Go to the documentation of this file.
23 #define _DEFAULT_SOURCE
24 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
25 #define _DARWIN_C_SOURCE // needed for MAP_ANON
32 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
33 #define MAP_ANONYMOUS MAP_ANON
273 int filterSize, int16_t *
filter,
282 if ((
c->srcBpc == 8) && (
c->dstBpc <= 14)) {
283 int16_t *filterCopy =
NULL;
284 if (filterSize > 4) {
287 memcpy(filterCopy,
filter, dstW * filterSize *
sizeof(int16_t));
291 for (
i = 0;
i + 16 <= dstW;
i += 16) {
292 FFSWAP(
int, filterPos[
i + 2], filterPos[
i + 4]);
293 FFSWAP(
int, filterPos[
i + 3], filterPos[
i + 5]);
294 FFSWAP(
int, filterPos[
i + 10], filterPos[
i + 12]);
295 FFSWAP(
int, filterPos[
i + 11], filterPos[
i + 13]);
297 if (filterSize > 4) {
299 for (
i = 0;
i + 16 <= dstW;
i += 16) {
301 for (k = 0; k + 4 <= filterSize; k += 4) {
302 for (j = 0; j < 16; ++j) {
303 int from = (
i + j) * filterSize + k;
304 int to =
i * filterSize + j * 4 + k * 16;
305 memcpy(&
filter[
to], &filterCopy[
from], 4 *
sizeof(int16_t));
310 for (;
i < dstW;
i += 4) {
312 int rem = dstW -
i >= 4 ? 4 : dstW -
i;
313 for (k = 0; k + 4 <= filterSize; k += 4) {
314 for (j = 0; j < rem; ++j) {
315 int from = (
i + j) * filterSize + k;
316 int to =
i * filterSize + j * 4 + k * 4;
317 memcpy(&
filter[
to], &filterCopy[
from], 4 *
sizeof(int16_t));
351 return ((
d * dist +
c) * dist +
b) * dist +
a;
354 b + 2.0 *
c + 3.0 *
d,
356 -
b - 3.0 *
c - 6.0 *
d,
362 if (
pos == -1 ||
pos <= -513) {
363 pos = (128 << chr_subsample) - 128;
366 return pos >> chr_subsample;
383 {
SWS_POINT,
"nearest neighbor / point", -1 },
386 {
SWS_X,
"experimental", 8 },
390 int *outFilterSize,
int xInc,
int srcW,
391 int dstW,
int filterAlign,
int one,
394 double param[2],
int srcPos,
int dstPos)
401 int64_t *filter2 =
NULL;
402 const int64_t fone = 1LL << (54 -
FFMIN(
av_log2(srcW/dstW), 8));
411 if (
FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) {
417 for (
i = 0;
i < dstW;
i++) {
428 xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
429 for (
i = 0;
i < dstW;
i++) {
430 int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
432 (*filterPos)[
i] = xx;
444 xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
445 for (
i = 0;
i < dstW;
i++) {
446 int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
449 (*filterPos)[
i] = xx;
451 for (j = 0; j < filterSize; j++) {
452 int64_t
coeff = fone -
FFABS((int64_t)xx * (1 << 16) - xDstInSrc) * (fone >> 16);
475 filterSize = 1 + sizeFactor;
477 filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
479 filterSize =
FFMIN(filterSize, srcW - 2);
480 filterSize =
FFMAX(filterSize, 1);
484 xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
485 for (
i = 0;
i < dstW;
i++) {
486 int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
488 (*filterPos)[
i] = xx;
489 for (j = 0; j < filterSize; j++) {
490 int64_t
d = (
FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
496 floatd =
d * (1.0 / (1 << 30));
502 if (
d >= 1LL << 31) {
505 int64_t dd = (
d *
d) >> 30;
506 int64_t ddd = (dd *
d) >> 30;
509 coeff = (12 * (1 << 24) - 9 *
B - 6 *
C) * ddd +
510 (-18 * (1 << 24) + 12 *
B + 6 *
C) * dd +
511 (6 * (1 << 24) - 2 *
B) * (1 << 30);
514 (6 *
B + 30 *
C) * dd +
515 (-12 *
B - 48 *
C) *
d +
516 (8 *
B + 24 *
C) * (1 << 30);
518 coeff /= (1LL<<54)/fone;
524 c = cos(floatd *
M_PI);
531 coeff = (
c * 0.5 + 0.5) * fone;
533 int64_t d2 =
d - (1 << 29);
534 if (d2 * xInc < -(1LL << (29 + 16)))
535 coeff = 1.0 * (1LL << (30 + 16));
536 else if (d2 * xInc < (1LL << (29 + 16)))
537 coeff = -d2 * xInc + (1LL << (29 + 16));
540 coeff *= fone >> (30 + 16);
543 coeff =
exp2(-p * floatd * floatd) * fone;
549 (floatd * floatd *
M_PI *
M_PI / p) : 1.0) * fone;
558 double p = -2.196152422706632;
567 xDstInSrc += 2LL * xInc;
575 filter2Size = filterSize;
577 filter2Size += srcFilter->
length - 1;
579 filter2Size += dstFilter->
length - 1;
583 for (
i = 0;
i < dstW;
i++) {
587 for (k = 0; k < srcFilter->
length; k++) {
588 for (j = 0; j < filterSize; j++)
589 filter2[
i * filter2Size + k + j] +=
593 for (j = 0; j < filterSize; j++)
594 filter2[
i * filter2Size + j] =
filter[
i * filterSize + j];
598 (*filterPos)[
i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
605 for (
i = dstW - 1;
i >= 0;
i--) {
606 int min = filter2Size;
608 int64_t cutOff = 0.0;
611 for (j = 0; j < filter2Size; j++) {
613 cutOff +=
FFABS(filter2[
i * filter2Size]);
620 if (
i < dstW - 1 && (*filterPos)[
i] >= (*filterPos)[
i + 1])
624 for (k = 1; k < filter2Size; k++)
625 filter2[
i * filter2Size + k - 1] = filter2[
i * filter2Size + k];
626 filter2[
i * filter2Size + k - 1] = 0;
632 for (j = filter2Size - 1; j > 0; j--) {
633 cutOff +=
FFABS(filter2[
i * filter2Size + j]);
640 if (
min > minFilterSize)
646 if (minFilterSize < 5)
652 if (minFilterSize < 3)
658 if (minFilterSize == 1 && filterAlign == 2)
663 int reNum = minFilterSize & (0x07);
