FFmpeg
dnn_backend_torch.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2024
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * DNN Torch backend implementation.
24  */
25 
26 #include <torch/torch.h>
27 #include <torch/script.h>
28 
29 extern "C" {
30 #include "../internal.h"
31 #include "dnn_io_proc.h"
32 #include "dnn_backend_common.h"
33 #include "libavutil/opt.h"
34 #include "queue.h"
35 #include "safe_queue.h"
36 }
37 
38 typedef struct THOptions{
39  char *device_name;
40  int optimize;
41 } THOptions;
42 
43 typedef struct THContext {
44  const AVClass *c_class;
46 } THContext;
47 
48 typedef struct THModel {
51  torch::jit::Module *jit_model;
55 } THModel;
56 
57 typedef struct THInferRequest {
58  torch::Tensor *output;
59  torch::Tensor *input_tensor;
61 
62 typedef struct THRequestItem {
67 
68 
69 #define OFFSET(x) offsetof(THContext, x)
70 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM
71 static const AVOption dnn_th_options[] = {
72  { "device", "device to run model", OFFSET(options.device_name), AV_OPT_TYPE_STRING, { .str = "cpu" }, 0, 0, FLAGS },
73  { "optimize", "turn on graph executor optimization", OFFSET(options.optimize), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS},
74  { NULL }
75 };
76 
77 AVFILTER_DEFINE_CLASS(dnn_th);
78 
79 static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
80 {
81  THModel *th_model = (THModel *)task->model;
82  THContext *ctx = &th_model->ctx;
83  LastLevelTaskItem *lltask = (LastLevelTaskItem *)av_malloc(sizeof(*lltask));
84  if (!lltask) {
85  av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for LastLevelTaskItem\n");
86  return AVERROR(ENOMEM);
87  }
88  task->inference_todo = 1;
89  task->inference_done = 0;
90  lltask->task = task;
91  if (ff_queue_push_back(lltask_queue, lltask) < 0) {
92  av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n");
93  av_freep(&lltask);
94  return AVERROR(ENOMEM);
95  }
96  return 0;
97 }
98 
99 static void th_free_request(THInferRequest *request)
100 {
101  if (!request)
102  return;
103  if (request->output) {
104  delete(request->output);
105  request->output = NULL;
106  }
107  if (request->input_tensor) {
108  delete(request->input_tensor);
109  request->input_tensor = NULL;
110  }
111  return;
112 }
113 
115 {
116  THRequestItem *item;
117  if (!arg || !*arg) {
118  return;
119  }
120  item = *arg;
122  av_freep(&item->infer_request);
123  av_freep(&item->lltask);
125  av_freep(arg);
126 }
127 
128 static void dnn_free_model_th(DNNModel **model)
129 {
130  THModel *th_model;
131  if (!model || !*model)
132  return;
133 
134  th_model = (THModel *) (*model)->model;
135  while (ff_safe_queue_size(th_model->request_queue) != 0) {
137  destroy_request_item(&item);
138  }
140 
141  while (ff_queue_size(th_model->lltask_queue) != 0) {
143  av_freep(&item);
144  }
145  ff_queue_destroy(th_model->lltask_queue);
146 
147  while (ff_queue_size(th_model->task_queue) != 0) {
148  TaskItem *item = (TaskItem *)ff_queue_pop_front(th_model->task_queue);
149  av_frame_free(&item->in_frame);
150  av_frame_free(&item->out_frame);
151  av_freep(&item);
152  }
153  ff_queue_destroy(th_model->task_queue);
154  delete th_model->jit_model;
155  av_opt_free(&th_model->ctx);
156  av_freep(&th_model);
157  av_freep(model);
158 }
159 
160 static int get_input_th(void *model, DNNData *input, const char *input_name)
161 {
162  input->dt = DNN_FLOAT;
163  input->order = DCO_RGB;
164  input->layout = DL_NCHW;
165  input->dims[0] = 1;
166  input->dims[1] = 3;
167  input->dims[2] = -1;
168  input->dims[3] = -1;
169  return 0;
170 }
171 
