Go to the documentation of this file.
33 #include "config_components.h"
60 #define VP3_MV_VLC_BITS 6
61 #define VP4_MV_VLC_BITS 6
62 #define SUPERBLOCK_VLC_BITS 6
64 #define FRAGMENT_PIXELS 8
73 #define SB_NOT_CODED 0
74 #define SB_PARTIALLY_CODED 1
75 #define SB_FULLY_CODED 2
80 #define MAXIMUM_LONG_BIT_RUN 4129
82 #define MODE_INTER_NO_MV 0
84 #define MODE_INTER_PLUS_MV 2
85 #define MODE_INTER_LAST_MV 3
86 #define MODE_INTER_PRIOR_LAST 4
87 #define MODE_USING_GOLDEN 5
88 #define MODE_GOLDEN_MV 6
89 #define MODE_INTER_FOURMV 7
90 #define CODING_MODE_COUNT 8
139 { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
140 { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
141 { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
142 { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
171 #if CONFIG_VP4_DECODER
172 static const VLCElem *vp4_mv_vlc_table[2][7];
173 static const VLCElem *block_pattern_vlc[2];
181 #define MIN_DEQUANT_VAL 2
280 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
281 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1)
282 #define TOKEN_COEFF(coeff) (((coeff) * 4) + 2)
355 if (
s->golden_frame.f)
359 if (
s->current_frame.f)
370 s->theora_tables = 0;
394 for (
int plane = 0; plane < 3; plane++) {
395 int sb_width = plane ?
s->c_superblock_width
396 :
s->y_superblock_width;
397 int sb_height = plane ?
s->c_superblock_height
398 :
s->y_superblock_height;
399 int frag_width =
s->fragment_width[!!plane];
400 int frag_height =
s->fragment_height[!!plane];
402 for (
int sb_y = 0; sb_y < sb_height; sb_y++)
403 for (
int sb_x = 0; sb_x < sb_width; sb_x++)
404 for (
int i = 0;
i < 16;
i++) {
408 if (x < frag_width && y < frag_height)
409 s->superblock_fragments[j++] =
s->fragment_start[plane] +
412 s->superblock_fragments[j++] = -1;
425 int ac_scale_factor =
s->coded_ac_scale_factor[
s->qps[qpi]];
427 for (
int inter = 0; inter < 2; inter++) {
428 for (
int plane = 0; plane < 3; plane++) {
429 int dc_scale_factor =
s->coded_dc_scale_factor[!!plane][
s->qps[qpi]];
430 int sum = 0, bmi, bmj, qistart, qri;
431 for (qri = 0; qri <
s->qr_count[inter][plane]; qri++) {
432 sum +=
s->qr_size[inter][plane][qri];
433 if (
s->qps[qpi] <= sum)
436 qistart = sum -
s->qr_size[inter][plane][qri];
437 bmi =
s->qr_base[inter][plane][qri];
438 bmj =
s->qr_base[inter][plane][qri + 1];
439 for (
int i = 0;
i < 64;
i++) {
440 int coeff = (2 * (sum -
s->qps[qpi]) *
s->base_matrix[bmi][
i] -
441 2 * (qistart -
s->qps[qpi]) *
s->base_matrix[bmj][
i] +
442 s->qr_size[inter][plane][qri]) /
443 (2 *
s->qr_size[inter][plane][qri]);
445 int qmin = 8 << (inter + !
i);
446 int qscale =
i ? ac_scale_factor : dc_scale_factor;
447 int qbias = (1 + inter) * 3;
448 s->qmat[qpi][inter][plane][
s->idct_permutation[
i]] =
449 (
i == 0 ||
s->version < 2) ?
av_clip((qscale *
coeff) / 100 * 4, qmin, 4096)
450 : (qscale * (
coeff - qbias) / 100 + qbias) * 4;
454 s->qmat[qpi][inter][plane][0] =
s->qmat[0][inter][plane][0];
476 const int superblock_starts[3] = {
477 0,
s->u_superblock_start,
s->v_superblock_start
480 int current_superblock = 0;
482 int num_partial_superblocks = 0;
484 int current_fragment;
485 int plane0_num_coded_frags = 0;
494 while (current_superblock < s->superblock_count &&
get_bits_left(gb) > 0) {
502 if (current_run == 34)
505 if (current_run >
s->superblock_count - current_superblock) {
507 "Invalid partially coded superblock run length\n");
511 memset(
s->superblock_coding + current_superblock,
bit, current_run);
513 current_superblock += current_run;
515 num_partial_superblocks += current_run;
520 if (num_partial_superblocks < s->superblock_count) {
521 int superblocks_decoded = 0;
523 current_superblock = 0;
527 while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
536 if (current_run == 34)
539 for (
int j = 0; j < current_run; current_superblock++) {
540 if (current_superblock >=
s->superblock_count) {
542 "Invalid fully coded superblock run length\n");
547 if (
s->superblock_coding[current_superblock] ==
SB_NOT_CODED) {
548 s->superblock_coding[current_superblock] = 2 *
bit;
552 superblocks_decoded += current_run;
558 if (num_partial_superblocks) {
569 s->total_num_coded_frags = 0;
570 memset(
s->macroblock_coding,
MODE_COPY,
s->macroblock_count);
572 s->coded_fragment_list[0] =
s->keyframe ?
s->kf_coded_fragment_list
573 :
s->nkf_coded_fragment_list;
575 for (
int plane = 0; plane < 3; plane++) {
576 int sb_start = superblock_starts[plane];
577 int sb_end = sb_start + (plane ?
