Go to the documentation of this file.
147 #define FULLPEL_MODE 1
148 #define HALFPEL_MODE 2
149 #define THIRDPEL_MODE 3
150 #define PREDICT_MODE 4
162 0 + 0 * 4, 1 + 0 * 4, 2 + 0 * 4, 2 + 1 * 4,
163 2 + 2 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4,
164 0 + 1 * 4, 0 + 2 * 4, 1 + 1 * 4, 1 + 2 * 4,
165 0 + 3 * 4, 1 + 3 * 4, 2 + 3 * 4, 3 + 3 * 4,
169 0 * 16 + 0 * 64, 1 * 16 + 0 * 64, 2 * 16 + 0 * 64, 0 * 16 + 2 * 64,
170 3 * 16 + 0 * 64, 0 * 16 + 1 * 64, 1 * 16 + 1 * 64, 2 * 16 + 1 * 64,
171 1 * 16 + 2 * 64, 2 * 16 + 2 * 64, 3 * 16 + 2 * 64, 0 * 16 + 3 * 64,
172 3 * 16 + 1 * 64, 1 * 16 + 3 * 64, 2 * 16 + 3 * 64, 3 * 16 + 3 * 64,
178 { 0, 2 }, { 1, 1 }, { 2, 0 },
179 { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
180 { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
181 { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
182 { 2, 4 }, { 3, 3 }, { 4, 2 },
188 { { 2, -1, -1, -1, -1 }, { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 },
189 { 2, 1, -1, -1, -1 }, { 1, 2, -1, -1, -1 }, { 1, 2, -1, -1, -1 } },
190 { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
191 { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
192 { { 2, 0, -1, -1, -1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
193 { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
194 { { 2, 0, -1, -1, -1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
195 { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
196 { { 0, 2, -1, -1, -1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
197 { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
198 { { 0, 2, -1, -1, -1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
199 { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
202 static const struct {
206 { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
207 { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
208 { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
209 { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
213 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
214 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
215 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
216 61694, 68745, 77615, 89113, 100253, 109366, 126635, 141533
227 for (
i = 0;
i < 4;
i++) {
228 const int z0 = 13 * (
input[4 *
i + 0] +
input[4 *
i + 2]);
229 const int z1 = 13 * (
input[4 *
i + 0] -
input[4 *
i + 2]);
230 const int z2 = 7 *
input[4 *
i + 1] - 17 *
input[4 *
i + 3];
231 const int z3 = 17 *
input[4 *
i + 1] + 7 *
input[4 *
i + 3];
233 temp[4 *
i + 0] = z0 + z3;
234 temp[4 *
i + 1] = z1 + z2;
235 temp[4 *
i + 2] = z1 - z2;
236 temp[4 *
i + 3] = z0 - z3;
239 for (
i = 0;
i < 4;
i++) {
240 const int offset = x_offset[
i];
241 const int z0 = 13 * (
temp[4 * 0 +
i] +
temp[4 * 2 +
i]);
242 const int z1 = 13 * (
temp[4 * 0 +
i] -
temp[4 * 2 +
i]);
243 const int z2 = 7 *
temp[4 * 1 +
i] - 17 *
temp[4 * 3 +
i];
244 const int z3 = 17 *
temp[4 * 1 +
i] + 7 *
temp[4 * 3 +
i];
262 : qmul * (
block[0] >> 3) / 2);
266 for (
i = 0;
i < 4;
i++) {
267 const int z0 = 13 * (
block[0 + 4 *
i] +
block[2 + 4 *
i]);
268 const int z1 = 13 * (
block[0 + 4 *
i] -
block[2 + 4 *
i]);