172 static void deleter(void *arg)
173 {
174  av_freep(&arg);
175 }
176 
177 static int fill_model_input_th(THModel *th_model, THRequestItem *request)
178 {
179  LastLevelTaskItem *lltask = NULL;
180  TaskItem *task = NULL;
181  THInferRequest *infer_request = NULL;
182  DNNData input = { 0 };
183  THContext *ctx = &th_model->ctx;
184  int ret, width_idx, height_idx, channel_idx;
185 
186  lltask = (LastLevelTaskItem *)ff_queue_pop_front(th_model->lltask_queue);
187  if (!lltask) {
188  ret = AVERROR(EINVAL);
189  goto err;
190  }
191  request->lltask = lltask;
192  task = lltask->task;
193  infer_request = request->infer_request;
194 
195  ret = get_input_th(th_model, &input, NULL);
196  if ( ret != 0) {
197  goto err;
198  }
199  width_idx = dnn_get_width_idx_by_layout(input.layout);
200  height_idx = dnn_get_height_idx_by_layout(input.layout);
201  channel_idx = dnn_get_channel_idx_by_layout(input.layout);
202  input.dims[height_idx] = task->in_frame->height;
203  input.dims[width_idx] = task->in_frame->width;
204  input.data = av_malloc(input.dims[height_idx] * input.dims[width_idx] *
205  input.dims[channel_idx] * sizeof(float));
206  if (!input.data)
207  return AVERROR(ENOMEM);
208  infer_request->input_tensor = new torch::Tensor();
209  infer_request->output = new torch::Tensor();
210 
211  switch (th_model->model->func_type) {
212  case DFT_PROCESS_FRAME:
213  input.scale = 255;
214  if (task->do_ioproc) {
215  if (th_model->model->frame_pre_proc != NULL) {
216  th_model->model->frame_pre_proc(task->in_frame, &input, th_model->model->filter_ctx);
217  } else {
219  }
220  }
221  break;
222  default:
223  avpriv_report_missing_feature(NULL, "model function type %d", th_model->model->func_type);
224  break;
225  }
226  *infer_request->input_tensor = torch::from_blob(input.data,
227  {1, input.dims[channel_idx], input.dims[height_idx], input.dims[width_idx]},
228  deleter, torch::kFloat32);
229  return 0;
230 
231 err:
232  th_free_request(infer_request);
233  return ret;
234 }
235 
236 static int th_start_inference(void *args)
237 {
238  THRequestItem *request = (THRequestItem *)args;
239  THInferRequest *infer_request = NULL;
240  LastLevelTaskItem *lltask = NULL;
241  TaskItem *task = NULL;
242  THModel *th_model = NULL;
243  THContext *ctx = NULL;
244  std::vector<torch::jit::IValue> inputs;
245  torch::NoGradGuard no_grad;
246 
247  if (!request) {
248  av_log(NULL, AV_LOG_ERROR, "THRequestItem is NULL\n");
249  return AVERROR(EINVAL);
250  }
251  infer_request = request->infer_request;
252  lltask = request->lltask;
253  task = lltask->task;
254  th_model = (THModel *)task->model;
255  ctx = &th_model->ctx;
256 
257  if (ctx->options.optimize)
258  torch::jit::setGraphExecutorOptimize(true);
259  else
260  torch::jit::setGraphExecutorOptimize(false);
261 
262  if (!infer_request->input_tensor || !infer_request->output) {
263  av_log(ctx, AV_LOG_ERROR, "input or output tensor is NULL\n");
264  return DNN_GENERIC_ERROR;
265  }
266  inputs.push_back(*infer_request->input_tensor);
267 
268  *infer_request->output = th_model->jit_model->forward(inputs).toTensor();
269 
270  return 0;
271 }
272 
273 static void infer_completion_callback(void *args) {
274  THRequestItem *request = (THRequestItem*)args;
275  LastLevelTaskItem *lltask = request->lltask;
276  TaskItem *task = lltask->task;
277  DNNData outputs = { 0 };
278  THInferRequest *infer_request = request->infer_request;
279  THModel *th_model = (THModel *)task->model;
280  torch::Tensor *output = infer_request->output;
281 
282  c10::IntArrayRef sizes = output->sizes();
283  outputs.order = DCO_RGB;