s->c_superblock_count
578 :
s->y_superblock_count);
579 int num_coded_frags = 0;
582 if (
s->num_kf_coded_fragment[plane] == -1) {
583 for (
int i = sb_start;
i < sb_end;
i++) {
585 for (
int j = 0; j < 16; j++) {
587 current_fragment =
s->superblock_fragments[
i * 16 + j];
588 if (current_fragment != -1) {
589 s->coded_fragment_list[plane][num_coded_frags++] =
594 s->num_kf_coded_fragment[plane] = num_coded_frags;
596 num_coded_frags =
s->num_kf_coded_fragment[plane];
603 for (
int j = 0; j < 16; j++) {
605 current_fragment =
s->superblock_fragments[
i * 16 + j];
606 if (current_fragment != -1) {
607 int coded =
s->superblock_coding[
i];
612 if (current_run-- == 0) {
622 s->all_fragments[current_fragment].coding_method =
624 s->coded_fragment_list[plane][num_coded_frags++] =
628 s->all_fragments[current_fragment].coding_method =
636 plane0_num_coded_frags = num_coded_frags;
637 s->total_num_coded_frags += num_coded_frags;
638 for (
int i = 0;
i < 64;
i++)
639 s->num_coded_frags[plane][
i] = num_coded_frags;
641 s->coded_fragment_list[plane + 1] =
s->coded_fragment_list[plane] +
647 #define BLOCK_X (2 * mb_x + (k & 1))
648 #define BLOCK_Y (2 * mb_y + (k >> 1))
650 #if CONFIG_VP4_DECODER
662 if (v >
s->yuv_macroblock_count) {
668 skip_bits(gb, 2 + n); \
669 v += (1 << n) + get_bits(gb, n); }
670 #define thresh(n) (0x200 - (0x80 >> n))
671 #define else_if(n) else if (bits < thresh(n)) body(n)
674 }
else if (
bits < thresh(0)) {
691 static int vp4_get_block_pattern(
GetBitContext *gb,
int *next_block_pattern_table)
693 int v =
get_vlc2(gb, block_pattern_vlc[*next_block_pattern_table], 5, 1);
701 int next_block_pattern_table;
702 int bit, current_run, has_partial;
704 memset(
s->macroblock_coding,
MODE_COPY,
s->macroblock_count);
711 for (
int i = 0;
i <
s->yuv_macroblock_count;
i += current_run) {
714 current_run = vp4_get_mb_count(
s, gb);
715 if (current_run >
s->yuv_macroblock_count -
i)
717 memset(
s->superblock_coding +
i, 2 *
bit, current_run);
726 current_run = vp4_get_mb_count(
s, gb);
727 for (
int i = 0;
i <
s->yuv_macroblock_count;
i++) {
728 if (!
s->superblock_coding[
i]) {
731 current_run = vp4_get_mb_count(
s, gb);
733 s->superblock_coding[
i] =
bit;
741 next_block_pattern_table = 0;
742 for (
int plane = 0,
i = 0; plane < 3; plane++) {
743 int sb_width = plane ?
s->c_superblock_width :
s->y_superblock_width;
744 int sb_height = plane ?
s->c_superblock_height :
s->y_superblock_height;
745 int mb_width = plane ?
s->c_macroblock_width :
s->macroblock_width;
746 int mb_height = plane ?
s->c_macroblock_height :
s->macroblock_height;
747 int fragment_width =
s->fragment_width[!!plane];
748 int fragment_height =
s->fragment_height[!!plane];
750 for (
int sb_y = 0; sb_y < sb_height; sb_y++) {
751 for (
int sb_x = 0; sb_x < sb_width; sb_x++) {
752 for (
int j = 0; j < 4; j++) {
753 int mb_x = 2 * sb_x + (j >> 1);
754 int mb_y = 2 * sb_y + (j >> 1) ^ (j & 1);
755 int mb_coded, pattern, coded;
757 if (mb_x >= mb_width || mb_y >= mb_height)
760 mb_coded =
s->superblock_coding[
i++];
765 pattern = vp4_get_block_pattern(gb, &next_block_pattern_table);
769 for (
int k = 0; k < 4; k++) {
773 coded = pattern & (8 >> k);
793 int current_macroblock;
794 int current_fragment;
801 for (
int i = 0;
i <
s->fragment_count;
i++)
809 for (
int i = 0;
i < 8;
i++)
811 for (
int i = 0;
i < 8;
i++)
812 custom_mode_alphabet[
get_bits(gb, 3)] =
i;
813 alphabet = custom_mode_alphabet;
819 for (
int sb_y = 0; sb_y <
s->y_superblock_height; sb_y++) {
820 for (
int sb_x = 0; sb_x <
s->y_superblock_width; sb_x++) {
824 for (
int j = 0; j < 4; j++) {
826 int mb_x = 2 * sb_x + (j >> 1);
827 int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
828 current_macroblock = mb_y *
s->macroblock_width + mb_x;
830 if (mb_x >=
s->macroblock_width ||
831 mb_y >=
s->macroblock_height)
837 for (k = 0; k < 4; k++) {
840 if (
s->all_fragments[current_fragment].coding_method !=
MODE_COPY)
854 s->macroblock_coding[current_macroblock] = coding_mode;
855 for (k = 0; k < 4; k++) {
861 #define SET_CHROMA_MODES \
862 if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
863 frag[s->fragment_start[1]].coding_method = coding_mode; \
864 if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
865 frag[s->fragment_start[2]].coding_method = coding_mode;
867 if (
s->chroma_y_shift) {
868 frag =
s->all_fragments + mb_y *
869 s->fragment_width[1] + mb_x;
871 }
else if (
s->chroma_x_shift) {
872 frag =
s->all_fragments +
873 2 * mb_y *
s->fragment_width[1] + mb_x;
874 for (k = 0; k < 2; k++) {
876 frag +=
s->fragment_width[1];
879 for (k = 0; k < 4; k++) {
880 frag =
s->all_fragments +
895 #if CONFIG_VP4_DECODER
898 return last_motion < 0 ? -v : v;
913 int last_motion_x = 0;
914 int last_motion_y = 0;
915 int prior_last_motion_x = 0;
916 int prior_last_motion_y = 0;
917 int last_gold_motion_x = 0;
918 int last_gold_motion_y = 0;
919 int current_macroblock;
920 int current_fragment;
927 coding_mode =
s->version < 2 ?