665 if (minFilterSize < 5)
672 filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
682 *outFilterSize = filterSize;
686 "SwScaler: reducing / aligning filtersize %d -> %d\n",
687 filter2Size, filterSize);
689 for (
i = 0;
i < dstW;
i++) {
692 for (j = 0; j < filterSize; j++) {
693 if (j >= filter2Size)
694 filter[
i * filterSize + j] = 0;
696 filter[
i * filterSize + j] = filter2[
i * filter2Size + j];
698 filter[
i * filterSize + j] = 0;
705 for (
i = 0;
i < dstW;
i++) {
707 if ((*filterPos)[
i] < 0) {
709 for (j = 1; j < filterSize; j++) {
712 filter[
i * filterSize + j] = 0;
717 if ((*filterPos)[
i] + filterSize > srcW) {
718 int shift = (*filterPos)[
i] +
FFMIN(filterSize - srcW, 0);
721 for (j = filterSize - 1; j >= 0; j--) {
722 if ((*filterPos)[
i] + j >= srcW) {
724 filter[
i * filterSize + j] = 0;
727 for (j = filterSize - 1; j >= 0; j--) {
729 filter[
i * filterSize + j] = 0;
736 filter[
i * filterSize + srcW - 1 - (*filterPos)[
i]] +=
acc;
740 if ((*filterPos)[
i] + filterSize > srcW) {
741 for (j = 0; j < filterSize; j++) {
753 for (
i = 0;
i < dstW;
i++) {
758 for (j = 0; j < filterSize; j++) {
759 sum +=
filter[
i * filterSize + j];
761 sum = (sum + one / 2) / one;
766 for (j = 0; j < *outFilterSize; j++) {
769 (*outFilter)[
i * (*outFilterSize) + j] = intV;
770 error = v - intV * sum;
774 (*filterPos)[dstW + 0] =
775 (*filterPos)[dstW + 1] =
776 (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1];
778 for (
i = 0;
i < *outFilterSize;
i++) {
779 int k = (dstW - 1) * (*outFilterSize) +
i;
780 (*outFilter)[k + 1 * (*outFilterSize)] =
781 (*outFilter)[k + 2 * (*outFilterSize)] =
782 (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
800 int64_t
W,
V, Z, Cy, Cu, Cv;
801 int64_t vr =
table[0];
803 int64_t ug = -
table[2];
804 int64_t vg = -
table[3];
807 uint8_t *p = (uint8_t*)
c->input_rgb2yuv_table;
809 static const int8_t
map[] = {
834 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 ,
835 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 ,
836 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 ,
837 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 ,
838 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 ,
839 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 ,
840 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 ,
841 -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 ,
899 static const int16_t xyz2rgb_matrix[3][4] = {
900 {13270, -6295, -2041},
902 { 228, -835, 4329} };
903 static const int16_t rgb2xyz_matrix[3][4] = {
907 static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
909 memcpy(
c->xyz2rgb_matrix, xyz2rgb_matrix,
sizeof(
c->xyz2rgb_matrix));
910 memcpy(
c->rgb2xyz_matrix, rgb2xyz_matrix,
sizeof(
c->rgb2xyz_matrix));
911 c->xyzgamma = xyzgamma_tab;
912 c->rgbgamma = rgbgamma_tab;
913 c->xyzgammainv = xyzgammainv_tab;
914 c->rgbgammainv = rgbgammainv_tab;
916 if (rgbgamma_tab[4095])
920 for (
i = 0;
i < 4096;
i++) {
921 xyzgamma_tab[
i] =
lrint(pow(
i / 4095.0, xyzgamma) * 4095.0);
922 rgbgamma_tab[
i] =
lrint(pow(
i / 4095.0, rgbgamma) * 4095.0);
923 xyzgammainv_tab[
i] =
lrint(pow(
i / 4095.0, xyzgammainv) * 4095.0);
924 rgbgammainv_tab[
i] =
lrint(pow(
i / 4095.0, rgbgammainv) * 4095.0);
992 if (
c->srcXYZ ||
c->dstXYZ)
1002 int srcRange,
const int table[4],
int dstRange,
1003 int brightness,
int contrast,
int saturation)
1007 int need_reinit = 0;
1009 if (
c->nb_slice_ctx) {
1011 for (
int i = 0;
i <
c->nb_slice_ctx;
i++) {
1013 srcRange,
table, dstRange,
1014 brightness, contrast, saturation);
1031 if (
c->srcRange != srcRange ||
1032 c->dstRange != dstRange ||
1033 c->brightness != brightness ||
1034 c->contrast != contrast ||
1035 c->saturation != saturation ||
1036 memcmp(
c->srcColorspaceTable, inv_table,
sizeof(
int) * 4) ||
1037 memcmp(
c->dstColorspaceTable,
table,
sizeof(
int) * 4)
1041 memmove(
c->srcColorspaceTable, inv_table,
sizeof(
int) * 4);
1042 memmove(
c->dstColorspaceTable,
table,
sizeof(
int) * 4);
1046 c->brightness = brightness;
1047 c->contrast = contrast;
1048 c->saturation = saturation;
1049 c->srcRange = srcRange;
1050 c->dstRange = dstRange;
1054 if (need_reinit && (
c->srcBpc == 8 || !
isYUV(
c->srcFormat)))
1060 if (
c->cascaded_context[
c->cascaded_mainindex])
1067 if (!
c->cascaded_context[0] &&
1068 memcmp(
c->dstColorspaceTable,
c->srcColorspaceTable,
sizeof(
int) * 4) &&
1069 c->srcW &&
c->srcH &&
c->dstW &&
c->dstH) {
1071 int tmp_width, tmp_height;
1077 av_log(
c,
AV_LOG_VERBOSE,
"YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
1093 if (srcW*srcH > dstW*dstH) {
1102 tmp_width, tmp_height, tmp_format, 64);
1107 tmp_width, tmp_height, tmp_format,
1108 c->flags,
c->param);
1109 if (!
c->cascaded_context[0])
1112 c->cascaded_context[0]->alphablend =
c->alphablend;
1118 srcRange,
table, dstRange,
1119 brightness, contrast, saturation);
1122 dstW, dstH,
c->dstFormat,
1123 c->flags,
c->param);
1124 if (!