269 const int z2 = 7 *
block[1 + 4 *
i] - 17 *
block[3 + 4 *
i];
270 const int z3 = 17 *
block[1 + 4 *
i] + 7 *
block[3 + 4 *
i];
272 block[0 + 4 *
i] = z0 + z3;
273 block[1 + 4 *
i] = z1 + z2;
274 block[2 + 4 *
i] = z1 - z2;
275 block[3 + 4 *
i] = z0 - z3;
278 for (
i = 0;
i < 4;
i++) {
279 const unsigned z0 = 13 * (
block[
i + 4 * 0] +
block[
i + 4 * 2]);
280 const unsigned z1 = 13 * (
block[
i + 4 * 0] -
block[
i + 4 * 2]);
281 const unsigned z2 = 7 *
block[
i + 4 * 1] - 17 *
block[
i + 4 * 3];
282 const unsigned z3 = 17 *
block[
i + 4 * 1] + 7 *
block[
i + 4 * 3];
283 const int rr = (
dc + 0x80000
u);
291 memset(
block, 0, 16 *
sizeof(int16_t));
297 static const uint8_t *
const scan_patterns[4] = {
303 const int intra = 3 *
type >> 2;
304 const uint8_t *
const scan = scan_patterns[
type];
311 sign = (vlc & 1) ? 0 : -1;
318 }
else if (vlc < 4) {
331 level = (vlc >> 3) + ((
run == 0) ? 8 : ((
run < 2) ? 2 : ((
run < 5) ? 0 : -1)));
334 level = (vlc >> 4) + ((
run == 0) ? 4 : ((
run < 3) ? 2 : ((
run < 10) ? 1 : 0)));
355 int i,
int list,
int part_width)
357 const int topright_ref =
s->ref_cache[
list][
i - 8 + part_width];
360 *
C =
s->mv_cache[
list][
i - 8 + part_width];
363 *
C =
s->mv_cache[
list][
i - 8 - 1];
364 return s->ref_cache[
list][
i - 8 - 1];
376 int part_width,
int list,
377 int ref,
int *
const mx,
int *
const my)
379 const int index8 =
scan8[n];
380 const int top_ref =
s->ref_cache[
list][index8 - 8];
381 const int left_ref =
s->ref_cache[
list][index8 - 1];
382 const int16_t *
const A =
s->mv_cache[
list][index8 - 1];
383 const int16_t *
const B =
s->mv_cache[
list][index8 - 8];
385 int diagonal_ref, match_count;
396 match_count = (diagonal_ref ==
ref) + (top_ref ==
ref) + (left_ref ==
ref);
397 if (match_count > 1) {
400 }
else if (match_count == 1) {
401 if (left_ref ==
ref) {
404 }
else if (top_ref ==
ref) {
426 int mx,
int my,
int dxy,
427 int thirdpel,
int dir,
int avg)
429 const SVQ3Frame *pic = (dir == 0) ?
s->last_pic :
s->next_pic;
432 int blocksize = 2 - (
width >> 3);
433 int linesize =
s->cur_pic->f->linesize[0];
434 int uvlinesize =
s->cur_pic->f->linesize[1];
439 if (mx < 0 || mx >=
s->h_edge_pos -
width - 1 ||
440 my < 0 || my >=
s->v_edge_pos -
height - 1) {
447 dest =
s->cur_pic->f->data[0] + x + y * linesize;
448 src = pic->
f->
data[0] + mx + my * linesize;
451 s->vdsp.emulated_edge_mc(
s->edge_emu_buffer,
src,
454 mx, my,
s->h_edge_pos,
s->v_edge_pos);
455 src =
s->edge_emu_buffer;
458 (
avg ?
s->tdsp.avg_tpel_pixels_tab
459 :
s->tdsp.put_tpel_pixels_tab)[dxy](dest,
src, linesize,
462 (
avg ?
s->hdsp.avg_pixels_tab
463 :
s->hdsp.put_pixels_tab)[blocksize][dxy](dest,
src, linesize,
467 mx = mx + (mx < (
int) x) >> 1;
468 my = my + (my < (
int) y) >> 1;
473 for (
i = 1;
i < 3;
i++) {
474 dest =
s->cur_pic->f->data[
i] + (x >> 1) + (y >> 1) * uvlinesize;
475 src = pic->
f->
data[
i] + mx + my * uvlinesize;
478 s->vdsp.emulated_edge_mc(
s->edge_emu_buffer,
src,
479 uvlinesize, uvlinesize,
481 mx, my, (
s->h_edge_pos >> 1),
483 src =
s->edge_emu_buffer;
486 (
avg ?
s->tdsp.avg_tpel_pixels_tab
487 :
s->tdsp.put_tpel_pixels_tab)[dxy](dest,
src,
491 (
avg ?