get_bits1(gb) : 2;
931 for (
int sb_y = 0; sb_y <
s->y_superblock_height; sb_y++) {
932 for (
int sb_x = 0; sb_x <
s->y_superblock_width; sb_x++) {
936 for (
int j = 0; j < 4; j++) {
937 int mb_x = 2 * sb_x + (j >> 1);
938 int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
939 current_macroblock = mb_y *
s->macroblock_width + mb_x;
941 if (mb_x >=
s->macroblock_width ||
942 mb_y >=
s->macroblock_height ||
943 s->macroblock_coding[current_macroblock] ==
MODE_COPY)
946 switch (
s->macroblock_coding[current_macroblock]) {
948 if (coding_mode == 2) {
949 last_gold_motion_x = motion_x[0] =
vp4_get_mv(gb, 0, last_gold_motion_x);
950 last_gold_motion_y = motion_y[0] =
vp4_get_mv(gb, 1, last_gold_motion_y);
955 if (coding_mode == 0) {
960 }
else if (coding_mode == 1) {
964 motion_x[0] =
vp4_get_mv(gb, 0, last_motion_x);
965 motion_y[0] =
vp4_get_mv(gb, 1, last_motion_y);
970 prior_last_motion_x = last_motion_x;
971 prior_last_motion_y = last_motion_y;
972 last_motion_x = motion_x[0];
973 last_motion_y = motion_y[0];
979 prior_last_motion_x = last_motion_x;
980 prior_last_motion_y = last_motion_y;
984 for (
int k = 0; k < 4; k++) {
986 if (
s->all_fragments[current_fragment].coding_method !=
MODE_COPY) {
987 if (coding_mode == 0) {
992 }
else if (coding_mode == 1) {
996 motion_x[k] =
vp4_get_mv(gb, 0, prior_last_motion_x);
997 motion_y[k] =
vp4_get_mv(gb, 1, prior_last_motion_y);
999 last_motion_x = motion_x[k];
1000 last_motion_y = motion_y[k];
1010 motion_x[0] = last_motion_x;
1011 motion_y[0] = last_motion_y;
1020 motion_x[0] = prior_last_motion_x;
1021 motion_y[0] = prior_last_motion_y;
1024 prior_last_motion_x = last_motion_x;
1025 prior_last_motion_y = last_motion_y;
1026 last_motion_x = motion_x[0];
1027 last_motion_y = motion_y[0];
1040 for (
int k = 0; k < 4; k++) {
1044 s->motion_val[0][current_fragment][0] = motion_x[k];
1045 s->motion_val[0][current_fragment][1] = motion_y[k];
1047 s->motion_val[0][current_fragment][0] = motion_x[0];
1048 s->motion_val[0][current_fragment][1] = motion_y[0];
1052 if (
s->chroma_y_shift) {
1054 motion_x[0] =
RSHIFT(motion_x[0] + motion_x[1] +
1055 motion_x[2] + motion_x[3], 2);
1056 motion_y[0] =
RSHIFT(motion_y[0] + motion_y[1] +
1057 motion_y[2] + motion_y[3], 2);
1059 if (
s->version <= 2) {
1060 motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
1061 motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
1063 frag = mb_y *
s->fragment_width[1] + mb_x;
1064 s->motion_val[1][frag][0] = motion_x[0];
1065 s->motion_val[1][frag][1] = motion_y[0];
1066 }
else if (
s->chroma_x_shift) {
1068 motion_x[0] =
RSHIFT(motion_x[0] + motion_x[1], 1);
1069 motion_y[0] =
RSHIFT(motion_y[0] + motion_y[1], 1);
1070 motion_x[1] =
RSHIFT(motion_x[2] + motion_x[3], 1);
1071 motion_y[1] =
RSHIFT(motion_y[2] + motion_y[3], 1);
1073 motion_x[1] = motion_x[0];
1074 motion_y[1] = motion_y[0];
1076 if (
s->version <= 2) {
1077 motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
1078 motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
1080 frag = 2 * mb_y *
s->fragment_width[1] + mb_x;
1081 for (
int k = 0; k < 2; k++) {
1082 s->motion_val[1][frag][0] = motion_x[k];
1083 s->motion_val[1][frag][1] = motion_y[k];
1084 frag +=
s->fragment_width[1];
1087 for (
int k = 0; k < 4; k++) {
1090 s->motion_val[1][frag][0] = motion_x[k];
1091 s->motion_val[1][frag][1] = motion_y[k];
1093 s->motion_val[1][frag][0] = motion_x[0];
1094 s->motion_val[1][frag][1] = motion_y[0];
1107 int num_blocks =
s->total_num_coded_frags;
1109 for (
int qpi = 0; qpi <
s->nqps - 1 && num_blocks > 0; qpi++) {
1110 int i = 0, blocks_decoded = 0, num_blocks_at_qpi = 0;
1111 int bit, run_length;
1124 if (run_length == 34)
1126 blocks_decoded += run_length;
1129 num_blocks_at_qpi += run_length;
1131 for (
int j = 0; j < run_length;
i++) {
1132 if (
i >=
s->total_num_coded_frags)
1135 if (
s->all_fragments[
s->coded_fragment_list[0][
i]].qpi == qpi) {
1136 s->all_fragments[
s->coded_fragment_list[0][
i]].qpi +=
bit;
1140 }
while (blocks_decoded < num_blocks &&
get_bits_left(gb) > 0);
1142 num_blocks -= num_blocks_at_qpi;
1158 int bits_to_get, zero_run;
1162 bits_to_get =
get_bits(gb, bits_to_get);
1185 const VLCElem *vlc_table,
int coeff_index,
1195 int num_coeffs =
s->num_coded_frags[plane][coeff_index];
1196 int16_t *dct_tokens =
s->dct_tokens[plane][coeff_index];
1199 const int *coded_fragment_list =
s->coded_fragment_list[plane];
1202 if (num_coeffs < 0) {
1204 "Invalid number of coefficients at level %d\n", coeff_index);
1208 if (eob_run > num_coeffs) {
1210 blocks_ended = num_coeffs;
1211 eob_run -= num_coeffs;
1214 blocks_ended = eob_run;
1220 dct_tokens[j++] = blocks_ended << 2;
1224 token =
get_vlc2(gb, vlc_table, 11, 3);
1226 if ((
unsigned) token <= 6
U) {
1233 if (eob_run > num_coeffs - coeff_i) {
1234 dct_tokens[j++] =
TOKEN_EOB(num_coeffs - coeff_i);
1235 blocks_ended += num_coeffs - coeff_i;
1236 eob_run -= num_coeffs - coeff_i;
1237 coeff_i = num_coeffs;
1240 blocks_ended += eob_run;
1244 }
else if (token >= 0) {
1255 all_fragments[coded_fragment_list[coeff_i]].