c->cascaded_context[1])
1126 c->cascaded_context[1]->srcRange = srcRange;
1127 c->cascaded_context[1]->dstRange = dstRange;
1132 srcRange,
table, dstRange,
1133 0, 1 << 16, 1 << 16);
1137 if (
c->cascaded_context[0] && memcmp(
c->dstColorspaceTable,
c->srcColorspaceTable,
sizeof(
int) * 4))
1144 contrast, saturation);
1149 contrast, saturation);
1159 int *srcRange,
int **
table,
int *dstRange,
1160 int *brightness,
int *contrast,
int *saturation)
1165 if (
c->nb_slice_ctx) {
1167 table, dstRange, brightness, contrast,
1171 *inv_table =
c->srcColorspaceTable;
1172 *
table =
c->dstColorspaceTable;
1175 *brightness =
c->brightness;
1176 *contrast =
c->contrast;
1177 *saturation =
c->saturation;
1202 tbl = (uint16_t*)
av_malloc(
sizeof(uint16_t) * 1 << 16);
1206 for (
i = 0;
i < 65536; ++
i) {
1207 tbl[
i] = pow(
i / 65535.0, e) * 65535.0;
1280 int usesVFilter, usesHFilter;
1287 int dst_stride =
FFALIGN(dstW *
sizeof(int16_t) + 66, 16);
1294 static const float float_mult = 1.0f / 255.0f;
1300 unscaled = (srcW == dstW && srcH == dstH);
1302 if (!
c->contrast && !
c->saturation && !
c->dstFormatBpp)
1305 c->dstRange, 0, 1 << 16, 1 << 16);
1308 srcFormat =
c->srcFormat;
1309 dstFormat =
c->dstFormat;
1346 if (dstW < srcW && dstH < srcH)
1348 else if (dstW > srcW && dstH > srcH)
1353 }
else if (
i & (
i - 1)) {
1355 "Exactly one scaler algorithm must be chosen, got %X\n",
i);
1359 if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1363 srcW, srcH, dstW, dstH);
1367 if (srcW < 8 || dstW < 8) {
1374 dstFilter = &dummyFilter;
1376 srcFilter = &dummyFilter;
1378 c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1379 c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1382 c->vRounder = 4 * 0x0001000100010001ULL;
1384 usesVFilter = (srcFilter->
lumV && srcFilter->
lumV->
length > 1) ||
1388 usesHFilter = (srcFilter->
lumH && srcFilter->
lumH->
length > 1) ||
1396 c->dst_slice_align = 1 <<
c->chrDstVSubSample;
1405 if (
c->chrSrcHSubSample == 0
1406 &&
c->chrSrcVSubSample == 0
1410 av_log(
c,
AV_LOG_DEBUG,
"Forcing full internal H chroma due to input having non subsampled chroma\n");
1430 "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1439 "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1448 "%s output is not supported with half chroma resolution, switching to full\n",
1480 "full chroma interpolation for destination format '%s' not yet implemented\n",
1486 c->chrDstHSubSample = 1;
1491 c->chrSrcVSubSample +=
c->vChrDrop;
1510 ((dstW >>
c->chrDstHSubSample) <= (srcW >> 1) ||
1512 c->chrSrcHSubSample = 1;
1531 if (
c->dstBpc == 16)
1535 c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1536 c->chrDstW >=
c->chrSrcW &&
1538 if (!
c->canMMXEXTBeUsed && dstW >= srcW &&
c->chrDstW >=
c->chrSrcW && (srcW & 15) == 0
1543 "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1546 c->canMMXEXTBeUsed = 0;
1548 c->canMMXEXTBeUsed = 0;
1550 c->chrXInc = (((int64_t)
c->chrSrcW << 16) + (
c->chrDstW >> 1)) /
c->chrDstW;
1551 c->chrYInc = (((int64_t)
c->chrSrcH << 16) + (
c->chrDstH >> 1)) /
c->chrDstH;
1561 if (
c->canMMXEXTBeUsed) {
1567 c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1568 c->chrXInc = ((int64_t)(
c->chrSrcW - 2) << 16) / (
c->chrDstW - 2) - 20;
1573 c->gamma_value = 2.2;
1577 if (!unscaled &&
c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
1579 c->cascaded_context[0] =
NULL;
1582 srcW, srcH, tmpFmt, 64);
1589 if (!
c->cascaded_context[0]) {
1595 flags, srcFilter, dstFilter,
c->param);
1597 if (!
c->cascaded_context[1])
1600 c2 =
c->cascaded_context[1];
1601 c2->is_internal_gamma = 1;
1604 if (!
c2->gamma || !
c2->inv_gamma)
1613 c->cascaded_context[1] =
NULL;
1617 c->cascaded_context[2] =
NULL;
1618 if (dstFormat != tmpFmt) {
1620 dstW, dstH, tmpFmt, 64);
1625 dstW, dstH, dstFormat,
1627 if (!
c->cascaded_context[2])
1640 srcW, srcH, tmpFormat, 64);
1645 srcW, srcH, tmpFormat,
1647 if (!
c->cascaded_context[0])
1651 dstW, dstH, dstFormat,
1653 if (!
c->cascaded_context[1])
1660 for (
i = 0;
i < 256; ++
i){
1661 c->uint2float_lut[
i] = (
float)
i * float_mult;
1667 (!unscaled || unscaled && dstFormat != srcFormat && (srcFormat !=
AV_PIX_FMT_GRAYF32 ||
1672 if (CONFIG_SWSCALE_ALPHA &&
isALPHA(srcFormat) && !
isALPHA(dstFormat)) {
1677 dstFormat != tmpFormat ||
1678 usesHFilter || usesVFilter ||
1679 c->srcRange !=
c->dstRange
1681 c->cascaded_mainindex = 1;
1683 srcW, srcH, tmpFormat, 64);
1688 srcW, srcH, tmpFormat,
1690 if (!
c->cascaded_context[0])
1692 c->cascaded_context[0]->alphablend =
c->alphablend;
1698 dstW, dstH, dstFormat,
1700 if (!