s->hdsp.avg_pixels_tab
492 :
s->hdsp.put_pixels_tab)[blocksize][dxy](dest,
src,
502 int i, j, k, mx, my, dx, dy, x, y;
503 const int part_width = ((
size & 5) == 4) ? 4 : 16 >> (
size & 1);
504 const int part_height = 16 >> ((unsigned)(
size + 1) / 3);
506 const int h_edge_pos = 6 * (
s->h_edge_pos - part_width) - extra_width;
507 const int v_edge_pos = 6 * (
s->v_edge_pos - part_height) - extra_width;
509 for (
i = 0;
i < 16;
i += part_height)
510 for (j = 0; j < 16; j += part_width) {
511 const int b_xy = (4 *
s->mb_x + (j >> 2)) +
512 (4 *
s->mb_y + (
i >> 2)) *
s->b_stride;
514 x = 16 *
s->mb_x + j;
515 y = 16 *
s->mb_y +
i;
516 k = (j >> 2 & 1) + (
i >> 1 & 2) +
517 (j >> 1 & 4) + (
i & 8);
522 mx =
s->next_pic->motion_val[0][b_xy][0] * 2;
523 my =
s->next_pic->motion_val[0][b_xy][1] * 2;
526 mx = mx *
s->frame_num_offset /
527 s->prev_frame_num_offset + 1 >> 1;
528 my = my *
s->frame_num_offset /
529 s->prev_frame_num_offset + 1 >> 1;
531 mx = mx * (
s->frame_num_offset -
s->prev_frame_num_offset) /
532 s->prev_frame_num_offset + 1 >> 1;
533 my = my * (
s->frame_num_offset -
s->prev_frame_num_offset) /
534 s->prev_frame_num_offset + 1 >> 1;
539 mx =
av_clip(mx, extra_width - 6 * x, h_edge_pos - 6 * x);
540 my =
av_clip(my, extra_width - 6 * y, v_edge_pos - 6 * y);
549 if (dx != (int16_t)dx || dy != (int16_t)dy) {
558 mx = (mx + 1 >> 1) + dx;
559 my = (my + 1 >> 1) + dy;
560 fx = (unsigned)(mx + 0x30000) / 3 - 0x10000;
561 fy = (unsigned)(my + 0x30000) / 3 - 0x10000;
562 dxy = (mx - 3 * fx) + 4 * (my - 3 * fy);
565 fx, fy, dxy, 1, dir,
avg);
569 mx = (unsigned)(mx + 1 + 0x30000) / 3 + dx - 0x10000;
570 my = (unsigned)(my + 1 + 0x30000) / 3 + dy - 0x10000;
571 dxy = (mx & 1) + 2 * (my & 1);
574 mx >> 1, my >> 1, dxy, 0, dir,
avg);
578 mx = (unsigned)(mx + 3 + 0x60000) / 6 + dx - 0x10000;
579 my = (unsigned)(my + 3 + 0x60000) / 6 + dy - 0x10000;
582 mx, my, 0, 0, dir,
avg);
591 if (part_height == 8 &&
i < 8) {
594 if (part_width == 8 && j < 8)
597 if (part_width == 8 && j < 8)
599 if (part_width == 4 || part_height == 4)
605 part_width >> 2, part_height >> 2,
s->b_stride,
613 int mb_type,
const int *block_offset,
614 int linesize, uint8_t *dest_y)
618 for (
i = 0;
i < 16;
i++)
619 if (
s->non_zero_count_cache[
scan8[
i]] ||
s->mb[
i * 16]) {
620 uint8_t *
const ptr = dest_y + block_offset[
i];
629 const int *block_offset,
634 int qscale =
s->qscale;
637 for (
i = 0;
i < 16;
i++) {
638 uint8_t *
const ptr = dest_y + block_offset[
i];
639 const int dir =
s->intra4x4_pred_mode_cache[
scan8[
i]];
645 topright = ptr + 4 - linesize;
649 s->hpc.pred4x4[dir](ptr, topright, linesize);
650 nnz =
s->non_zero_count_cache[
scan8[
i]];
656 s->hpc.pred16x16[
s->intra16x16_pred_mode](dest_y, linesize);
663 const int mb_x =
s->mb_x;
664 const int mb_y =
s->mb_y;
665 const int mb_xy =
s->mb_xy;
666 const int mb_type =
s->cur_pic->mb_type[mb_xy];
667 uint8_t *dest_y, *dest_cb, *dest_cr;
668 int linesize, uvlinesize;
670 const int *block_offset = &
s->block_offset[0];
671 const int block_h = 16 >> 1;
673 linesize =
s->cur_pic->f->linesize[0];
674 uvlinesize =
s->cur_pic->f->linesize[1];
676 dest_y =
s->cur_pic->f->data[0] + (mb_x + mb_y * linesize) * 16;
677 dest_cb =
s->cur_pic->f->data[1] + mb_x * 8 + mb_y * uvlinesize * block_h;