dc =
coeff;
1260 if (coeff_index + zero_run > 64) {
1262 "Invalid zero run of %d with %d coeffs left\n",
1263 zero_run, 64 - coeff_index);
1264 zero_run = 64 - coeff_index;
1269 for (
int i = coeff_index + 1;
i <= coeff_index + zero_run;
i++)
1270 s->num_coded_frags[plane][
i]--;
1278 if (blocks_ended >
s->num_coded_frags[plane][coeff_index])
1284 for (
int i = coeff_index + 1;
i < 64;
i++)
1285 s->num_coded_frags[plane][
i] -= blocks_ended;
1289 s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
1290 else if (coeff_index < 63)
1291 s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
1299 int fragment_height);
1311 int residual_eob_run = 0;
1312 const VLCElem *y_tables[64], *c_tables[64];
1314 s->dct_tokens[0][0] =
s->dct_tokens_base;
1325 0, residual_eob_run);
1326 if (residual_eob_run < 0)
1327 return residual_eob_run;
1336 1, residual_eob_run);
1337 if (residual_eob_run < 0)
1338 return residual_eob_run;
1340 2, residual_eob_run);
1341 if (residual_eob_run < 0)
1342 return residual_eob_run;
1347 s->fragment_width[1],
s->fragment_height[1]);
1349 s->fragment_width[1],
s->fragment_height[1]);
1359 for (
int i = 1;
i <= 5;
i++) {
1364 for (
int i = 6;
i <= 14;
i++) {
1369 for (
int i = 15;
i <= 27;
i++) {
1374 for (
int i = 28;
i <= 63;
i++) {
1381 for (
int i = 1;
i <= 63;
i++) {
1383 0, residual_eob_run);
1384 if (residual_eob_run < 0)
1385 return residual_eob_run;
1388 1, residual_eob_run);
1389 if (residual_eob_run < 0)
1390 return residual_eob_run;
1392 2, residual_eob_run);
1393 if (residual_eob_run < 0)
1394 return residual_eob_run;
1400 #if CONFIG_VP4_DECODER
1409 int plane,
int eob_tracker[64],
int fragment)
1417 while (!eob_tracker[coeff_i]) {
1424 if ((
unsigned) token <= 6
U) {
1426 *
s->dct_tokens[plane][coeff_i]++ =
TOKEN_EOB(0);
1427 eob_tracker[coeff_i] = eob_run - 1;
1429 }
else if (token >= 0) {
1433 if (coeff_i + zero_run > 64) {
1435 "Invalid zero run of %d with %d coeffs left\n",
1436 zero_run, 64 - coeff_i);
1437 zero_run = 64 - coeff_i;
1440 coeff_i += zero_run;
1455 *
s->dct_tokens[plane][coeff_i]++ =
TOKEN_EOB(0);
1456 eob_tracker[coeff_i]--;
1468 for (
int i = 0;
i < 4;
i++)
1469 dc_pred[0][
i + 1] =
s->dc_pred_row[sb_x * 4 +
i];
1471 for (
int j = 1; j < 5; j++)
1472 for (
int i = 0;
i < 4;
i++)
1473 vp4_dc_predictor_reset(&dc_pred[j][
i + 1]);
1478 for (
int i = 0;
i < 4;
i++)
1479 s->dc_pred_row[sb_x * 4 +
i] = dc_pred[4][
i + 1];
1481 for (
int i = 1;
i < 5;
i++)
1482 dc_pred[
i][0] = dc_pred[
i][4];
1492 dc += dc_pred[-6].
dc;
1497 dc += dc_pred[6].
dc;
1501 if (count != 2 && dc_pred[-1].
type ==
type) {
1502 dc += dc_pred[-1].
dc;
1506 if (count != 2 && dc_pred[1].
type ==
type) {
1507 dc += dc_pred[1].
dc;
1512 return count == 2 ?
dc / 2 : last_dc[
type];
1517 int16_t *
base =
s->dct_tokens_base;
1518 for (
int plane = 0; plane < 3; plane++) {
1519 for (
int i = 0;
i < 64;
i++) {
1520 s->dct_tokens[plane][
i] =
base;
1521 base +=
s->fragment_width[!!plane] *
s->fragment_height[!!plane];
1534 int eob_tracker[64];
1553 for (
int i = 1;
i <= 5;
i++) {
1558 for (
int i = 6;
i <= 14;
i++) {
1563 for (
int i = 15;
i <= 27;
i++) {
1568 for (
int i = 28;
i <= 63;
i++) {
1574 vp4_set_tokens_base(
s);
1576 memset(last_dc, 0,
sizeof(last_dc));
1579 memset(eob_tracker, 0,
sizeof(eob_tracker));
1582 for (
int i = 0;
i <
s->fragment_width[!!plane];
i++)
1583 vp4_dc_predictor_reset(&
s->dc_pred_row[
i]);
1585 for (
int j = 0; j < 6; j++)
1586 for (
int i = 0;
i < 6;
i++)
1587 vp4_dc_predictor_reset(&dc_pred[j][
i]);
1589 for (
int sb_y = 0; sb_y * 4 <
s->fragment_height[!!plane]; sb_y++) {
1590 for (
int sb_x = 0; sb_x *4 <
s->fragment_width[!!plane]; sb_x++) {
1591 vp4_dc_pred_before(
s, dc_pred, sb_x);
1592 for (
int j = 0; j < 16; j++) {
1595 int x = 4 * sb_x + hx;
1596 int y = 4 * sb_y + hy;
1600 if (x >=
s->fragment_width[!!plane] || y >=
s->fragment_height[!!plane])
1603 fragment =
s->fragment_start[plane] + y *
s->fragment_width[!!plane] + x;
1608 if (vp4_unpack_vlcs(
s, gb,
tables[!!plane], plane, eob_tracker,
fragment) < 0)
1614 vp4_dc_pred(
s, this_dc_pred, last_dc, dc_block_type, plane);
1616 this_dc_pred->
type = dc_block_type,
1617 this_dc_pred->
dc = last_dc[dc_block_type] =
s->all_fragments[
fragment].dc;
1619 vp4_dc_pred_after(
s, dc_pred, sb_x);
1624 vp4_set_tokens_base(
s);
1635 #define COMPATIBLE_FRAME(x) \
1636 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1637 #define DC_COEFF(u) s->all_fragments[u].dc
1642 int fragment_height)
1649 int i = first_fragment;
1654 int vl, vul, vu, vur;
1666 static const int predictor_transform[16][4] = {
1680 { -104, 116, 0, 116 },
1682 { -104, 116, 0, 116 }
1691 static const unsigned char compatible_frame[9] = {
1702 int current_frame_type;
1718 for (
int y = 0; y < fragment_height; y++) {
1720 for (
int x = 0; x < fragment_width; x++,
i++) {
1723 if (
s->all_fragments[
i].coding_method !=
MODE_COPY) {
1724 current_frame_type =
1725 compatible_frame[
s->all_fragments[
i].coding_method];
1735 u =
i - fragment_width;
1740 ul =
i - fragment_width - 1;
1745 if (x + 1 < fragment_width) {
1746 ur =
i - fragment_width + 1;
1756 predicted_dc = last_dc[current_frame_type];
1760 (predictor_transform[
transform][0] * vul) +
1761 (predictor_transform[
transform][1] * vu) +
1762 (predictor_transform[
transform][2] * vur) +
1763 (predictor_transform[
transform][3] * vl);
1765 predicted_dc /= 128;
1770 if (
FFABS(predicted_dc - vu) > 128)
1772 else if (
FFABS(predicted_dc - vl) > 128)
1774 else if (
FFABS(predicted_dc - vul) > 128)
1782 last_dc[current_frame_type] =
DC_COEFF(
i);
1789 int ystart,
int yend)
1791 int *bounding_values =
s->bounding_values_array + 127;
1793 int width =
s->fragment_width[!!plane];
1794 int height =
s->fragment_height[!!plane];
1796 ptrdiff_t
stride =
s->current_frame.f->linesize[plane];
1797 uint8_t *plane_data =
s->current_frame.f->data[plane];
1798 if (!
s->flipped_image)
1800 plane_data +=
s->data_offset[plane] + 8 * ystart *
stride;
1802 for (
int y = ystart; y < yend; y++) {
1803 for (
int x = 0; x <
width; x++) {
1811 s->vp3dsp.h_loop_filter(
1813 stride, bounding_values);
1818 s->vp3dsp.v_loop_filter(
1820 stride, bounding_values);
1826 if ((x <
width - 1) &&
1828 s->vp3dsp.h_loop_filter(
1829 plane_data + 8 * x + 8,
1830 stride, bounding_values);
1838 s->vp3dsp.v_loop_filter(
1839 plane_data + 8 * x + 8 *
stride,
1840 stride, bounding_values);
1846 plane_data += 8 *
stride;
1855 int plane,
int inter, int16_t
block[64])
1857 const int16_t *dequantizer =
s->qmat[frag->
qpi][inter][plane];
1858 const uint8_t *
perm =
s->idct_scantable;
1862 int token = *
s->dct_tokens[plane][
i];
1863 switch (token & 3) {
1866 s->dct_tokens[plane][
i]++;
1868 *
s->dct_tokens[plane][
i] = token & ~3;
1871 s->dct_tokens[plane][
i]++;
1872 i += (token >> 2) & 0x7f;
1882 s->dct_tokens[plane][
i++]++;
1892 block[0] = frag->
dc *
s->qmat[0][inter][plane][0];
1905 int y_flipped =
s->flipped_image ?
s->height - y : y;
1911 y_flipped ==
s->height ? INT_MAX
1916 if (!
s->avctx->draw_horiz_band)
1919 h = y -
s->last_slice_end;
1920 s->last_slice_end = y;
1923 if (!
s->flipped_image)
1924 y =
s->height - y -
h;
1926 cy = y >>
s->chroma_y_shift;
1927 offset[0] =
s->current_frame.f->linesize[0] * y;
1928 offset[1] =
s->current_frame.f->linesize[1] * cy;
1929 offset[2] =
s->current_frame.f->linesize[2] * cy;
1934 s->avctx->draw_horiz_band(
s->avctx,
s->current_frame.f,
offset, y, 3,
h);
1942 int motion_y,
int y)
1946 int border = motion_y & 1;
1954 ref_row = y + (motion_y >> 1);
1955 ref_row =
FFMAX(
FFABS(ref_row), ref_row + 8 + border);
1960 #if CONFIG_VP4_DECODER
1964 static int vp4_mc_loop_filter(
Vp3DecodeContext *
s,
int plane,
int motion_x,
int motion_y,
int bx,
int by,
1965 const uint8_t *motion_source, ptrdiff_t
stride,
1966 int src_x,
int src_y, uint8_t *
temp)
1968 int motion_shift = plane ? 4 : 2;
1969 int subpel_mask = plane ? 3 : 1;
1970 int *bounding_values =
s->bounding_values_array + 127;
1974 int x_subpel, y_subpel;
1975 int x_offset, y_offset;
1977 int block_width = plane ? 8 : 16;
1978 int plane_width =
s->width >> (plane &&
s->chroma_x_shift);
1979 int plane_height =
s->height >> (plane &&
s->chroma_y_shift);
1981 #define loop_stride 12
1982 uint8_t
loop[12 * loop_stride];
1985 x = 8 * bx + motion_x / motion_shift;
1986 y = 8 * by + motion_y / motion_shift;
1988 x_subpel = motion_x & subpel_mask;
1989 y_subpel = motion_y & subpel_mask;
1991 if (x_subpel || y_subpel) {
2001 x2 = x + block_width;
2002 y2 = y + block_width;
2004 if (x2 < 0 || x2 >= plane_width || y2 < 0 || y2 >= plane_height)
2007 x_offset = (-(x + 2) & 7) + 2;
2008 y_offset = (-(y + 2) & 7) + 2;
2010 av_assert1(!(x_offset > 8 + x_subpel && y_offset > 8 + y_subpel));
2012 s->vdsp.emulated_edge_mc(
loop, motion_source -
stride - 1,
2014 12, 12, src_x - 1, src_y - 1,
2018 if (x_offset <= 8 + x_subpel)
2021 if (y_offset <= 8 + y_subpel)
2029 if (!x_offset && !y_offset)
2032 s->vdsp.emulated_edge_mc(
loop, motion_source -
stride - 1,
2034 12, 12, src_x - 1, src_y - 1,
2038 #define safe_loop_filter(name, ptr, stride, bounding_values) \
2039 if ((uintptr_t)(ptr) & 7) \
2040 s->vp3dsp.name##_unaligned(ptr, stride, bounding_values); \
2042 s->vp3dsp.name(ptr, stride, bounding_values);
2045 safe_loop_filter(h_loop_filter,
loop + loop_stride + x_offset + 1, loop_stride, bounding_values);
2048 safe_loop_filter(v_loop_filter,
loop + (y_offset + 1)*loop_stride + 1, loop_stride, bounding_values);
2051 for (
int i = 0;
i < 9;
i++)
2064 int16_t *
block =
s->block;
2065 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
2070 const AVFrame *last_frame =
s->last_frame.f->data[0] ?