c->cascaded_context[1])
1703 c->cascaded_context[1]->srcRange =
c->srcRange;
1704 c->cascaded_context[1]->dstRange =
c->dstRange;
1715 if (unscaled && !usesHFilter && !usesVFilter &&
1718 (
c->srcRange ==
c->dstRange ||
isAnyRGB(dstFormat)) &&
1725 "using alpha blendaway %s -> %s special converter\n",
1731 if (unscaled && !usesHFilter && !usesVFilter &&
1732 (
c->srcRange ==
c->dstRange ||
isAnyRGB(dstFormat) ||
1737 if (
c->convert_unscaled) {
1740 "using unscaled %s -> %s special converter\n",
1746 #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
1754 #if HAVE_MMXEXT_INLINE
1763 c->lumMmxextFilterCode = mmap(
NULL,
c->lumMmxextFilterCodeSize,
1764 PROT_READ | PROT_WRITE,
1765 MAP_PRIVATE | MAP_ANONYMOUS,
1767 c->chrMmxextFilterCode = mmap(
NULL,
c->chrMmxextFilterCodeSize,
1768 PROT_READ | PROT_WRITE,
1769 MAP_PRIVATE | MAP_ANONYMOUS,
1771 #elif HAVE_VIRTUALALLOC
1772 c->lumMmxextFilterCode = VirtualAlloc(
NULL,
1773 c->lumMmxextFilterCodeSize,
1775 PAGE_EXECUTE_READWRITE);
1776 c->chrMmxextFilterCode = VirtualAlloc(
NULL,
1777 c->chrMmxextFilterCodeSize,
1779 PAGE_EXECUTE_READWRITE);
1781 c->lumMmxextFilterCode =
av_malloc(
c->lumMmxextFilterCodeSize);
1782 c->chrMmxextFilterCode =
av_malloc(
c->chrMmxextFilterCodeSize);
1785 #ifdef MAP_ANONYMOUS
1786 if (
c->lumMmxextFilterCode == MAP_FAILED ||
c->chrMmxextFilterCode == MAP_FAILED)
1788 if (!
c->lumMmxextFilterCode || !
c->chrMmxextFilterCode)
1802 c->hLumFilter, (uint32_t*)
c->hLumFilterPos, 8);
1804 c->hChrFilter, (uint32_t*)
c->hChrFilterPos, 4);
1807 if ( mprotect(
c->lumMmxextFilterCode,
c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1808 || mprotect(
c->chrMmxextFilterCode,
c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1824 &
c->hLumFilterSize,
c->lumXInc,
1825 srcW, dstW, filterAlign, 1 << 14,
1835 &
c->hChrFilterSize,
c->chrXInc,
1836 c->chrSrcW,
c->chrDstW, filterAlign, 1 << 14,
1854 if ((
ret =
initFilter(&
c->vLumFilter, &
c->vLumFilterPos, &
c->vLumFilterSize,
1855 c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1862 if ((
ret =
initFilter(&
c->vChrFilter, &
c->vChrFilterPos, &
c->vChrFilterSize,
1863 c->chrYInc,
c->chrSrcH,
c->chrDstH,
1864 filterAlign, (1 << 12),
1878 for (
i = 0;
i <
c->vLumFilterSize *
c->dstH;
i++) {
1880 short *p = (
short *)&
c->vYCoeffsBank[
i];
1881 for (j = 0; j < 8; j++)
1882 p[j] =
c->vLumFilter[
i];
1885 for (
i = 0;
i <
c->vChrFilterSize *
c->chrDstH;
i++) {
1887 short *p = (
short *)&
c->vCCoeffsBank[
i];
1888 for (j = 0; j < 8; j++)
1889 p[j] =
c->vChrFilter[
i];
1894 for (
i = 0;
i < 4;
i++)
1898 c->needAlpha = (CONFIG_SWSCALE_ALPHA &&
isALPHA(
c->srcFormat) &&
isALPHA(
c->dstFormat)) ? 1 : 0;
1901 c->uv_off = (dst_stride>>1) + 64 / (
c->dstBpc &~ 7);
1902 c->uv_offx2 = dst_stride + 16;
1907 const char *scaler =
NULL, *cpucaps;
1916 scaler =
"ehh flags invalid?!";
1935 cpucaps =
"AltiVec";
1943 "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1944 c->srcW,
c->srcH,
c->dstW,
c->dstH,
c->lumXInc,
c->lumYInc);
1946 "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1947 c->chrSrcW,
c->chrSrcH,
c->chrDstW,
c->chrDstH,
1948 c->chrXInc,
c->chrYInc);
1958 int tmpW = sqrt(srcW * (int64_t)dstW);
1959 int tmpH = sqrt(srcH * (int64_t)dstH);
1965 if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1969 tmpW, tmpH, tmpFormat, 64);
1974 tmpW, tmpH, tmpFormat,
1976 if (!
c->cascaded_context[0])
1980 dstW, dstH, dstFormat,
1982 if (!
c->cascaded_context[1])
2002 c->nb_threads =
ret;
2004 c->slice_ctx =
av_calloc(
c->nb_threads,
sizeof(*
c->slice_ctx));
2005 c->slice_err =
av_calloc(
c->nb_threads,
sizeof(*
c->slice_err));
2006 if (!
c->slice_ctx || !
c->slice_err)
2009 for (
int i = 0;
i <
c->nb_threads;
i++) {
2011 if (!
c->slice_ctx[
i])
2014 c->slice_ctx[
i]->parent =
c;
2020 c->slice_ctx[
i]->nb_threads = 1;
2030 "Error-diffusion dither is in use, scaling will be single-threaded.");
2047 if (!
c->frame_src || !
