (1 << (rice->
k + 5)) && rice->
k < 24)
534 return ((x >> 1) ^ ((x & 1) - 1)) + 1;
548 tmpk = (rice->
k < 1) ? 0 : rice->
k - 1;
556 }
else if (tmpk <= 31) {
568 return ((x >> 1) ^ ((x & 1) - 1)) + 1;
585 if (pivot < 0x10000) {
589 int base_hi = pivot, base_lo;
592 while (base_hi & ~0xFFFF) {
601 base = (base_hi << bbits) + base_lo;
609 return ((x >> 1) ^ ((x & 1) - 1)) + 1;
621 unsigned ksummax, ksummin;
624 for (
i = 0;
i <
FFMIN(blockstodecode, 5);
i++) {
629 if (blockstodecode <= 5)
635 for (;
i <
FFMIN(blockstodecode, 64);
i++) {
643 if (blockstodecode <= 64)
647 ksummax = 1 << rice->
k + 7;
648 ksummin = rice->
k ? (1 << rice->
k + 6) : 0;
649 for (;
i < blockstodecode;
i++) {
656 while (rice->
ksum < ksummin) {
658 ksummin = rice->
k ? ksummin >> 1 : 0;
661 while (rice->
ksum >= ksummax) {
666 ksummin = ksummin ? ksummin << 1 : 128;
671 for (
i = 0;
i < blockstodecode;
i++)
693 while (blockstodecode--)
701 int blocks = blockstodecode;
703 while (blockstodecode--)
713 while (blockstodecode--)
721 int blocks = blockstodecode;
723 while (blockstodecode--)
738 while (blockstodecode--) {
748 while (blockstodecode--)
757 while (blockstodecode--) {
766 if (
ctx->fileversion >= 3900) {
767 if (
ctx->data_end -
ctx->ptr < 6)
769 ctx->CRC = bytestream_get_be32(&
ctx->ptr);
776 ctx->CRC_state = UINT32_MAX;
777 if ((
ctx->fileversion > 3820) && (
ctx->CRC & 0x80000000)) {
778 ctx->CRC &= ~0x80000000;
780 if (
ctx->data_end -
ctx->ptr < 6)
782 ctx->frameflags = bytestream_get_be32(&
ctx->ptr);
787 ctx->riceX.ksum = (1 <<
ctx->riceX.k) * 16;
789 ctx->riceY.ksum = (1 <<
ctx->riceY.k) * 16;
791 if (
ctx->fileversion >= 3900) {
833 if (
ctx->fileversion < 3930) {
853 if (
ctx->fileversion < 3930) {
873 return (x < 0) - (x > 0);
889 predictionA = p->
buf[delayA] * 2
U - p->
buf[delayA - 1];
892 if ((
decoded ^ predictionA) > 0)
904 const int delayA,
const int delayB,
905 const int start,
const int shift)
907 int32_t predictionA, predictionB, sign;
920 d1 = (p->
buf[delayA] - (unsigned)p->
buf[delayA - 1]) * 2;
921 d0 = p->
buf[delayA] + ((p->
buf[delayA - 2] - (unsigned)p->
buf[delayA - 1]) * 8);
922 d3 = p->
buf[delayB] * 2
U - p->
buf[delayB - 1];
951 int32_t coeffs[256], delay[256+256], *delayp = delay;
956 memset(coeffs, 0, order *
sizeof(*coeffs));
957 for (
i = 0;
i < order;
i++)
959 for (
i = order;
i < length;
i++) {
963 for (j = 0; j < order; j++) {
964 dotprod += delayp[j] * (unsigned)coeffs[j];
965 coeffs[j] += (delayp[j] >> 31) | 1;
967 }
else if (sign == -1) {
968 for (j = 0; j < order; j++) {
969 dotprod += delayp[j] * (unsigned)coeffs[j];
970 coeffs[j] -= (delayp[j] >> 31) | 1;
973 for (j = 0; j < order; j++) {
974 dotprod += delayp[j] * (unsigned)coeffs[j];
980 if (delayp - delay == 256) {
981 memcpy(delay, delayp,
sizeof(*delay)*256);
992 uint32_t coeffs[8] = { 0 };
994 for (
i = 0;
i < length;
i++) {
997 for (j = 7; j >= 0; j--) {
998 dotprod += delay[j] * coeffs[j];
999 coeffs[j] += ((delay[j] >> 31) | 1) * sign;
1001 for (j = 7; j > 0; j--)
1002 delay[j] = delay[j - 1];
1004 buffer[
i] -= (unsigned)(dotprod >> 9);
1013 int start = 4,
shift = 10;
1020 int order = 128,
shift2 = 11;
1022 if (
ctx->fileversion >= 3830) {
1035 int X = *decoded0,
Y = *decoded1;
1067 int start = 4,
shift = 10;
1073 int order = 128,
shift2 = 11;
1075 if (
ctx->fileversion >= 3830) {