284  outputs.layout = DL_NCHW;
285  outputs.dt = DNN_FLOAT;
286  if (sizes.size() == 4) {
287  // 4 dimensions: [batch_size, channel, height, width]
288  // this format of data is normally used for video frame SR
289  outputs.dims[0] = sizes.at(0); // N
290  outputs.dims[1] = sizes.at(1); // C
291  outputs.dims[2] = sizes.at(2); // H
292  outputs.dims[3] = sizes.at(3); // W
293  } else {
294  avpriv_report_missing_feature(&th_model->ctx, "Support of this kind of model");
295  goto err;
296  }
297 
298  switch (th_model->model->func_type) {
299  case DFT_PROCESS_FRAME:
300  if (task->do_ioproc) {
301  outputs.scale = 255;
302  outputs.data = output->data_ptr();
303  if (th_model->model->frame_post_proc != NULL) {
304  th_model->model->frame_post_proc(task->out_frame, &outputs, th_model->model->filter_ctx);
305  } else {
306  ff_proc_from_dnn_to_frame(task->out_frame, &outputs, &th_model->ctx);
307  }
308  } else {
311  }
312  break;
313  default:
314  avpriv_report_missing_feature(&th_model->ctx, "model function type %d", th_model->model->func_type);
315  goto err;
316  }
317  task->inference_done++;
318  av_freep(&request->lltask);
319 err:
320  th_free_request(infer_request);
321 
322  if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) {
323  destroy_request_item(&request);
324  av_log(&th_model->ctx, AV_LOG_ERROR, "Unable to push back request_queue when failed to start inference.\n");
325  }
326 }
327 
328 static int execute_model_th(THRequestItem *request, Queue *lltask_queue)
329 {
330  THModel *th_model = NULL;
331  LastLevelTaskItem *lltask;
332  TaskItem *task = NULL;
333  int ret = 0;
334 
335  if (ff_queue_size(lltask_queue) == 0) {
336  destroy_request_item(&request);
337  return 0;
338  }
339 
340  lltask = (LastLevelTaskItem *)ff_queue_peek_front(lltask_queue);
341  if (lltask == NULL) {
342  av_log(NULL, AV_LOG_ERROR, "Failed to get LastLevelTaskItem\n");
343  ret = AVERROR(EINVAL);
344  goto err;
345  }
346  task = lltask->task;
347  th_model = (THModel *)task->model;
348 
349  ret = fill_model_input_th(th_model, request);
350  if ( ret != 0) {
351  goto err;
352  }
353  if (task->async) {
354  avpriv_report_missing_feature(&th_model->ctx, "LibTorch async");
355  } else {
356  ret = th_start_inference((void *)(request));
357  if (ret != 0) {
358  goto err;
359  }
360  infer_completion_callback(request);
361  return (task->inference_done == task->inference_todo) ? 0 : DNN_GENERIC_ERROR;
362  }
363 
364 err:
365  th_free_request(request->infer_request);
366  if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) {
367  destroy_request_item(&request);
368  }
369  return ret;
370 }
371 
372 static int get_output_th(void *model, const char *input_name, int input_width, int input_height,
373  const char *output_name, int *output_width, int *output_height)
374 {
375  int ret = 0;
376  THModel *th_model = (THModel*) model;
377  THContext *ctx = &th_model->ctx;
378  TaskItem task = { 0 };
379  THRequestItem *request = NULL;
380  DNNExecBaseParams exec_params = {
381  .input_name = input_name,
382  .output_names = &output_name,
383  .nb_output = 1,
384  .in_frame = NULL,
385  .out_frame = NULL,
386  };
387  ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, th_model, input_height, input_width, ctx);
388  if ( ret != 0) {
389  goto err;
390  }
391 
392  ret = extract_lltask_from_task(&task, th_model->lltask_queue);
393  if ( ret != 0) {
394  av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
395  goto err;
396  }
397 
398  request = (THRequestItem*) ff_safe_queue_pop_front(th_model->request_queue);
399  if (!request) {