c->frame_dst)
2053 src_format =
c->srcFormat;
2054 dst_format =
c->dstFormat;
2058 if (src_format !=
c->srcFormat || dst_format !=
c->dstFormat)
2061 if (
c->nb_threads != 1) {
2063 if (ret < 0 || c->nb_threads > 1)
2073 int flags,
const double *param)
2085 c->srcFormat = srcFormat;
2086 c->dstFormat = dstFormat;
2089 c->param[0] = param[0];
2090 c->param[1] = param[1];
2099 SwsFilter *dstFilter,
const double *param)
2104 dstW, dstH, dstFormat,
2120 for (
i=0;
i<
a->length;
i++)
2129 for (
i=0;
i<
a->length;
i++)
2137 if(length <= 0 || length > INT_MAX/
sizeof(
double))
2152 const int length = (
int)(variance *
quality + 0.5) | 1;
2154 double middle = (length - 1) * 0.5;
2157 if(variance < 0 ||
quality < 0)
2165 for (
i = 0;
i < length;
i++) {
2166 double dist =
i - middle;
2167 vec->
coeff[
i] =
exp(-dist * dist / (2 * variance * variance)) /
2168 sqrt(2 * variance *
M_PI);
2189 for (
i = 0;
i < length;
i++)
2210 for (
i = 0;
i <
a->length;
i++)
2220 for (
i = 0;
i <
a->length;
i++)
2221 a->coeff[
i] *= scalar;
2231 int length =
FFMAX(
a->length,
b->length);
2238 for (
i = 0;
i <
a->length;
i++)
2239 vec->
coeff[
i + (length - 1) / 2 - (
a->length - 1) / 2] +=
a->coeff[
i];
2240 for (
i = 0;
i <
b->length;
i++)
2241 vec->
coeff[
i + (length - 1) / 2 - (
b->length - 1) / 2] +=
b->coeff[
i];
2256 for (
i = 0;
i <
a->length;
i++) {
2257 vec->
coeff[
i + (length - 1) / 2 -
2258 (
a->length - 1) / 2 -
shift] =
a->coeff[
i];
2273 a->coeff = shifted->
coeff;
2304 for (
i = 0;
i <
a->length;
i++)
2305 if (
a->coeff[
i] >
max)
2308 for (
i = 0;
i <
a->length;
i++)
2309 if (
a->coeff[
i] <
min)
2314 for (
i = 0;
i <
a->length;
i++) {
2316 av_log(log_ctx, log_level,
"%1.3f ",
a->coeff[
i]);
2318 av_log(log_ctx, log_level,
" ");
2319 av_log(log_ctx, log_level,
"|\n");
2345 float lumaSharpen,
float chromaSharpen,
2346 float chromaHShift,
float chromaVShift,
2353 if (lumaGBlur != 0.0) {
2361 if (chromaGBlur != 0.0) {
2372 if (chromaSharpen != 0.0) {
2383 if (lumaSharpen != 0.0) {
2394 if (chromaHShift != 0.0)
2397 if (chromaVShift != 0.0)
2433 for (
i = 0;
i <
c->nb_slice_ctx;
i++)
2440 for (
i = 0;
i < 4;
i++)
2464 if (
c->lumMmxextFilterCode)
2465 munmap(
c->lumMmxextFilterCode,
c->lumMmxextFilterCodeSize);
2466 if (
c->chrMmxextFilterCode)
2467 munmap(
c->chrMmxextFilterCode,
c->chrMmxextFilterCodeSize);
2468 #elif HAVE_VIRTUALALLOC
2469 if (
c->lumMmxextFilterCode)
2470 VirtualFree(
c->lumMmxextFilterCode, 0, MEM_RELEASE);
2471 if (
c->chrMmxextFilterCode)
2472 VirtualFree(
c->chrMmxextFilterCode, 0, MEM_RELEASE);
2477 c->lumMmxextFilterCode =
NULL;
2478 c->chrMmxextFilterCode =
NULL;
2487 memset(
c->cascaded_context, 0,
sizeof(
c->cascaded_context));
2508 const double *
param)
2516 param = default_param;
2569 for (idx = 0; idx < rl->
nb_ranges; idx++)
2576 if (prev->
start + prev->
len > start)
2579 if (idx < rl->nb_ranges) {
2609 if (idx < rl->nb_ranges - 1) {
#define FF_ALLOCZ_TYPED_ARRAY(p, nelem)
static void error(const char *err)
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
struct SwsContext * sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Check if context can be reused, otherwise reallocate a new one.
#define INLINE_MMX(flags)
@ AV_PIX_FMT_XYZ12LE
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as lit...
enum AVPixelFormat av_pix_fmt_swap_endianness(enum AVPixelFormat pix_fmt)
Utility function to swap the endianness of a pixel format.
@ AV_PIX_FMT_YUV420P9LE
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
@ AV_PIX_FMT_XV30LE
packed XVYU 4:4:4, 32bpp, (msb)2X 10V 10Y 10U(lsb), little-endian, variant of Y410 where alpha channe...
#define AV_LOG_WARNING
Something somehow does not look correct.
@ AV_PIX_FMT_GRAY10BE
Y , 10bpp, big-endian.
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
AVPixelFormat
Pixel format.
@ AV_PIX_FMT_BAYER_GBRG16LE
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian
@ AV_PIX_FMT_BGR48LE
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_P416BE
interleaved chroma YUV 4:4:4, 48bpp, big-endian
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
@ AV_PIX_FMT_YA8
8 bits gray, 8 bits alpha
@ AV_PIX_FMT_BGRA64BE
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
static SwsVector * sws_getIdentityVec(void)
Allocate and return a vector with just one coefficient, with value 1.0.
int dstW
Width of destination luma/alpha planes.
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
static void fill_xyztables(struct SwsContext *c)
@ AV_PIX_FMT_RGB444LE
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined
@ AV_PIX_FMT_GBRP16BE
planar GBR 4:4:4 48bpp, big-endian
@ AV_PIX_FMT_GBRP10BE
planar GBR 4:4:4 30bpp, big-endian
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_YUV422P14LE
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define EXTERNAL_AVX2_FAST(flags)
@ AV_PIX_FMT_YUVA444P10BE
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
@ AV_PIX_FMT_RGBA64BE
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
static int handle_0alpha(enum AVPixelFormat *format)
@ AV_PIX_FMT_YUV440P12BE
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
@ AV_PIX_FMT_GBRAPF32LE
IEEE-754 single precision planar GBRA 4:4:4:4, 128bpp, little-endian.
@ AV_PIX_FMT_GBRPF32BE
IEEE-754 single precision planar GBR 4:4:4, 96bpp, big-endian.
int depth
Number of bits in the component.
@ AV_PIX_FMT_P412BE
interleaved chroma YUV 4:4:4, 36bpp, data in the high bits, big-endian
static const uint16_t table[]
@ AV_PIX_FMT_P010BE
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits,...
@ AV_PIX_FMT_MONOWHITE
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb.
@ AV_PIX_FMT_YUV420P14BE
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
#define AV_PIX_FMT_YUV420P10
@ AV_PIX_FMT_YUV420P16LE
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
#define AV_LOG_VERBOSE
Detailed information.
@ AV_PIX_FMT_GBRP14BE
planar GBR 4:4:4 42bpp, big-endian
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
@ AV_PIX_FMT_YUV422P9BE
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
@ AV_PIX_FMT_YUVA444P9BE
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
static SwsVector * sws_getShiftedVec(SwsVector *a, int shift)
#define AVERROR_UNKNOWN
Unknown error, typically from an external library.