1113 uint32_t d0, d1, d2, d3;
1116 d0 = p->
buf[delayA ];
1117 d1 = p->
buf[delayA ] - (unsigned)p->
buf[delayA - 1];
1118 d2 = p->
buf[delayA - 1] - (
unsigned)p->
buf[delayA - 2];
1119 d3 = p->
buf[delayA - 2] - (unsigned)p->
buf[delayA - 3];
1148 int Y = *decoded1,
X = *decoded0;
1190 const int delayA,
const int delayB,
1191 const int adaptA,
const int adaptB,
1194 int64_t predictionA, predictionB;
1199 p->
buf[delayA - 1] = p->
buf[delayA] - (uint64_t)p->
buf[delayA - 1];
1210 p->
buf[delayB - 1] = p->
buf[delayB] - (uint64_t)p->
buf[delayB - 1];
1221 predictionA = (
int32_t)predictionA;
1222 predictionB = (
int32_t)predictionB;
1225 p->
lastA[
filter] =
decoded + ((int64_t)((uint64_t)predictionA + (predictionB >> 1)) >> 10);
1251 if (
ctx->interim_mode == -1) {
1252 p_interim = *p_default;
1254 memcpy(
ctx->interim[0],
ctx->decoded[0],
sizeof(*
ctx->interim[0])*count);
1255 memcpy(
ctx->interim[1],
ctx->decoded[1],
sizeof(*
ctx->interim[1])*count);
1258 for (
int pass = 0; pass < num_passes; pass++) {
1265 decoded0 =
ctx->interim[0];
1266 decoded1 =
ctx->interim[1];
1269 decoded0 =
ctx->decoded[0];
1270 decoded1 =
ctx->decoded[1];
1285 if (num_passes > 1) {
1307 if (num_passes > 1 &&
ctx->interim_mode > 0) {
1308 memcpy(
ctx->decoded[0],
ctx->interim[0],
sizeof(*
ctx->interim[0])*lcount);
1309 memcpy(
ctx->decoded[1],
ctx->interim[1],
sizeof(*
ctx->interim[1])*lcount);
1310 *p_default = p_interim;
1319 int32_t predictionA, currentA,
A, sign;
1323 currentA = p->
lastA[0];
1336 currentA =
A + (uint64_t)(predictionA >> 10);
1356 p->
filterA[0] = currentA + (uint64_t)((int64_t)(p->
filterA[0] * 31
U) >> 5);
1357 *(decoded0++) = p->
filterA[0];
1360 p->
lastA[0] = currentA;
1366 f->historybuffer = buf + order;
1367 f->delay =
f->historybuffer + order * 2;
1368 f->adaptcoeffs =
f->historybuffer + order;
1370 memset(
f->historybuffer, 0, (order * 2) *
sizeof(*
f->historybuffer));
1371 memset(
f->coeffs, 0, order *
sizeof(*
f->coeffs));
1382 int32_t *
data,
int count,
int order,
int fracbits)
1389 res =
ctx->adsp.scalarproduct_and_madd_int16(
f->coeffs,
1391 f->adaptcoeffs - order,
1393 res = (int64_t)(res + (1LL << (fracbits - 1))) >> fracbits;
1394 res += (unsigned)*
data;
1402 f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
1403 f->adaptcoeffs[-4] >>= 1;
1404 f->adaptcoeffs[-8] >>= 1;
1412 (8 << ((absres >
f->avg * 3LL) + (absres > (
f->avg +
f->avg / 3))));
1422 *
f->adaptcoeffs = 0;
1424 f->avg += (
int)(absres - (
unsigned)
f->avg) / 16;
1426 f->adaptcoeffs[-1] >>= 1;
1427 f->adaptcoeffs[-2] >>= 1;
1428 f->adaptcoeffs[-8] >>= 1;
1435 memmove(
f->historybuffer,
f->delay - (order * 2),
1436 (order * 2) *
sizeof(*
f->historybuffer));
1437 f->delay =
f->historybuffer + order * 2;
1438 f->adaptcoeffs =
f->historybuffer + order;
1445 int count,
int order,
int fracbits)
1490 ctx->entropy_decode_mono(
ctx, count);
1495 ctx->predictor_decode_mono(
ctx, count);
1498 if (
ctx->channels == 2) {
1499 memcpy(
ctx->decoded[1],
ctx->decoded[0], count *
sizeof(*
ctx->decoded[1]));
1505 unsigned left, right;
1515 ctx->entropy_decode_stereo(
ctx, count);
1520 ctx->predictor_decode_stereo(
ctx, count);
1524 left = *decoded1 - (unsigned)(*decoded0 / 2);
1525 right =
left + *decoded0;
1527 *(decoded0++) =
left;
1528 *(decoded1++) = right;
1533 int *got_frame_ptr,
AVPacket *avpkt)