678 dest_cr =
s->cur_pic->f->data[2] + mb_x * 8 + mb_y * uvlinesize * block_h;
680 s->vdsp.prefetch(dest_y + (
s->mb_x & 3) * 4 * linesize + 64, linesize, 4);
681 s->vdsp.prefetch(dest_cb + (
s->mb_x & 7) * uvlinesize + 64, dest_cr - dest_cb, 2);
684 s->hpc.pred8x8[
s->chroma_pred_mode](dest_cb, uvlinesize);
685 s->hpc.pred8x8[
s->chroma_pred_mode](dest_cr, uvlinesize);
693 uint8_t *dest[2] = { dest_cb, dest_cr };
694 s->h264dsp.h264_chroma_dc_dequant_idct(
s->mb + 16 * 16 * 1,
695 s->dequant4_coeff[4][0]);
696 s->h264dsp.h264_chroma_dc_dequant_idct(
s->mb + 16 * 16 * 2,
697 s->dequant4_coeff[4][0]);
698 for (j = 1; j < 3; j++) {
699 for (
i = j * 16;
i < j * 16 + 4;
i++)
700 if (
s->non_zero_count_cache[
scan8[
i]] ||
s->mb[
i * 16]) {
701 uint8_t *
const ptr = dest[j - 1] + block_offset[
i];
711 int i, j, k, m, dir,
mode;
715 const int mb_xy =
s->mb_xy;
716 const int b_xy = 4 *
s->mb_x + 4 *
s->mb_y *
s->b_stride;
718 s->top_samples_available = (
s->mb_y == 0) ? 0x33FF : 0xFFFF;
719 s->left_samples_available = (
s->mb_x == 0) ? 0x5F5F : 0xFFFF;
723 s->next_pic->mb_type[mb_xy] == -1) {
733 mb_type =
FFMIN(
s->next_pic->mb_type[mb_xy], 6);
741 }
else if (mb_type < 8) {
742 if (
s->thirdpel_flag &&
s->halfpel_flag == !
get_bits1(&
s->gb_slice))
744 else if (
s->halfpel_flag &&
759 for (m = 0; m < 2; m++) {
760 if (
s->mb_x > 0 &&
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 1] + 6] != -1) {
761 for (
i = 0;
i < 4;
i++)
763 s->cur_pic->motion_val[m][b_xy - 1 +
i *
s->b_stride]);
765 for (
i = 0;
i < 4;
i++)
769 memcpy(
s->mv_cache[m][
scan8[0] - 1 * 8],
770 s->cur_pic->motion_val[m][b_xy -
s->b_stride],
771 4 * 2 *
sizeof(int16_t));
772 memset(&
s->ref_cache[m][
scan8[0] - 1 * 8],
775 if (
s->mb_x <
s->mb_width - 1) {
777 s->cur_pic->motion_val[m][b_xy -
s->b_stride + 4]);
778 s->ref_cache[m][
scan8[0] + 4 - 1 * 8] =
779 (
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride + 1] + 6] == -1 ||
785 s->cur_pic->motion_val[m][b_xy -
s->b_stride - 1]);
786 s->ref_cache[m][
scan8[0] - 1 - 1 * 8] =
791 memset(&
s->ref_cache[m][
scan8[0] - 1 * 8 - 1],
807 for (
i = 0;
i < 4;
i++)
808 memset(
s->cur_pic->motion_val[0][b_xy +
i *
s->b_stride],
809 0, 4 * 2 *
sizeof(int16_t));
815 for (
i = 0;
i < 4;
i++)
816 memset(
s->cur_pic->motion_val[1][b_xy +
i *
s->b_stride],
817 0, 4 * 2 *
sizeof(int16_t));
822 }
else if (mb_type == 8 || mb_type == 33) {
823 int8_t *i4x4 =
s->intra4x4_pred_mode +
s->mb2br_xy[
s->mb_xy];
824 int8_t *i4x4_cache =
s->intra4x4_pred_mode_cache;
826 memset(
s->intra4x4_pred_mode_cache, -1, 8 * 5 *
sizeof(int8_t));
830 for (
i = 0;
i < 4;
i++)
831 s->intra4x4_pred_mode_cache[
scan8[0] - 1 +
i * 8] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy - 1] + 6 -
i];
832 if (
s->intra4x4_pred_mode_cache[
scan8[0] - 1] == -1)
833 s->left_samples_available = 0x5F5F;
836 s->intra4x4_pred_mode_cache[4 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 0];
837 s->intra4x4_pred_mode_cache[5 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 1];
838 s->intra4x4_pred_mode_cache[6 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 2];
839 s->intra4x4_pred_mode_cache[7 + 8 * 0] =
s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride] + 3];