2071 s->last_frame.f :
s->current_frame.f;
2072 const AVFrame *golden_frame =
s->golden_frame.f->data[0] ?
2073 s->golden_frame.f :
s->current_frame.f;
2074 int motion_halfpel_index;
2077 if (slice >=
s->c_superblock_height)
2080 for (
int plane = 0; plane < 3; plane++) {
2082 s->data_offset[plane];
2083 const uint8_t *last_plane = last_frame->
data[plane] +
2084 s->data_offset[plane];
2085 const uint8_t *golden_plane = golden_frame->
data[plane] +
2086 s->data_offset[plane];
2087 ptrdiff_t
stride =
s->current_frame.f->linesize[plane];
2088 int plane_width =
s->width >> (plane &&
s->chroma_x_shift);
2089 int plane_height =
s->height >> (plane &&
s->chroma_y_shift);
2090 const int8_t (*motion_val)[2] =
s->motion_val[!!plane];
2092 int sb_y = slice << (!plane &&
s->chroma_y_shift);
2093 int slice_height = sb_y + 1 + (!plane &&
s->chroma_y_shift);
2094 int slice_width = plane ?
s->c_superblock_width
2095 :
s->y_superblock_width;
2097 int fragment_width =
s->fragment_width[!!plane];
2098 int fragment_height =
s->fragment_height[!!plane];
2099 int fragment_start =
s->fragment_start[plane];
2101 int do_await = !plane && HAVE_THREADS &&
2104 if (!
s->flipped_image)
2110 for (; sb_y < slice_height; sb_y++) {
2112 for (
int sb_x = 0; sb_x < slice_width; sb_x++) {
2114 for (
int j = 0; j < 16; j++) {
2117 int fragment = y * fragment_width + x;
2122 if (x >= fragment_width || y >= fragment_height)
2125 first_pixel = 8 * y *
stride + 8 * x;
2131 (16 * y) >>
s->chroma_y_shift);
2134 if (
s->all_fragments[
i].coding_method !=
MODE_COPY) {
2135 const uint8_t *motion_source;
2138 motion_source = golden_plane;
2140 motion_source = last_plane;
2142 motion_source += first_pixel;
2143 motion_halfpel_index = 0;
2147 if ((
s->all_fragments[
i].coding_method >
MODE_INTRA) &&
2150 int standard_mc = 1;
2151 motion_x = motion_val[
fragment][0];
2152 motion_y = motion_val[
fragment][1];
2153 #if CONFIG_VP4_DECODER
2154 if (plane &&
s->version >= 2) {
2155 motion_x = (motion_x >> 1) | (motion_x & 1);
2156 motion_y = (motion_y >> 1) | (motion_y & 1);
2160 src_x = (motion_x >> 1) + 8 * x;
2161 src_y = (motion_y >> 1) + 8 * y;
2163 motion_halfpel_index = motion_x & 0x01;
2164 motion_source += (motion_x >> 1);
2166 motion_halfpel_index |= (motion_y & 0x01) << 1;
2167 motion_source += ((motion_y >> 1) *
stride);
2169 #if CONFIG_VP4_DECODER
2170 if (
s->version >= 2) {
2171 uint8_t *
temp =
s->edge_emu_buffer;
2174 if (vp4_mc_loop_filter(
s, plane, motion_val[
fragment][0], motion_val[
fragment][1], x, y, motion_source,
stride, src_x, src_y,
temp)) {
2175 motion_source =
temp;
2181 if (standard_mc && (
2182 src_x < 0 || src_y < 0 ||
2183 src_x + 9 >= plane_width ||
2184 src_y + 9 >= plane_height)) {
2185 uint8_t *
temp =
s->edge_emu_buffer;
2189 s->vdsp.emulated_edge_mc(
temp, motion_source,
2194 motion_source =
temp;
2205 if (motion_halfpel_index != 3) {
2206 s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
2208 motion_source,
stride, 8);
2212 int d = (motion_x ^ motion_y) >> 31;
2215 motion_source +
stride + 1 +
d,
2241 s->hdsp.put_pixels_tab[1][0](
2243 last_plane + first_pixel,
2250 if (
s->version < 2 && !
s->skip_loop_filter)
2252 FFMIN(4 * sb_y + 3, fragment_height - 1));
2290 #if CONFIG_VP4_DECODER
2291 for (
int j = 0; j < 2; j++)
2292 for (
int i = 0;
i < 7;
i++) {
2293 vp4_mv_vlc_table[j][
i] =
2301 for (
int i = 0;
i < 2;
i++) {
2302 block_pattern_vlc[
i] =
2314 int y_fragment_count, c_fragment_count;
2318 y_fragment_count =
s->fragment_width[0] *
s->fragment_height[0];
2319 c_fragment_count =
s->fragment_width[1] *
s->fragment_height[1];
2322 s->superblock_coding =
av_mallocz(
FFMAX(
s->superblock_count,
s->yuv_macroblock_count));
2323 s->all_fragments =
av_calloc(
s->fragment_count,
sizeof(*
s->all_fragments));
2325 s-> kf_coded_fragment_list =
av_calloc(
s->fragment_count,
sizeof(
int));
2326 s->nkf_coded_fragment_list =
av_calloc(
s->fragment_count,
sizeof(
int));
2327 memset(
s-> num_kf_coded_fragment, -1,
sizeof(
s-> num_kf_coded_fragment));
2330 64 *
sizeof(*
s->dct_tokens_base));
2331 s->motion_val[0] =
av_calloc(y_fragment_count,
sizeof(*
s->motion_val[0]));
2332 s->motion_val[1] =
av_calloc(c_fragment_count,
sizeof(*
s->motion_val[1]));
2335 s->superblock_fragments =
av_calloc(
s->superblock_count, 16 *
sizeof(
int));
2336 s->macroblock_coding =
av_mallocz(
s->macroblock_count + 1);
2338 s->dc_pred_row =
av_malloc_array(
s->y_superblock_width * 4,
sizeof(*
s->dc_pred_row));
2340 if (!