1535 const uint8_t *buf = avpkt->
data;
1542 uint64_t decoded_buffer_size;
1549 uint32_t nblocks,
offset;
1556 if (avpkt->
size < 8) {
1560 buf_size = avpkt->
size & ~3;
1561 if (buf_size != avpkt->
size) {
1563 "extra bytes at the end will be skipped.\n");
1565 if (
s->fileversion < 3950)
1570 s->bdsp.bswap_buf((uint32_t *)
s->data, (
const uint32_t *) buf,
1572 memset(
s->data + (buf_size & ~3), 0, buf_size & 3);
1574 s->data_end =
s->data + buf_size;
1576 nblocks = bytestream_get_be32(&
s->ptr);
1577 offset = bytestream_get_be32(&
s->ptr);
1578 if (
s->fileversion >= 3900) {
1585 if (
s->data_end -
s->ptr <
offset) {
1593 if (
s->fileversion > 3800)
1599 if (!nblocks || nblocks > INT_MAX / 2 /
sizeof(*
s->decoded_buffer) - 8) {
1610 s->samples = nblocks;
1618 blockstodecode =
FFMIN(
s->blocks_per_loop,
s->samples);
1621 if (
s->fileversion < 3930)
1622 blockstodecode =
s->samples;
1625 decoded_buffer_size = 2LL *
FFALIGN(blockstodecode, 8) *
sizeof(*
s->decoded_buffer);
1636 if (!
s->decoded_buffer)
1638 memset(
s->decoded_buffer, 0, decoded_buffer_size);
1639 s->decoded[0] =
s->decoded_buffer;
1640 s->decoded[1] =
s->decoded_buffer +
FFALIGN(blockstodecode, 8);
1642 if (
s->interim_mode < 0) {
1644 if (!
s->interim_buffer)
1646 memset(
s->interim_buffer, 0, decoded_buffer_size);
1647 s->interim[0] =
s->interim_buffer;
1648 s->interim[1] =
s->interim_buffer +
FFALIGN(blockstodecode, 8);
1651 s->interim_size = 0;
1652 memset(
s->interim, 0,
sizeof(
s->interim));
1670 for (ch = 0; ch <
s->channels; ch++) {
1672 for (
i = 0;
i < blockstodecode;
i++)
1673 *sample8++ = (
s->decoded[ch][
i] + 0x80U) & 0xff;
1677 for (ch = 0; ch <
s->channels; ch++) {
1679 for (
i = 0;
i < blockstodecode;
i++)
1680 *sample16++ =
s->decoded[ch][
i];
1684 for (ch = 0; ch <
s->channels; ch++) {
1686 for (
i = 0;
i < blockstodecode;
i++)
1687 *sample24++ =
s->decoded[ch][
i] * 256
U;
1692 s->samples -= blockstodecode;
1695 s->fileversion >= 3900) {
1696 uint32_t crc =
s->CRC_state;
1698 int stride =
s->bps == 24 ? 4 : (
s->bps>>3);
1700 int bytes =
s->bps >> 3;
1702 for (
i = 0;
i < blockstodecode;
i++) {
1703 for (ch = 0; ch <
s->channels; ch++) {
1707 for(
int j = 0; j<
stride; j++)
1708 smp[j] = smp_native[
stride-j-1];
1716 if (!
s->samples && (~crc >> 1) ^
s->CRC) {
1718 "frames may have been affected as well.\n");
1728 return !
s->samples ? avpkt->
size : 0;
1737 #define OFFSET(x) offsetof(APEContext, x)
1738 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
1741 {
"all",
"no maximum. decode all samples for each packet at once", 0,
AV_OPT_TYPE_CONST, { .i64 = INT_MAX }, INT_MIN, INT_MAX,
PAR,
"max_samples" },
1762 #if FF_API_SUBFRAMES
1763 AV_CODEC_CAP_SUBFRAMES |
APERice riceX
rice code parameters for the second channel
static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode)
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
#define AV_LOG_WARNING
Something somehow does not look correct.
static int init_frame_decoder(APEContext *ctx)
uint8_t * data
current frame data
static void range_start_decoding(APEContext *ctx)
Start the decoder.
static void apply_filter(APEContext *ctx, APEFilter *f, int32_t *data0, int32_t *data1, int count, int order, int fracbits)
#define AV_EF_EXPLODE
abort decoding on minor error detection
#define PREDICTOR_SIZE
Total size of all predictor histories.