841 if (
s->intra4x4_pred_mode_cache[4 + 8 * 0] == -1)
842 s->top_samples_available = 0x33FF;
846 for (
i = 0;
i < 16;
i += 2) {
851 "luma prediction:%"PRIu32
"\n", vlc);
856 top = &
s->intra4x4_pred_mode_cache[
scan8[
i] - 8];
861 if (
left[1] == -1 ||
left[2] == -1) {
867 for (
i = 0;
i < 4;
i++)
868 memset(&
s->intra4x4_pred_mode_cache[
scan8[0] + 8 *
i],
DC_PRED, 4);
872 i4x4[4] = i4x4_cache[7 + 8 * 3];
873 i4x4[5] = i4x4_cache[7 + 8 * 2];
874 i4x4[6] = i4x4_cache[7 + 8 * 1];
878 s->avctx,
s->top_samples_available,
879 s->left_samples_available);
881 s->top_samples_available = (
s->mb_y == 0) ? 0x33FF : 0xFFFF;
882 s->left_samples_available = (
s->mb_x == 0) ? 0x5F5F : 0xFFFF;
884 for (
i = 0;
i < 4;
i++)
887 s->top_samples_available = 0x33FF;
888 s->left_samples_available = 0x5F5F;
894 dir = (dir >> 1) ^ 3 * (dir & 1) ^ 1;
897 s->left_samples_available, dir, 0)) < 0) {
899 return s->intra16x16_pred_mode;
907 for (
i = 0;
i < 4;
i++)
908 memset(
s->cur_pic->motion_val[0][b_xy +
i *
s->b_stride],
909 0, 4 * 2 *
sizeof(int16_t));
911 for (
i = 0;
i < 4;
i++)
912 memset(
s->cur_pic->motion_val[1][b_xy +
i *
s->b_stride],
913 0, 4 * 2 *
sizeof(int16_t));
917 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy],
DC_PRED, 8);
920 memset(
s->non_zero_count_cache + 8, 0, 14 * 8 *
sizeof(uint8_t));
937 if (
s->qscale > 31
u) {
947 "error while decoding intra luma dc\n");
956 for (
i = 0;
i < 4;
i++)
957 if ((cbp & (1 <<
i))) {
958 for (j = 0; j < 4; j++) {
959 k =
index ? (1 * (j & 1) + 2 * (
i & 1) +
960 2 * (j & 2) + 4 * (
i & 2))
962 s->non_zero_count_cache[
scan8[k]] = 1;
966 "error while decoding block\n");
973 for (
i = 1;
i < 3; ++
i)
976 "error while decoding chroma dc block\n");
981 for (
i = 1;
i < 3;
i++) {
982 for (j = 0; j < 4; j++) {
984 s->non_zero_count_cache[
scan8[k]] = 1;
988 "error while decoding chroma ac block\n");
998 s->cur_pic->mb_type[mb_xy] = mb_type;
1010 const int mb_xy =
s->mb_xy;
1021 int slice_bits, slice_bytes, slice_length;
1022 int length =
header >> 5 & 3;
1024 slice_length =
show_bits(&
s->gb, 8 * length);
1025 slice_bits = slice_length * 8;
1026 slice_bytes = slice_length + length - 1;
1038 memcpy(
s->slice_buf,
s->gb.buffer +
s->gb.index / 8, slice_bytes);
1041 memmove(
s->slice_buf, &
s->slice_buf[slice_length], length - 1);
1044 if (
s->watermark_key) {
1060 if ((
header & 0x9F) == 2) {
1061 i = (
s->mb_num < 64) ? 6 : (1 +
av_log2(
s->mb_num - 1));
1075 if (
s->has_watermark)
1086 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy - 1] + 3,
1087 -1, 4 *
sizeof(int8_t));
1088 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy -
s->mb_x],
1089 -1, 8 *
sizeof(int8_t) *
s->mb_x);
1092 memset(
s->intra4x4_pred_mode +
s->mb2br_xy[mb_xy -
s->mb_stride],
1093 -1, 8 *
sizeof(int8_t) * (
s->mb_width -
s->mb_x));
1096 s->intra4x4_pred_mode[
s->mb2br_xy[mb_xy -
s->mb_stride - 1] + 3] = -1;
1105 const int max_qp = 51;
1107 for (q = 0; q < max_qp + 1; q++) {
1110 for (x = 0; x < 16; x++)
1111 s->dequant4_coeff[q][(x >> 2) | ((x << 2) & 0xF)] =
1120 unsigned char *extradata;
1121 unsigned char *extradata_end;
1123 int marker_found = 0;
1126 s->cur_pic = &
s->frames[0];
1127 s->last_pic = &
s->frames[1];
1128 s->next_pic = &
s->frames[2];
1133 if (!
s->cur_pic->f || !
s->last_pic->f || !
s->next_pic->f)
1150 s->halfpel_flag = 1;
1151 s->thirdpel_flag = 1;
1152 s->has_watermark = 0;
1155 extradata = (
unsigned char *)avctx->
extradata;
1159 if (!memcmp(extradata,
"SEQH", 4)) {
1170 int frame_size_code;
1171 int unk0, unk1, unk2, unk3, unk4;
1175 if (
size > extradata_end - extradata - 8)
1180 frame_size_code =
get_bits(&gb, 3);
1181 switch (frame_size_code) {
1234 unk0, unk1, unk2, unk3, unk4);
1241 if (
s->has_watermark) {
1249 unsigned long buf_len = watermark_width *
1250 watermark_height * 4;
1254 if (watermark_height <= 0 ||
1255 (uint64_t)watermark_width * 4 > UINT_MAX / watermark_height)
1263 watermark_width, watermark_height);
1265 "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n",
1267 if (uncompress(buf, &buf_len, extradata + 8 +
offset,
1270 "could not uncompress watermark logo\n");
1276 s->watermark_key =
s->watermark_key << 16 |
s->watermark_key;
1278 "watermark key %#"PRIx32
"\n",
s->watermark_key);
1282 "this svq3 file contains watermark which need zlib support compiled in\n");
1288 s->mb_width = (avctx->
width + 15) / 16;
1289 s->mb_height = (avctx->
height + 15) / 16;
1290 s->mb_stride =
s->mb_width + 1;
1291 s->mb_num =
s->mb_width *
s->mb_height;
1292 s->b_stride = 4 *
s->mb_width;
1293 s->h_edge_pos =
s->mb_width * 16;
1294 s->v_edge_pos =
s->mb_height * 16;
1296 s->intra4x4_pred_mode =
av_mallocz(
s->mb_stride * 2 * 8);
1297 if (!
s->intra4x4_pred_mode)
1300 s->mb2br_xy =
av_mallocz(
s->mb_stride * (
s->mb_height + 1) *
1301 sizeof(*
s->mb2br_xy));
1305 for (y = 0; y <
s->mb_height; y++)
1306 for (x = 0; x <
s->mb_width; x++) {
1307 const int mb_xy = x + y *
s->mb_stride;
1309 s->mb2br_xy[mb_xy] = 8 * (mb_xy % (2 *
s->mb_stride));
1320 for (
i = 0;
i < 2;
i++) {
1331 const int big_mb_num =
s->mb_stride * (
s->mb_height + 1) + 1;
1332 const int b4_stride =
s->mb_width * 4 + 1;
1333 const int b4_array_size = b4_stride *
s->mb_height * 4;
1344 for (
i = 0;
i < 2;
i++) {
1361 if (!
s->edge_emu_buffer) {
1363 if (!
s->edge_emu_buffer)
1377 int buf_size = avpkt->
size;
1382 if (buf_size == 0) {
1383 if (
s->next_pic->f->data[0] && !
s->low_delay && !
s->last_frame_output) {
1387 s->last_frame_output = 1;
1393 s->mb_x =
s->mb_y =
s->mb_xy = 0;
1402 s->pict_type =
s->slice_type;
1410 s->cur_pic->f->pict_type =
s->pict_type;
1420 for (
i = 0;
i < 16;
i++) {
1422 s->block_offset[48 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 8 *
s->cur_pic->f->linesize[0] * ((
scan8[
i] -
scan8[0]) >> 3);
1424 for (
i = 0;
i < 16;
i++) {
1425 s->block_offset[16 +
i] =
1426 s->block_offset[32 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 4 *
s->cur_pic->f->linesize[1] * ((
scan8[
i] -
scan8[0]) >> 3);
1427 s->block_offset[48 + 16 +
i] =
1428 s->block_offset[48 + 32 +
i] = (4 * ((
scan8[
i] -
scan8[0]) & 7)) + 8 *
s->cur_pic->f->linesize[1] * ((
scan8[
i] -
scan8[0]) >> 3);
1432 if (!
s->last_pic->f->data[0]) {
1438 memset(
s->last_pic->f->data[0], 0, avctx->
height *
s->last_pic->f->linesize[0]);
1439 memset(
s->last_pic->f->data[1], 0x80, (avctx->
height / 2) *
1440 s->last_pic->f->linesize[1]);
1441 memset(
s->last_pic->f->data[2], 0x80, (avctx->
height / 2) *
1442 s->last_pic->f->linesize[2]);
1451 memset(
s->next_pic->f->data[0], 0, avctx->
height *
s->next_pic->f->linesize[0]);
1452 memset(
s->next_pic->f->data[1], 0x80, (avctx->
height / 2) *
1453 s->next_pic->f->linesize[1]);
1454 memset(
s->next_pic->f->data[2], 0x80, (avctx->
height / 2) *
1455 s->next_pic->f->linesize[2]);
1461 "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
1463 s->halfpel_flag,
s->thirdpel_flag,
1464 s->adaptive_quant,
s->qscale,
s->slice_num);
1472 s->frame_num_offset =
s->slice_num -
s->prev_frame_num;
1474 if (
s->frame_num_offset < 0)
1475 s->frame_num_offset += 256;
1476 if (
s->frame_num_offset == 0 ||
1477 s->frame_num_offset >=
s->prev_frame_num_offset) {
1482 s->prev_frame_num =
s->frame_num;
1483 s->frame_num =
s->slice_num;
1484 s->prev_frame_num_offset =
s->frame_num -
s->prev_frame_num;
1486 if (
s->prev_frame_num_offset < 0)
1487 s->prev_frame_num_offset += 256;
1490 for (m = 0; m < 2; m++) {
1492 for (
i = 0;
i < 4;
i++) {
1494 for (j = -1; j < 4; j++)
1495 s->ref_cache[m][
scan8[0] + 8 *
i + j] = 1;
1501 for (
s->mb_y = 0;
s->mb_y <
s->mb_height;
s->mb_y++) {
1502 for (
s->mb_x = 0;
s->mb_x <
s->mb_width;
s->mb_x++) {
1504 s->mb_xy =
s->mb_x +
s->mb_y *
s->mb_stride;
1513 if (
s->slice_type !=
s->pict_type) {
1527 "error while decoding MB %d %d\n",
s->mb_x,
s->mb_y);
1531 if (mb_type != 0 ||
s->cbp)
1535 s->cur_pic->mb_type[
s->mb_x +
s->mb_y *
s->mb_stride] =
1540 s->last_pic->f->data[0] ?
s->last_pic->f :
NULL,
1547 if (
s->mb_y !=
s->mb_height ||
s->mb_x !=
s->mb_width) {
1559 else if (
s->last_pic->f->data[0])
1565 if (
s->last_pic->f->data[0] ||
s->low_delay)
1595 CODEC_LONG_NAME(
"Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
uint8_t * edge_emu_buffer
void ff_draw_horiz_band(AVCodecContext *avctx, const AVFrame *cur, const AVFrame *last, int y, int h, int picture_structure, int first_field, int low_delay)
Draw a horizontal band if supported.
static const uint32_t svq3_dequant_coeff[32]
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
enum AVPictureType slice_type
AVPixelFormat
Pixel format.
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int svq3_decode_slice_header(AVCodecContext *avctx)
#define u(width, name, range_min, range_max)
const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM+1]
static const int8_t mv[256][2]
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce output
unsigned int left_samples_available
static int get_bits_count(const GetBitContext *s)
static unsigned get_interleaved_ue_golomb(GetBitContext *gb)
const uint8_t ff_h264_golomb_to_inter_cbp[48]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
@ AVCOL_RANGE_JPEG
Full range content.
const uint8_t ff_h264_golomb_to_intra4x4_cbp[48]
#define MB_TYPE_INTRA16x16
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static int get_buffer(AVCodecContext *avctx, SVQ3Frame *pic)
static void skip_bits(GetBitContext *s, int n)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
AVCodec p
The public AVCodec.
enum AVDiscard skip_frame
Skip decoding for selected frames.
int flags
AV_CODEC_FLAG_*.
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
static const uint8_t scan8[16 *3+3]
const uint8_t ff_h264_golomb_to_pict_type[5]
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
int8_t intra4x4_pred_mode_cache[5 *8]
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
int has_b_frames
Size of the frame reordering buffer in the decoder.
#define FF_CODEC_DECODE_CB(func)
enum AVPictureType pict_type
static int svq3_mc_dir(SVQ3Context *s, int size, int mode, int dir, int avg)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
av_cold void ff_tpeldsp_init(TpelDSPContext *c)
int(* init)(AVBSFContext *ctx)
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static av_always_inline void svq3_pred_motion(const SVQ3Context *s, int n, int part_width, int list, int ref, int *const mx, int *const my)
Get the predicted MV.
unsigned int top_samples_available
int prev_frame_num_offset
#define CODEC_LONG_NAME(str)
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
int16_t(*[2] motion_val)[2]
@ AVDISCARD_ALL
discard all
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
enum AVColorRange color_range
MPEG vs JPEG YUV range.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining list
const uint8_t ff_h264_chroma_dc_scan[4]
int16_t mb_luma_dc[3][16 *2]
static const struct @154 svq3_dct_tables[2][16]
static av_always_inline void hl_decode_mb_idct_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y)
Context for storing H.264 DSP functions.
@ AVDISCARD_NONKEY
discard all frames except keyframes
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
static void init_dequant4_coeff_table(SVQ3Context *s)
const uint8_t ff_zigzag_scan[16+1]
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static av_always_inline int svq3_fetch_diagonal_mv(const SVQ3Context *s, const int16_t **C, int i, int list, int part_width)
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
#define DECLARE_ALIGNED(n, t, v)
static int shift(int a, int b)
static void hl_decode_mb(SVQ3Context *s)
static int get_interleaved_se_golomb(GetBitContext *gb)
static void free_picture(SVQ3Frame *pic)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static const uint8_t header[24]
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
const uint8_t ff_h264_quant_rem6[QP_MAX_NUM+1]
static void skip_bits1(GetBitContext *s)
static av_always_inline void hl_decode_mb_predict_luma(SVQ3Context *s, int mb_type, const int *block_offset, int linesize, uint8_t *dest_y)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
int16_t(*[2] motion_val_buf)[2]
#define AV_LOG_INFO
Standard information.
static void svq3_add_idct_c(uint8_t *dst, int16_t *block, int stride, int qp, int dc)
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
static void svq3_luma_dc_dequant_idct_c(int16_t *output, int16_t *input, int qp)
#define i(width, name, range_min, range_max)
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
int16_t mv_cache[2][5 *8][2]
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
static int svq3_decode_frame(AVCodecContext *avctx, AVFrame *rframe, int *got_frame, AVPacket *avpkt)
uint8_t non_zero_count_cache[15 *8]
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
void * av_calloc(size_t nmemb, size_t size)
static int svq3_decode_mb(SVQ3Context *s, unsigned int mb_type)
static const uint8_t svq3_scan[16]
static double limit(double x)
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
int64_t frame_num
Frame counter, set by libavcodec.
static const int8_t svq3_pred_1[6][6][5]
#define FFSWAP(type, a, b)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
static int svq3_decode_block(GetBitContext *gb, int16_t *block, int index, const int type)
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
static int skip_1stop_8data_bits(GetBitContext *gb)
main external API structure.
const uint8_t ff_h264_dequant4_coeff_init[6][3]
int block_offset[2 *(16 *3)]
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
int ff_h264_check_intra4x4_pred_mode(int8_t *pred_mode_cache, void *logctx, int top_samples_available, int left_samples_available)
Check if the top & left blocks are available if needed and change the dc mode so it only uses the ava...
const IMbInfo ff_h264_i_mb_type_info[26]
static void fill_rectangle(int x, int y, int w, int h)
static int ref[MAX_W *MAX_W]
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static const uint8_t luma_dc_zigzag_scan[16]
#define PART_NOT_AVAILABLE
const uint8_t ff_h264_quant_div6[QP_MAX_NUM+1]
Context for storing H.264 prediction functions.
static void svq3_mc_dir_part(SVQ3Context *s, int x, int y, int width, int height, int mx, int my, int dxy, int thirdpel, int dir, int avg)
@ AV_PICTURE_TYPE_P
Predicted.
static av_cold int svq3_decode_end(AVCodecContext *avctx)
#define avpriv_request_sample(...)
uint32_t dequant4_coeff[QP_MAX_NUM+1][16]
int8_t ref_cache[2][5 *8]
This structure stores compressed data.
int width
picture width / height.
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
#define AV_CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
The exact code depends on how similar the blocks are and how related they are to the block
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static av_cold int svq3_decode_init(AVCodecContext *avctx)
@ AVDISCARD_NONREF
discard all non reference
const FFCodec ff_svq3_decoder
int8_t * intra4x4_pred_mode
static const uint8_t svq3_pred_0[25][2]
int ff_h264_check_intra_pred_mode(void *logctx, int top_samples_available, int left_samples_available, int mode, int is_chroma)
Check if the top & left blocks are available if needed and change the dc mode so it only uses the ava...