400  av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
401  ret = AVERROR(EINVAL);
402  goto err;
403  }
404 
405  ret = execute_model_th(request, th_model->lltask_queue);
406  *output_width = task.out_frame->width;
407  *output_height = task.out_frame->height;
408 
409 err:
410  av_frame_free(&task.out_frame);
411  av_frame_free(&task.in_frame);
412  return ret;
413 }
414 
416 {
417  THInferRequest *request = (THInferRequest *)av_malloc(sizeof(THInferRequest));
418  if (!request) {
419  return NULL;
420  }
421  request->input_tensor = NULL;
422  request->output = NULL;
423  return request;
424 }
425 
426 static DNNModel *dnn_load_model_th(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
427 {
428  DNNModel *model = NULL;
429  THModel *th_model = NULL;
430  THRequestItem *item = NULL;
431  THContext *ctx;
432 
433  model = (DNNModel *)av_mallocz(sizeof(DNNModel));
434  if (!model) {
435  return NULL;
436  }
437 
438  th_model = (THModel *)av_mallocz(sizeof(THModel));
439  if (!th_model) {
440  av_freep(&model);
441  return NULL;
442  }
443  th_model->model = model;
444  model->model = th_model;
445  th_model->ctx.c_class = &dnn_th_class;
446  ctx = &th_model->ctx;
447  //parse options
449  if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) {
450  av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options);
451  return NULL;
452  }
453 
454  c10::Device device = c10::Device(ctx->options.device_name);
455  if (!device.is_cpu()) {
456  av_log(ctx, AV_LOG_ERROR, "Not supported device:\"%s\"\n", ctx->options.device_name);
457  goto fail;
458  }
459 
460  try {
461  th_model->jit_model = new torch::jit::Module;
462  (*th_model->jit_model) = torch::jit::load(model_filename);
463  } catch (const c10::Error& e) {
464  av_log(ctx, AV_LOG_ERROR, "Failed to load torch model\n");
465  goto fail;
466  }
467 
468  th_model->request_queue = ff_safe_queue_create();
469  if (!th_model->request_queue) {
470  goto fail;
471  }
472 
473  item = (THRequestItem *)av_mallocz(sizeof(THRequestItem));
474  if (!item) {
475  goto fail;
476  }
477  item->lltask = NULL;
479  if (!item->infer_request) {
480  av_log(NULL, AV_LOG_ERROR, "Failed to allocate memory for Torch inference request\n");
481  goto fail;
482  }
485  item->exec_module.args = item;
486 
487  if (ff_safe_queue_push_back(th_model->request_queue, item) < 0) {
488  goto fail;
489  }
490  item = NULL;
491 
492  th_model->task_queue = ff_queue_create();
493  if (!th_model->task_queue) {
494  goto fail;
495  }
496 
497  th_model->lltask_queue = ff_queue_create();
498  if (!th_model->lltask_queue) {
499  goto fail;
500  }
501 
502  model->get_input = &get_input_th;
503  model->get_output = &get_output_th;
504  model->options = NULL;
505  model->filter_ctx = filter_ctx;
506  model->func_type = func_type;
507  return model;
508 
509 fail:
510  if (item) {
511  destroy_request_item(&item);
512  av_freep(&item);
513  }
514  dnn_free_model_th(&model);
515  return NULL;
516 }
517 
518 static int dnn_execute_model_th(const DNNModel *model, DNNExecBaseParams *exec_params)
519 {
520  THModel *th_model = (THModel *)model->model;
521  THContext *ctx = &th_model->ctx;
522  TaskItem *task;
523  THRequestItem *request;
524  int ret = 0;
525 
526  ret = ff_check_exec_params(ctx, DNN_TH, model->func_type, exec_params);
527  if (ret != 0) {
528  av_log(ctx, AV_LOG_ERROR, "exec parameter checking fail.\n");
529  return ret;
530  }
531 
532  task = (TaskItem *)av_malloc(sizeof(TaskItem));
533  if (!task) {
534  av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n");
535  return AVERROR(ENOMEM);
536  }
537 