@ AV_PIX_FMT_BAYER_GRBG16BE
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian
static atomic_int cpu_flags
@ AV_PIX_FMT_GRAY10LE
Y , 10bpp, little-endian.
@ AV_PIX_FMT_GRAYF32LE
IEEE-754 single precision Y, 32bpp, little-endian.
@ AV_PIX_FMT_GBRAP14BE
planar GBR 4:4:4:4 56bpp, big-endian
@ AV_PIX_FMT_RGB555BE
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian , X=unused/undefined
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about quality
@ AV_PIX_FMT_RGBAF16LE
IEEE-754 half precision packed RGBA 16:16:16:16, 64bpp, RGBARGBA..., little-endian.
void sws_freeVec(SwsVector *a)
@ AV_PIX_FMT_AYUV64LE
packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
@ AV_PIX_FMT_YUV444P16LE
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
@ AV_PIX_FMT_BAYER_GBRG16BE
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian
static int sws_init_single_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
static int isnan_vec(SwsVector *a)
@ AV_PIX_FMT_GBRAP12LE
planar GBR 4:4:4:4 48bpp, little-endian
#define SWS_FAST_BILINEAR
static int handle_jpeg(enum AVPixelFormat *format)
@ AV_PIX_FMT_GRAY16BE
Y , 16bpp, big-endian.
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
#define AV_PIX_FMT_GBRP14
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
@ AV_PIX_FMT_YUV420P12LE
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
int avpriv_slicethread_create(AVSliceThread **pctx, void *priv, void(*worker_func)(void *priv, int jobnr, int threadnr, int nb_jobs, int nb_threads), void(*main_func)(void *priv), int nb_threads)
Create slice threading context.
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_YUV422P9
@ AV_PIX_FMT_GRAY9LE
Y , 9bpp, little-endian.
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
#define FF_ALLOC_TYPED_ARRAY(p, nelem)
#define AV_PIX_FMT_GRAY16
@ AV_PIX_FMT_YUVA444P16BE
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
@ AV_PIX_FMT_YUV444P10BE
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
@ AV_PIX_FMT_YUV420P10LE
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
#define AV_CPU_FLAG_SLOW_GATHER
CPU has slow gathers.
@ AV_PIX_FMT_VUYA
packed VUYA 4:4:4, 32bpp, VUYAVUYA...
@ AV_PIX_FMT_YUV444P12LE
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
#define AV_PIX_FMT_YUV444P10
int ff_init_filters(SwsContext *c)
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
uint8_t is_supported_endianness
@ AV_PIX_FMT_YUV422P12BE
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
@ AV_PIX_FMT_YUV444P14LE
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
@ AV_PIX_FMT_BGR8
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
static __device__ float ceil(float a)
static int ff_thread_once(char *control, void(*routine)(void))
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
@ AV_PIX_FMT_BAYER_RGGB16BE
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int srcPos, int dstPos)
#define FF_ARRAY_ELEMS(a)
enum AVPixelFormat srcFormat
Source pixel format.
#define AV_PIX_FMT_YUV422P16
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define SWS_MAX_REDUCE_CUTOFF
int ff_range_add(RangeList *rl, unsigned int start, unsigned int len)
@ AV_PIX_FMT_GBRAP16BE
planar GBRA 4:4:4:4 64bpp, big-endian
static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
Print with av_log() a textual representation of the vector a if log_level <= av_log_level.
void * av_fast_realloc(void *ptr, unsigned int *size, size_t min_size)
Reallocate the given buffer if it is not large enough, otherwise do nothing.
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
@ AV_PIX_FMT_GBRP16LE
planar GBR 4:4:4 48bpp, little-endian
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
@ AV_PIX_FMT_P416LE
interleaved chroma YUV 4:4:4, 48bpp, little-endian
@ AV_PIX_FMT_BAYER_RGGB16LE
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
@ AV_PIX_FMT_P210LE
interleaved chroma YUV 4:2:2, 20bpp, data in the high bits, little-endian
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample format(the sample packing is implied by the sample format) and sample rate. The lists are not just lists
@ AV_PIX_FMT_BAYER_BGGR8
bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples
#define SWS_FULL_CHR_H_INP
static enum AVPixelFormat pix_fmt
int length
number of coefficients in the vector
SwsVector * sws_allocVec(int length)
Allocate and return an uninitialized vector with length coefficients.
@ AV_PIX_FMT_P016BE
like NV12, with 16bpp per component, big-endian
@ AV_PIX_FMT_GBRP12LE
planar GBR 4:4:4 36bpp, little-endian
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
#define AV_PIX_FMT_YUV420P9
@ AV_PIX_FMT_YUVA420P16BE
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define AV_PIX_FMT_YUV420P16
static const ScaleAlgorithm scale_algorithms[]
int flag
flag associated to the algorithm
@ AV_PIX_FMT_RGB4
packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in ...
static const FormatEntry format_entries[]
@ AV_PIX_FMT_GBRP10LE
planar GBR 4:4:4 30bpp, little-endian
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
SwsVector * sws_getGaussianVec(double variance, double quality)
Return a normalized Gaussian curve used to filter stuff quality = 3 is high quality,...
#define AV_PIX_FMT_GRAYF32
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
enum AVPixelFormat dstFormat
Destination pixel format.
@ AV_PIX_FMT_YUV444P10LE
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
@ AV_PIX_FMT_BAYER_RGGB8
bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
@ AV_PIX_FMT_YUVA422P10LE
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
av_cold void ff_sws_init_range_convert(SwsContext *c)
@ AV_PIX_FMT_BAYER_GRBG16LE
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian
@ AV_PIX_FMT_YUV444P9BE
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default minimum maximum flags name is the option keep it simple and lowercase description are in without and describe what they for example set the foo of the bar offset is the offset of the field in your context
@ AV_PIX_FMT_YUV422P10BE
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
static uint16_t * alloc_gamma_tbl(double e)
#define AV_PIX_FMT_GBRP16
@ AV_PIX_FMT_YUV422P16LE
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
@ AV_PIX_FMT_RGB565LE
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
void ff_get_unscaled_swscale(SwsContext *c)
Set c->convert_unscaled to an unscaled converter if one exists for the specific source and destinatio...
#define SWS_SRC_V_CHR_DROP_SHIFT
Describe the class of an AVClass context structure.