s->superblock_coding || !
s->all_fragments ||
2341 !
s->dct_tokens_base || !
s->kf_coded_fragment_list ||
2342 !
s->nkf_coded_fragment_list ||
2343 !
s->superblock_fragments || !
s->macroblock_coding ||
2345 !
s->motion_val[0] || !
s->motion_val[1]) {
2360 if (!
s->current_frame.f || !
s->last_frame.f || !
s->golden_frame.f)
2381 int y_fragment_count, c_fragment_count;
2389 #if !CONFIG_VP4_DECODER
2410 for (
int i = 0;
i < 64;
i++) {
2411 #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
2419 for (
int i = 0;
i < 3;
i++)
2426 s->y_superblock_width = (
s->width + 31) / 32;
2427 s->y_superblock_height = (
s->height + 31) / 32;
2428 s->y_superblock_count =
s->y_superblock_width *
s->y_superblock_height;
2431 c_width =
s->width >>
s->chroma_x_shift;
2432 c_height =
s->height >>
s->chroma_y_shift;
2433 s->c_superblock_width = (c_width + 31) / 32;
2434 s->c_superblock_height = (c_height + 31) / 32;
2435 s->c_superblock_count =
s->c_superblock_width *
s->c_superblock_height;
2437 s->superblock_count =
s->y_superblock_count + (
s->c_superblock_count * 2);
2438 s->u_superblock_start =
s->y_superblock_count;
2439 s->v_superblock_start =
s->u_superblock_start +
s->c_superblock_count;
2441 s->macroblock_width = (
s->width + 15) / 16;
2442 s->macroblock_height = (
s->height + 15) / 16;
2443 s->macroblock_count =
s->macroblock_width *
s->macroblock_height;
2444 s->c_macroblock_width = (c_width + 15) / 16;
2445 s->c_macroblock_height = (c_height + 15) / 16;
2446 s->c_macroblock_count =
s->c_macroblock_width *
s->c_macroblock_height;
2447 s->yuv_macroblock_count =
s->macroblock_count + 2 *
s->c_macroblock_count;
2451 s->fragment_width[1] =
s->fragment_width[0] >>
s->chroma_x_shift;
2452 s->fragment_height[1] =
s->fragment_height[0] >>
s->chroma_y_shift;
2455 y_fragment_count =
s->fragment_width[0] *
s->fragment_height[0];
2456 c_fragment_count =
s->fragment_width[1] *
s->fragment_height[1];
2457 s->fragment_count = y_fragment_count + 2 * c_fragment_count;
2458 s->fragment_start[1] = y_fragment_count;
2459 s->fragment_start[2] = y_fragment_count + c_fragment_count;
2461 if (!
s->theora_tables) {
2462 for (
int i = 0;
i < 64;
i++) {
2472 for (
int inter = 0; inter < 2; inter++) {
2473 for (
int plane = 0; plane < 3; plane++) {
2474 s->qr_count[inter][plane] = 1;
2475 s->qr_size[inter][plane][0] = 63;
2476 s->qr_base[inter][plane][0] =
2477 s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
2488 s->coeff_vlc = vlcs;
2490 if (!
s->theora_tables) {
2491 const uint8_t (*bias_tabs)[32][2];
2497 &bias_tabs[
i][0][1], 2,
2498 &bias_tabs[
i][0][0], 2, 1,
2509 &
tab->entries[0].len,
sizeof(*
tab->entries),
2510 &
tab->entries[0].sym,
sizeof(*
tab->entries), 1,
2545 if (
src->f->data[0])
2564 int qps_changed = 0, err;
2568 if (!
s1->current_frame.f->data[0] ||
2569 s->width !=
s1->width ||
s->height !=
s1->height) {
2577 if ((err = ref_frames(
s,
s1)) < 0)
2580 s->keyframe =
s1->keyframe;
2583 for (
int i = 0;
i < 3;
i++) {
2584 if (
s->qps[
i] !=
s1->qps[1]) {
2586 memcpy(&
s->qmat[
i], &
s1->qmat[
i],
sizeof(
s->qmat[
i]));
2590 if (
s->qps[0] !=
s1->qps[0])
2591 memcpy(&
s->bounding_values_array, &
s1->bounding_values_array,
2592 sizeof(
s->bounding_values_array));
2595 memcpy(
s->qps,
s1->qps,
sizeof(
s->qps));
2596 memcpy(
s->last_qps,
s1->last_qps,
sizeof(
s->last_qps));
2608 const uint8_t *buf = avpkt->
data;
2609 int buf_size = avpkt->
size;
2617 #if CONFIG_THEORA_DECODER
2623 av_log(avctx,
AV_LOG_ERROR,
"midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
2637 }
else if (
type == 2) {
2650 "Header packet passed to frame decoder, skipping\n");
2656 if (!
s->all_fragments) {
2662 for (
int i = 0;
i < 3;
i++)
2663 s->last_qps[
i] =
s->qps[
i];
2668 }
while (
s->theora >= 0x030200 &&
s->nqps < 3 &&
get_bits1(&gb));
2669 for (
int i =
s->nqps;
i < 3;
i++)
2674 s->keyframe ?