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
#define AV_CHANNEL_LAYOUT_STEREO
int16_t * filterbuf[APE_FILTER_LEVELS]
filter memory
#define APE_FILTER_LEVELS
uint32_t low
low end of interval
uint64_t coeffsA[2][4]
adaption coefficients
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
static int init_entropy_decoder(APEContext *ctx)
static const uint16_t counts_diff_3980[21]
Probability ranges for symbols in Monkey Audio version 3.98.
This structure describes decoded (raw) audio or video data.
static const AVClass ape_decoder_class
static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode)
static void predictor_decode_mono_3930(APEContext *ctx, int count)
APEFilter filters[APE_FILTER_LEVELS][2]
filters used for reconstruction
static void long_filter_ehigh_3830(int32_t *buffer, int length)
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
static void update_rice(APERice *rice, unsigned int x)
uint32_t CRC
signalled frame CRC
static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode)
#define AV_LOG_VERBOSE
Detailed information.
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
uint32_t coeffsA[2][4]
adaption coefficients
static int get_k(int ksum)
static void ape_flush(AVCodecContext *avctx)
#define FFNABS(a)
Negative Absolute value.
void(* predictor_decode_mono)(struct APEContext *ctx, int count)
static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS]
Filter fraction bits depending on compression level.
int nb_channels
Number of channels in this layout.
int compression_level
compression levels
void(* entropy_decode_stereo)(struct APEContext *ctx, int blockstodecode)
static int range_decode_bits(APEContext *ctx, int n)
Decode n bits (n <= 16) without modelling.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
av_cold void ff_llauddsp_init(LLAudDSPContext *c)
static void predictor_decode_stereo_3930(APEContext *ctx, int count)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a it should return
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static void predictor_decode_mono_3800(APEContext *ctx, int count)
AVCodec p
The public AVCodec.
static av_cold int ape_decode_init(AVCodecContext *avctx)
AVChannelLayout ch_layout
Audio channel layout.
static void ape_unpack_mono(APEContext *ctx, int count)
int fileversion
codec version, very important in decoding process
static int ape_decode_value_3860(APEContext *ctx, GetBitContext *gb, APERice *rice)
static void predictor_decode_stereo_3800(APEContext *ctx, int count)
static const AVOption options[]
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
APERangecoder rc
rangecoder used to decode actual values
int samples
samples left to decode in current frame
const uint8_t * ptr
current position in frame data
#define FF_CODEC_DECODE_CB(func)
int16_t * historybuffer
filter memory
int(* init)(AVBSFContext *ctx)
static void do_init_filter(APEFilter *f, int16_t *buf, int order)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static void long_filter_high_3800(int32_t *buffer, int order, int shift, int length)
#define APE_FRAMECODE_STEREO_SILENCE
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
unsigned int buffer
buffer for input/output
const FFCodec ff_ape_decoder
static void do_apply_filter(APEContext *ctx, int version, APEFilter *f, int32_t *data, int count, int order, int fracbits)
static int ape_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *avpkt)
#define CODEC_LONG_NAME(str)
static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode)
int fset
which filter set to use (calculated from compression level)
static int ape_decode_value_3900(APEContext *ctx, APERice *rice)
int32_t historybuffer[HISTORY_SIZE+PREDICTOR_SIZE]
#define LIBAVUTIL_VERSION_INT
uint32_t CRC_state
accumulated CRC
int frameflags
frame flags
Describe the class of an AVClass context structure.