@ AV_PIX_FMT_GBRAPF32BE
IEEE-754 single precision planar GBRA 4:4:4:4, 128bpp, big-endian.
@ AV_PIX_FMT_GBRAP12BE
planar GBR 4:4:4:4 48bpp, big-endian
@ AV_PIX_FMT_P012LE
like NV12, with 12bpp per component, data in the high bits, zeros in the low bits,...
#define RETCODE_USE_CASCADE
@ AV_PIX_FMT_YUYV422
packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
@ AV_PIX_FMT_P210BE
interleaved chroma YUV 4:2:2, 20bpp, data in the high bits, big-endian
@ AV_PIX_FMT_RGB48LE
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
@ AV_PIX_FMT_YA16LE
16 bits gray, 16 bits alpha (little-endian)
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
SwsFilter * sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose)
@ AV_PIX_FMT_MONOBLACK
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb.
@ AV_PIX_FMT_YUVA422P12LE
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, little-endian
#define ROUNDED_DIV(a, b)
@ AV_PIX_FMT_BGR565LE
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
@ AV_PIX_FMT_RGBA64LE
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
@ AV_PIX_FMT_YUVA444P12BE
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, big-endian
SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
static void makenan_vec(SwsVector *a)
@ AV_PIX_FMT_YUVA444P9LE
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
@ AV_PIX_FMT_Y210LE
packed YUV 4:2:2 like YUYV422, 20bpp, data in the high bits, little-endian
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
@ AV_PIX_FMT_YUVA420P16LE
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
@ AV_PIX_FMT_RGB8
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
@ AV_PIX_FMT_BGR0
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
av_cold void ff_sws_rgb2rgb_init(void)
@ AV_PIX_FMT_BGR4
packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in ...
#define AV_PIX_FMT_YUV422P10
@ AV_PIX_FMT_YUV440P10LE
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
static void sws_addVec(SwsVector *a, SwsVector *b)
int av_opt_get_int(void *obj, const char *name, int search_flags, int64_t *out_val)
double * coeff
pointer to the list of coefficients
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
static void handle_formats(SwsContext *c)
static int range_override_needed(enum AVPixelFormat format)
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
@ AV_PIX_FMT_BGR555BE
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian , X=unused/undefined
@ AV_PIX_FMT_YUVA420P9LE
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian
const AVClass ff_sws_context_class
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
void sws_scaleVec(SwsVector *a, double scalar)
Scale all the coefficients of a by the scalar value.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static SwsVector * sws_getConstVec(double c, int length)
Allocate and return a vector with length coefficients, all with the same value c.
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
@ AV_PIX_FMT_YUV420P14LE
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
@ AV_PIX_FMT_YUV444P14BE
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
@ AV_PIX_FMT_BGR4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
@ AV_PIX_FMT_X2RGB10LE
packed RGB 10:10:10, 30bpp, (msb)2X 10R 10G 10B(lsb), little-endian, X=unused/undefined
#define SWS_PARAM_DEFAULT
@ AV_PIX_FMT_P212LE
interleaved chroma YUV 4:2:2, 24bpp, data in the high bits, little-endian
@ AV_PIX_FMT_YUV420P9BE
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align)
Allocate an image with size w and h and pixel format pix_fmt, and fill pointers and linesizes accordi...
void ff_sws_slice_worker(void *priv, int jobnr, int threadnr, int nb_jobs, int nb_threads)
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
@ AV_PIX_FMT_YUV440P12LE
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
void ff_sws_init_scale(SwsContext *c)
#define PPC_ALTIVEC(flags)
SwsContext * sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Allocate and return an SwsContext.
static int shift(int a, int b)
@ AV_PIX_FMT_BAYER_BGGR16LE
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian
@ AV_PIX_FMT_YUV420P12BE
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
@ AV_PIX_FMT_YUV422P10LE
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_RGB444BE
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian, X=unused/undefined
#define SWS_FULL_CHR_H_INT
@ AV_PIX_FMT_YUV422P14BE
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
@ AV_PIX_FMT_YA16BE
16 bits gray, 16 bits alpha (big-endian)
@ AV_PIX_FMT_GRAY12LE
Y , 12bpp, little-endian.
#define AV_PIX_FMT_BGR555
int srcH
Height of source luma/alpha planes.
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_GBRP9BE
planar GBR 4:4:4 27bpp, big-endian
@ AV_PIX_FMT_YUV420P10BE
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
@ AV_PIX_FMT_RGBAF16BE
IEEE-754 half precision packed RGBA 16:16:16:16, 64bpp, RGBARGBA..., big-endian.
@ AV_PIX_FMT_NV16
interleaved chroma YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
@ AV_PIX_FMT_BGR444BE
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian, X=unused/undefined
@ AV_PIX_FMT_GBRP9LE
planar GBR 4:4:4 27bpp, little-endian
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
@ AV_PIX_FMT_GBRAP10LE
planar GBR 4:4:4:4 40bpp, little-endian
@ AV_PIX_FMT_BGR565BE
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported input format, 0 otherwise.
@ AV_PIX_FMT_P012BE
like NV12, with 12bpp per component, data in the high bits, zeros in the low bits,...
@ AV_PIX_FMT_P410LE
interleaved chroma YUV 4:4:4, 30bpp, data in the high bits, little-endian
@ AV_PIX_FMT_YUVA420P10LE
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
#define AV_LOG_INFO
Standard information.
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
@ AV_PIX_FMT_BGRA64LE
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
@ AV_PIX_FMT_YUVA422P10BE
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
static int handle_xyz(enum AVPixelFormat *format)
@ AV_PIX_FMT_YUVA444P12LE
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, little-endian
@ AV_PIX_FMT_YUVA422P9BE
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
#define AV_PIX_FMT_BGRA64
int srcW
Width of source luma/alpha planes.
@ AV_PIX_FMT_RGB555LE
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_RGB48BE
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
const int32_t ff_yuv2rgb_coeffs[11][4]
static int context_init_threaded(SwsContext *c, SwsFilter *src_filter, SwsFilter *dst_filter)
static void sws_shiftVec(SwsVector *a, int shift)
#define i(width, name, range_min, range_max)
#define AV_PIX_FMT_GBRP12
#define av_malloc_array(a, b)
@ AV_PIX_FMT_GRAY9BE
Y , 9bpp, big-endian.
@ AV_PIX_FMT_NV24
planar YUV 4:4:4, 24bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
int ff_free_filters(SwsContext *c)
@ AV_PIX_FMT_BAYER_GBRG8
bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples
static double getSplineCoeff(double a, double b, double c, double d, double dist)
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported output format, 0 otherwise.
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
@ AV_PIX_FMT_XYZ12BE
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big...
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
@ AV_PIX_FMT_NV21
as above, but U and V bytes are swapped
#define AV_PIX_FMT_BGR565
@ AV_PIX_FMT_RGB4_BYTE
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
@ AV_PIX_FMT_YUV444P16BE
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
@ AV_PIX_FMT_GBRPF32LE
IEEE-754 single precision planar GBR 4:4:4, 96bpp, little-endian.
@ AV_PIX_FMT_NV42
as above, but U and V bytes are swapped
void * av_calloc(size_t nmemb, size_t size)
#define AV_PIX_FMT_YUV444P9
void sws_freeFilter(SwsFilter *filter)
static av_always_inline int isFloat(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_GBRAP16LE
planar GBRA 4:4:4:4 64bpp, little-endian
@ AV_PIX_FMT_PAL8
8 bits with AV_PIX_FMT_RGB32 palette
@ AV_PIX_FMT_GRAY12BE
Y , 12bpp, big-endian.
@ AV_PIX_FMT_YVYU422
packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb
@ AV_PIX_FMT_0BGR
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
@ AV_PIX_FMT_NV12
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
#define FFSWAP(type, a, b)
@ AV_PIX_FMT_Y212LE
packed YUV 4:2:2 like YUYV422, 24bpp, data in the high bits, zeros in the low bits,...
@ AV_PIX_FMT_BAYER_BGGR16BE
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian
@ AV_PIX_FMT_P410BE
interleaved chroma YUV 4:4:4, 30bpp, data in the high bits, big-endian
@ AV_PIX_FMT_P016LE
like NV12, with 16bpp per component, little-endian
@ AV_PIX_FMT_GRAYF32BE
IEEE-754 single precision Y, 32bpp, big-endian.
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
@ AV_PIX_FMT_GBRP12BE
planar GBR 4:4:4 36bpp, big-endian
@ AV_PIX_FMT_UYVY422
packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
@ AV_PIX_FMT_YUV444P12BE
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
#define AV_CPU_FLAG_MMX
standard MMX
void sws_freeContext(SwsContext *c)
Free the swscaler context swsContext.
@ AV_PIX_FMT_YUV444P9LE
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
int ff_shuffle_filter_coefficients(SwsContext *c, int *filterPos, int filterSize, int16_t *filter, int dstW)
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
@ AV_PIX_FMT_P216LE
interleaved chroma YUV 4:2:2, 32bpp, little-endian
const char * description
human-readable description
#define INLINE_MMXEXT(flags)
@ AV_PIX_FMT_YUVA420P10BE
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_RGB565BE
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
@ AV_PIX_FMT_YUV420P16BE
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
@ AV_PIX_FMT_YUV422P16BE
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
@ AV_PIX_FMT_P212BE
interleaved chroma YUV 4:2:2, 24bpp, data in the high bits, big-endian
@ AV_PIX_FMT_GRAY16LE
Y , 16bpp, little-endian.
@ AV_PIX_FMT_X2BGR10LE
packed BGR 10:10:10, 30bpp, (msb)2X 10B 10G 10R(lsb), little-endian, X=unused/undefined
static av_always_inline int isBayer16BPS(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
@ AV_PIX_FMT_P010LE
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits,...
@ AV_PIX_FMT_YUVA444P10LE
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
@ AV_PIX_FMT_BGR555LE
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined
const VDPAUPixFmtMap * map
int size_factor
size factor used when initing the filters
int av_opt_copy(void *dst, const void *src)
Copy options from src object into dest object.
@ AV_PIX_FMT_P216BE
interleaved chroma YUV 4:2:2, 32bpp, big-endian
SwsContext * sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, const double *param)
Allocate and return an SwsContext.
@ AV_PIX_FMT_P412LE
interleaved chroma YUV 4:4:4, 36bpp, data in the high bits, little-endian
@ AV_PIX_FMT_GRAY14LE
Y , 14bpp, little-endian.
@ AV_PIX_FMT_XV36LE
packed XVYU 4:4:4, 48bpp, data in the high bits, zeros in the low bits, little-endian,...
static SwsVector * sws_sumVec(SwsVector *a, SwsVector *b)
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
@ AV_PIX_FMT_GRAY14BE
Y , 14bpp, big-endian.
@ AV_PIX_FMT_YUVA422P16BE
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
@ AV_PIX_FMT_YUV440P10BE
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
@ AV_PIX_FMT_YUV422P9LE
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
@ AV_PIX_FMT_YUVA422P16LE
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
@ AV_PIX_FMT_GBRP14LE
planar GBR 4:4:4 42bpp, little-endian
av_cold void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation)
#define flags(name, subs,...)
@ AV_PIX_FMT_0RGB
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
void avpriv_slicethread_free(AVSliceThread **pctx)
Destroy slice threading context.
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
static const double coeff[2][5]
@ AV_PIX_FMT_GBRAP10BE
planar GBR 4:4:4:4 40bpp, big-endian
#define atomic_init(obj, value)
@ AV_PIX_FMT_YUVA444P16LE
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
@ AV_PIX_FMT_VUYX
packed VUYX 4:4:4, 32bpp, Variant of VUYA where alpha channel is left undefined
@ AV_PIX_FMT_YUVA422P12BE
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, big-endian
@ AV_PIX_FMT_BGR444LE
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined
#define SWS_SRC_V_CHR_DROP_MASK
static double sws_dcVec(SwsVector *a)
int dstH
Height of destination luma/alpha planes.
@ AV_PIX_FMT_YUV422P12LE
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
void sws_normalizeVec(SwsVector *a, double height)
Scale all the coefficients of a so that their sum equals height.
@ AV_PIX_FMT_YUVA420P9BE
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
@ AV_PIX_FMT_BAYER_GRBG8
bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples
@ AV_PIX_FMT_GBRAP14LE
planar GBR 4:4:4:4 56bpp, little-endian
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
@ AV_PIX_FMT_UYYVYY411
packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
@ AV_PIX_FMT_BGR48BE
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
#define SWS_ERROR_DIFFUSION
@ AV_PIX_FMT_YUVA422P9LE
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
double param[2]
Input parameters for scaling algorithms that need them.