538  ret = ff_dnn_fill_task(task, exec_params, th_model, 0, 1);
539  if (ret != 0) {
540  av_freep(&task);
541  av_log(ctx, AV_LOG_ERROR, "unable to fill task.\n");
542  return ret;
543  }
544 
545  ret = ff_queue_push_back(th_model->task_queue, task);
546  if (ret < 0) {
547  av_freep(&task);
548  av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n");
549  return ret;
550  }
551 
552  ret = extract_lltask_from_task(task, th_model->lltask_queue);
553  if (ret != 0) {
554  av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
555  return ret;
556  }
557 
558  request = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue);
559  if (!request) {
560  av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
561  return AVERROR(EINVAL);
562  }
563 
564  return execute_model_th(request, th_model->lltask_queue);
565 }
566 
568 {
569  THModel *th_model = (THModel *)model->model;
570  return ff_dnn_get_result_common(th_model->task_queue, in, out);
571 }
572 
573 static int dnn_flush_th(const DNNModel *model)
574 {
575  THModel *th_model = (THModel *)model->model;
576  THRequestItem *request;
577 
578  if (ff_queue_size(th_model->lltask_queue) == 0)
579  // no pending task need to flush
580  return 0;
581 
582  request = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue);
583  if (!request) {
584  av_log(&th_model->ctx, AV_LOG_ERROR, "unable to get infer request.\n");
585  return AVERROR(EINVAL);
586  }
587 
588  return execute_model_th(request, th_model->lltask_queue);
589 }
590 
591 extern const DNNModule ff_dnn_backend_torch = {
593  .execute_model = dnn_execute_model_th,
594  .get_result = dnn_get_result_th,
595  .flush = dnn_flush_th,
596  .free_model = dnn_free_model_th,
597 };
THRequestItem::lltask
LastLevelTaskItem * lltask
Definition: dnn_backend_torch.cpp:64
THModel::lltask_queue
Queue * lltask_queue
Definition: dnn_backend_torch.cpp:54
THRequestItem::infer_request
THInferRequest * infer_request
Definition: dnn_backend_torch.cpp:63
av_opt_set_defaults
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
Definition: opt.c:1638
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
ff_safe_queue_pop_front
void * ff_safe_queue_pop_front(SafeQueue *sq)
Remove and free first element from the queue in SafeQueue.
Definition: safe_queue.c:105
out
FILE * out
Definition: movenc.c:54
deleter
static void deleter(void *arg)
Definition: dnn_backend_torch.cpp:172
FLAGS
#define FLAGS
Definition: dnn_backend_torch.cpp:70
THModel
Definition: dnn_backend_torch.cpp:48
DNNAsyncExecModule
Common Async Execution Mechanism for the DNN Backends.
Definition: dnn_backend_common.h:58
DNNFunctionType
DNNFunctionType
Definition: dnn_interface.h:52
output
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce output
Definition: filter_design.txt:225
ff_queue_pop_front
void * ff_queue_pop_front(Queue *q)
Remove and free first element from the Queue.
Definition: queue.c:151
ff_check_exec_params
int ff_check_exec_params(void *ctx, DNNBackendType backend, DNNFunctionType func_type, DNNExecBaseParams *exec_params)
Definition: dnn_backend_common.c:29
ff_queue_size
size_t ff_queue_size(Queue *q)
Return the length of the Queue.
Definition: queue.c:88
DNN_GENERIC_ERROR
#define DNN_GENERIC_ERROR
Definition: dnn_interface.h:33
av_frame_free
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:130
LastLevelTaskItem
Definition: dnn_backend_common.h:50
ff_dnn_backend_torch
const DNNModule ff_dnn_backend_torch
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:344
AVFrame::width
int width
Definition: frame.h:416
SafeQueue
Double-ended queue with mutex locks ensuring data consistency while multithreading.