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
#define FFABSU(a)
Unsigned Absolute value.
static int range_decode_culshift(APEContext *ctx, int shift)
Decode value with given size in bits.
static const int64_t initial_coeffs_3930_64bit[4]
static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode)
static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode)
static const uint16_t counts_3970[22]
Fixed probabilities for symbols in Monkey Audio version 3.97.
const char * av_default_item_name(void *ptr)
Return the context name.
static av_always_inline int predictor_update_3930(APEPredictor *p, const int decoded, const int filter, const int delayA)
static void init_predictor_decoder(APEContext *ctx)
@ COMPRESSION_LEVEL_EXTRA_HIGH
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data,...
static int range_decode_culfreq(APEContext *ctx, int tot_f)
Calculate cumulative frequency for next symbol.
int64_t historybuffer[HISTORY_SIZE+PREDICTOR_SIZE]
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static av_always_inline int predictor_update_filter(APEPredictor64 *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB, int interim_mode)
@ AV_SAMPLE_FMT_U8P
unsigned 8 bits, planar
An AVChannelLayout holds information about the channel layout of audio data.
#define APE_FRAMECODE_PSEUDO_STEREO
static int shift(int a, int b)
void(* entropy_decode_mono)(struct APEContext *ctx, int blockstodecode)
enum AVSampleFormat sample_fmt
audio sample format
int16_t * coeffs
actual coefficients used in filtering
int16_t * delay
filtered values
uint32_t range
length of interval
int32_t * interim[MAX_CHANNELS]
decoded data for each channel
static const int32_t initial_coeffs_a_3800[3]
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
void(* predictor_decode_stereo)(struct APEContext *ctx, int count)
static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
uint64_t coeffsB[2][5]
adaption coefficients
APEPredictor64 predictor64
64bit predictor used for final reconstruction
static int ape_decode_value_3990(APEContext *ctx, APERice *rice)
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
static void decode_array_0000(APEContext *ctx, GetBitContext *gb, int32_t *out, APERice *rice, int blockstodecode)
static int range_get_symbol(APEContext *ctx, const uint16_t counts[], const uint16_t counts_diff[])
Decode symbol.
uint32_t coeffsB[2][5]
adaption coefficients
static void ape_unpack_stereo(APEContext *ctx, int count)
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
int nb_samples
number of audio samples (per channel) described by this frame
#define i(width, name, range_min, range_max)
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
Update decoding state.
static av_always_inline int filter_3800(APEPredictor *p, const unsigned decoded, const int filter, const int delayA, const int delayB, const int start, const int shift)
AVSampleFormat
Audio sample formats.
static void range_dec_normalize(APEContext *ctx)
Perform normalization.
static const int32_t initial_coeffs_fast_3320[1]
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
@ COMPRESSION_LEVEL_INSANE
static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode)
static const uint8_t shift2[6]
const char * name
Name of the codec implementation.
uint32_t help
bytes_to_follow resp. intermediate value
APECompressionLevel
Possible compression levels.
static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode)
static av_cold int ape_decode_close(AVCodecContext *avctx)
static void predictor_decode_stereo_3950(APEContext *ctx, int count)
static void predictor_decode_mono_3950(APEContext *ctx, int count)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
static int get_rice_ook(GetBitContext *gb, int k)
int data_size
frame data allocated size
APEPredictor predictor
predictor used for final reconstruction
Filters applied to the decoded data.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
main external API structure.
static const uint16_t counts_3980[22]
Fixed probabilities for symbols in Monkey Audio version 3.98.
@ COMPRESSION_LEVEL_NORMAL
static const uint16_t counts_diff_3970[21]
Probability ranges for symbols in Monkey Audio version 3.97.
the frame and frame reference mechanism is intended to as much as expensive copies of that data while still allowing the filters to produce correct results The data is stored in buffers represented by AVFrame structures Several references can point to the same frame buffer
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
void av_channel_layout_uninit(AVChannelLayout *channel_layout)
Free any allocated data in the channel layout and reset the channel count to 0.
static const int32_t initial_coeffs_b_3800[2]
int32_t * decoded[MAX_CHANNELS]
decoded data for each channel
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static int APESIGN(int32_t x)
Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero)
APERice riceY
rice code parameters for the first channel
uint8_t * data_end
frame data end
static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS]
Filter orders depending on compression level.
static const int32_t initial_coeffs_3930[4]
Undefined Behavior In the C some operations are like signed integer overflow
#define avpriv_request_sample(...)
int blocks_per_loop
maximum number of samples to decode for each call
#define AV_CHANNEL_LAYOUT_MONO
static av_always_inline int filter_fast_3320(APEPredictor *p, const int decoded, const int filter, const int delayA)
int flags
global decoder flags
This structure stores compressed data.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
int16_t * adaptcoeffs
adaptive filter coefficients used for correcting of actual filter coefficients
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static void ape_apply_filters(APEContext *ctx, int32_t *decoded0, int32_t *decoded1, int count)
static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode)