void h264_put_chroma_mc4_rvv(uint8_t *p_dst, const uint8_t *p_src, ptrdiff_t stride, int h, int x, int y)
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
static void bit_depth(AudioStatsContext *s, const uint64_t *const mask, uint8_t *depth)
void h264_avg_chroma_mc4_rvv(uint8_t *p_dst, const uint8_t *p_src, ptrdiff_t stride, int h, int x, int y)
void h264_avg_chroma_mc8_rvv(uint8_t *p_dst, const uint8_t *p_src, ptrdiff_t stride, int h, int x, int y)
#define AV_CPU_FLAG_RVB_ADDR
Address bit-manipulations.
av_cold void ff_h264chroma_init_riscv(H264ChromaContext *c, int bit_depth)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
void h264_put_chroma_mc2_rvv(uint8_t *p_dst, const uint8_t *p_src, ptrdiff_t stride, int h, int x, int y)
#define AV_CPU_FLAG_RVV_I32
Vectors of 8/16/32-bit int's */.
#define flags(name, subs,...)
void h264_avg_chroma_mc2_rvv(uint8_t *p_dst, const uint8_t *p_src, ptrdiff_t stride, int h, int x, int y)
void h264_put_chroma_mc8_rvv(uint8_t *p_dst, const uint8_t *p_src, ptrdiff_t stride, int h, int x, int y)