Definition: safe_queue.c:46
dnn_execute_model_th
static int dnn_execute_model_th(const DNNModel *model, DNNExecBaseParams *exec_params)
Definition: dnn_backend_torch.cpp:518
av_opt_set_from_string
int av_opt_set_from_string(void *ctx, const char *opts, const char *const *shorthand, const char *key_val_sep, const char *pairs_sep)
Parse the key-value pairs list in opts.
Definition: opt.c:1856
AVOption
AVOption.
Definition: opt.h:346
DNNModule::load_model
DNNModel *(* load_model)(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
Definition: dnn_interface.h:123
DNNModel::frame_pre_proc
FramePrePostProc frame_pre_proc
Definition: dnn_interface.h:110
DNNExecBaseParams::input_name
const char * input_name
Definition: dnn_interface.h:77
dnn_io_proc.h
TaskItem
Definition: dnn_backend_common.h:36
DNNAsyncExecModule::callback
void(* callback)(void *args)
Completion Callback for the backend.
Definition: dnn_backend_common.h:70
THOptions
Definition: dnn_backend_torch.cpp:38
dnn_load_model_th
static DNNModel * dnn_load_model_th(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
Definition: dnn_backend_torch.cpp:426
av_malloc
#define av_malloc(s)
Definition: tableprint_vlc.h:30
get_input_th
static int get_input_th(void *model, DNNData *input, const char *input_name)
Definition: dnn_backend_torch.cpp:160
DNNModel::filter_ctx
AVFilterContext * filter_ctx
Definition: dnn_interface.h:99
ff_queue_create
Queue * ff_queue_create(void)
Create a Queue instance.
Definition: queue.c:47
dnn_get_width_idx_by_layout
static int dnn_get_width_idx_by_layout(DNNLayout layout)
Definition: dnn_interface.h:137
TaskItem::model
void * model
Definition: dnn_backend_common.h:37
fail
#define fail()
Definition: checkasm.h:179
av_opt_free
void av_opt_free(void *obj)
Free all allocated objects in obj.
Definition: opt.c:1908
filter_ctx
static FilteringContext * filter_ctx
Definition: transcode.c:51
Queue
Linear double-ended data structure.
Definition: queue.c:33
THOptions::device_name
char * device_name
Definition: dnn_backend_torch.cpp:39
ff_queue_push_back
int ff_queue_push_back(Queue *q, void *v)
Add data to the tail of the queue.
Definition: queue.c:130
THModel::jit_model
torch::jit::Module * jit_model
Definition: dnn_backend_torch.cpp:51
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:180
LastLevelTaskItem::task
TaskItem * task
Definition: dnn_backend_common.h:51
destroy_request_item
static void destroy_request_item(THRequestItem **arg)
Definition: dnn_backend_torch.cpp:114
th_create_inference_request
static THInferRequest * th_create_inference_request(void)
Definition: dnn_backend_torch.cpp:415
ff_queue_destroy
void ff_queue_destroy(Queue *q)
Destroy the Queue instance.
Definition: queue.c:72
DNNData
Definition: dnn_interface.h:65
ff_dnn_fill_gettingoutput_task
int ff_dnn_fill_gettingoutput_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int input_height, int input_width, void *ctx)
Allocate input and output frames and fill the Task with execution parameters.
Definition: dnn_backend_common.c:155
ctx
AVFormatContext * ctx
Definition: movenc.c:48
THContext::c_class
const AVClass * c_class
Definition: dnn_backend_torch.cpp:44
TaskItem::inference_todo
uint32_t inference_todo
Definition: dnn_backend_common.h:45
DL_NCHW
@ DL_NCHW
Definition: dnn_interface.h:61
arg
const char * arg
Definition: jacosubdec.c:67
if
if(ret)
Definition: filter_design.txt:179
ff_safe_queue_size
size_t ff_safe_queue_size(SafeQueue *sq)
Return the length of the SafeQueue.
Definition: safe_queue.c:80
ff_proc_from_frame_to_dnn
int ff_proc_from_frame_to_dnn(AVFrame *frame, DNNData *input, void *log_ctx)
Definition: dnn_io_proc.c:181
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:66
THRequestItem::exec_module
DNNAsyncExecModule exec_module
Definition: dnn_backend_torch.cpp:65
NULL
#define NULL
Definition: coverity.c:32
sizes
static const int sizes[][2]
Definition: img2dec.c:60
ff_safe_queue_create
SafeQueue * ff_safe_queue_create(void)
Create and initialize a SafeQueue instance.
Definition: safe_queue.c:52
THContext
Definition: dnn_backend_torch.cpp:43
DNNModel::frame_post_proc
FramePrePostProc frame_post_proc
Definition: dnn_interface.h:113
ff_dnn_async_module_cleanup
int ff_dnn_async_module_cleanup(DNNAsyncExecModule *async_module)
Join the Async Execution thread and set module pointers to NULL.
Definition: dnn_backend_common.c:85
infer_completion_callback
static void infer_completion_callback(void *args)
Definition: dnn_backend_torch.cpp:273
THContext::options
THOptions options
Definition: dnn_backend_torch.cpp:45
TaskItem::in_frame
AVFrame * in_frame
Definition: dnn_backend_common.h:38
extract_lltask_from_task
static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
Definition: dnn_backend_torch.cpp:79
inputs
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
Definition: filter_design.txt:243
THModel::ctx
THContext ctx
Definition: dnn_backend_torch.cpp:49
options
const OptionDef options[]
THInferRequest::output
torch::Tensor * output
Definition: dnn_backend_torch.cpp:58
TaskItem::async
uint8_t async
Definition: dnn_backend_common.h:42
TaskItem::inference_done
uint32_t inference_done
Definition: dnn_backend_common.h:46
queue.h
DNNModel::func_type
DNNFunctionType func_type
Definition: dnn_interface.h:101
avpriv_report_missing_feature
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
ff_safe_queue_destroy
void ff_safe_queue_destroy(SafeQueue *sq)
Destroy the SafeQueue instance.
Definition: safe_queue.c:69
DNN_FLOAT
@ DNN_FLOAT
Definition: dnn_interface.h:37
dnn_get_result_th
static DNNAsyncStatusType dnn_get_result_th(const DNNModel *model, AVFrame **in, AVFrame **out)
Definition: dnn_backend_torch.cpp:567
ff_dnn_fill_task
int ff_dnn_fill_task(TaskItem *task, DNNExecBaseParams *exec_params, void *backend_model, int async, int do_ioproc)
Fill the Task for Backend Execution.
Definition: dnn_backend_common.c:49
input
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some input
Definition: filter_design.txt:172
THRequestItem
Definition: dnn_backend_torch.cpp:62
ff_safe_queue_push_back
int ff_safe_queue_push_back(SafeQueue *sq, void *v)
Add data to the tail of queue in the SafeQueue after locking mutex.
Definition: safe_queue.c:95
THOptions::optimize
int optimize
Definition: dnn_backend_torch.cpp:40
th_start_inference
static int th_start_inference(void *args)
Definition: dnn_backend_torch.cpp:236
THInferRequest::input_tensor
torch::Tensor * input_tensor
Definition: dnn_backend_torch.cpp:59
DNNAsyncExecModule::start_inference
int(* start_inference)(void *request)
Synchronous inference function for the backend with corresponding request item as the argument.
Definition: dnn_backend_common.h:63
DNNAsyncExecModule::args
void * args
Argument for the execution functions.
Definition: dnn_backend_common.h:76
av_mallocz
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:254
safe_queue.h
THInferRequest
Definition: dnn_backend_torch.cpp:57
AVFILTER_DEFINE_CLASS
AVFILTER_DEFINE_CLASS(dnn_th)
outputs
static const AVFilterPad outputs[]
Definition: af_aap.c:310
ret
ret
Definition: filter_design.txt:187
get_output_th
static int get_output_th(void *model, const char *input_name, int input_width, int input_height, const char *output_name, int *output_width, int *output_height)
Definition: dnn_backend_torch.cpp:372
DNNModel::get_input
int(* get_input)(void *model, DNNData *input, const char *input_name)
Definition: dnn_interface.h:104
TaskItem::out_frame
AVFrame * out_frame
Definition: dnn_backend_common.h:39
AVFrame::height
int height
Definition: frame.h:416
dnn_backend_common.h
dnn_th_options
static const AVOption dnn_th_options[]
Definition: dnn_backend_torch.cpp:71
execute_model_th
static int execute_model_th(THRequestItem *request, Queue *lltask_queue)
Definition: dnn_backend_torch.cpp:328
OFFSET
#define OFFSET(x)
Definition: dnn_backend_torch.cpp:69
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Definition: opt.h:235
THModel::model
DNNModel * model
Definition: dnn_backend_torch.cpp:50
ff_dnn_get_result_common
DNNAsyncStatusType ff_dnn_get_result_common(Queue *task_queue, AVFrame **in, AVFrame **out)
Extract input and output frame from the Task Queue after asynchronous inference.
Definition: dnn_backend_common.c:135
ff_queue_peek_front
void * ff_queue_peek_front(Queue *q)
Return a pointer to the data at the head of the queue.
Definition: queue.c:93
DCO_RGB
@ DCO_RGB
Definition: dnn_interface.h:42
AVFilterContext
An instance of a filter.
Definition: avfilter.h:407
DNNModel
Definition: dnn_interface.h:93
DNN_TH
@ DNN_TH
Definition: dnn_interface.h:35
dnn_get_height_idx_by_layout
static int dnn_get_height_idx_by_layout(DNNLayout layout)
Definition: dnn_interface.h:142
dnn_flush_th
static int dnn_flush_th(const DNNModel *model)
Definition: dnn_backend_torch.cpp:573
DNNModel::options
const char * options
Definition: dnn_interface.h:97
THModel::task_queue
Queue * task_queue
Definition: dnn_backend_torch.cpp:53
dnn_get_channel_idx_by_layout
static int dnn_get_channel_idx_by_layout(DNNLayout layout)
Definition: dnn_interface.h:147
av_freep
#define av_freep(p)
Definition: tableprint_vlc.h:34
DNNExecBaseParams
Definition: dnn_interface.h:76
dnn_free_model_th
static void dnn_free_model_th(DNNModel **model)
Definition: dnn_backend_torch.cpp:128
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:27
TaskItem::do_ioproc
uint8_t do_ioproc
Definition: dnn_backend_common.h:43
DNNModel::get_output
int(* get_output)(void *model, const char *input_name, int input_width, int input_height, const char *output_name, int *output_width, int *output_height)
Definition: dnn_interface.h:106
AV_OPT_TYPE_STRING
@ AV_OPT_TYPE_STRING
Definition: opt.h:239
DNNAsyncStatusType
DNNAsyncStatusType
Definition: dnn_interface.h:45
DFT_PROCESS_FRAME
@ DFT_PROCESS_FRAME
Definition: dnn_interface.h:54
DNNModule
Definition: dnn_interface.h:121
fill_model_input_th
static int fill_model_input_th(THModel *th_model, THRequestItem *request)
Definition: dnn_backend_torch.cpp:177
THModel::request_queue
SafeQueue * request_queue
Definition: dnn_backend_torch.cpp:52
DNNModel::model
void * model
Definition: dnn_interface.h:95
ff_proc_from_dnn_to_frame
int ff_proc_from_dnn_to_frame(AVFrame *frame, DNNData *output, void *log_ctx)
Definition: dnn_io_proc.c:41
th_free_request
static void th_free_request(THInferRequest *request)
Definition: dnn_backend_torch.cpp:99