"key" :
"", avctx->frame_num + 1,
s->qps[0]);
2676 s->skip_loop_filter = !
s->filter_limit_values[
s->qps[0]] ||
2680 if (
s->qps[0] !=
s->last_qps[0])
2683 for (
int i = 0;
i <
s->nqps;
i++)
2686 if (
s->qps[
i] !=
s->last_qps[
i] ||
s->qps[0] !=
s->last_qps[0])
2702 if (!
s->edge_emu_buffer) {
2703 s->edge_emu_buffer =
av_malloc(9 *
FFABS(
s->current_frame.f->linesize[0]));
2704 if (!
s->edge_emu_buffer) {
2716 #if !CONFIG_VP4_DECODER
2723 if (avctx->frame_num == 0)
2725 "VP version: %d\n",
s->version);
2728 if (
s->version ||
s->theora) {
2731 "Warning, unsupported keyframe coding type?!\n");
2734 #if CONFIG_VP4_DECODER
2735 if (
s->version >= 2) {
2736 int mb_height, mb_width;
2737 int mb_width_mul, mb_width_div, mb_height_mul, mb_height_div;
2741 if (mb_height !=
s->macroblock_height ||
2742 mb_width !=
s->macroblock_width)
2749 if (mb_width_mul != 1 || mb_width_div != 1 || mb_height_mul != 1 || mb_height_div != 1)
2758 if (!
s->golden_frame.f->data[0]) {
2760 "vp3: first frame not a keyframe\n");
2768 &
s->golden_frame)) < 0)
2775 memset(
s->all_fragments, 0,
s->fragment_count *
sizeof(
Vp3Fragment));
2777 if (
s->version < 2) {
2782 #if CONFIG_VP4_DECODER
2784 if ((
ret = vp4_unpack_macroblocks(
s, &gb)) < 0) {
2803 if (
s->version < 2) {
2808 #if CONFIG_VP4_DECODER
2810 if ((
ret = vp4_unpack_dct_coeffs(
s, &gb)) < 0) {
2817 for (
int i = 0;
i < 3;
i++) {
2818 int height =
s->height >> (
i &&
s->chroma_y_shift);
2819 if (
s->flipped_image)
2820 s->data_offset[
i] = 0;
2822 s->data_offset[
i] = (
height - 1) *
s->current_frame.f->linesize[
i];
2825 s->last_slice_end = 0;
2826 for (
int i = 0;
i <
s->c_superblock_height;
i++)
2831 for (
int i = 0;
i < 3;
i++) {
2832 int row = (
s->height >> (3 + (
i &&
s->chroma_y_shift))) - 1;
2875 ff_dlog(avctx,
"code length %d, curr entry %d, token %d\n",
2893 #if CONFIG_THEORA_DECODER
2901 int visible_width, visible_height, colorspace;
2902 uint8_t offset_x = 0, offset_y = 0;
2909 s->theora_header = 0;
2919 if (
s->theora < 0x030200) {
2920 s->flipped_image = 1;
2922 "Old (<alpha3) Theora bitstream, flipped image\n");
2930 if (
s->theora >= 0x030200) {
2940 visible_width + offset_x >
s->width ||
2941 visible_height + offset_y >
s->height ||
2945 "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
2946 visible_width, visible_height, offset_x, offset_y,
2947 s->width,
s->height);
2953 if (fps.
num && fps.
den) {
2954 if (fps.
num < 0 || fps.
den < 0) {
2959 fps.
den, fps.
num, 1 << 30);
2964 if (aspect.
num && aspect.
den) {
2967 aspect.
num, aspect.
den, 1 << 30);
2971 if (
s->theora < 0x030200)
2978 if (
s->theora >= 0x030200) {
2995 avctx->
width = visible_width;
2996 avctx->
height = visible_height;
2999 s->offset_x = offset_x;
3000 s->offset_y =
s->height - visible_height - offset_y;
3003 if (colorspace == 1)
3005 else if (colorspace == 2)
3008 if (colorspace == 1 || colorspace == 2) {
3013 s->theora_header = 1;
3020 int n, matrices,
ret;
3022 if (!
s->theora_header)
3025 if (
s->theora >= 0x030200) {
3029 for (
int i = 0;
i < 64;
i++)
3033 if (
s->theora >= 0x030200)
3038 for (
int i = 0;
i < 64;
i++)
3039 s->coded_ac_scale_factor[
i] =
get_bits(gb, n);
3041 if (
s->theora >= 0x030200)
3046 for (
int i = 0;
i < 64;
i++)
3047 s->coded_dc_scale_factor[0][
i] =
3048 s->coded_dc_scale_factor[1][
i] =
get_bits(gb, n);
3050 if (
s->theora >= 0x030200)
3055 if (matrices > 384) {
3060 for (
int j = 0; j < matrices; j++)
3061 for (
int i = 0;
i < 64;
i++)
3064 for (
int inter = 0; inter <= 1; inter++) {
3065 for (
int plane = 0; plane <= 2; plane++) {
3067 if (inter || plane > 0)
3075 qtj = (3 * inter + plane - 1) / 3;
3076 plj = (plane + 2) % 3;
3078 s->qr_count[inter][plane] =
s->qr_count[qtj][plj];
3079 memcpy(
s->qr_size[inter][plane],
s->qr_size[qtj][plj],
3080 sizeof(
s->qr_size[0][0]));
3081 memcpy(
s->qr_base[inter][plane],
s->qr_base[qtj][plj],
3082 sizeof(
s->qr_base[0][0]));
3089 if (
i >= matrices) {
3091 "invalid base matrix index\n");
3094 s->qr_base[inter][plane][qri] =
i;
3098 s->qr_size[inter][plane][qri++] =
i;
3106 s->qr_count[inter][plane] = qri;
3113 s->huffman_table[
i].nb_entries = 0;
3118 s->theora_tables = 1;
3128 const uint8_t *header_start[3];
3142 42, header_start, header_len) < 0) {
3147 for (
int i = 0;
i < 3;
i++) {
3148 if (header_len[
i] <= 0)
3156 if (!(ptype & 0x80)) {
3179 "Unknown Theora config packet: %d\n", ptype & ~0x80);
3184 "%d bits left in packet %X\n",
3186 if (
s->theora < 0x030200)
3199 .
init = theora_decode_init,
3228 #if CONFIG_VP4_DECODER
static void error(const char *err)
static const uint16_t vp4_ac_scale_factor[64]
static av_cold int allocate_tables(AVCodecContext *avctx)
Allocate tables for per-frame data in Vp3DecodeContext.
static int vp3_dequant(Vp3DecodeContext *s, const Vp3Fragment *frag, int plane, int inter, int16_t block[64])
Pull DCT tokens from the 64 levels to decode and dequant the coefficients for the next block in codin...
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
#define AV_LOG_WARNING
Something somehow does not look correct.
AVPixelFormat
Pixel format.
int ff_vlc_init_from_lengths(VLC *vlc, int nb_bits, int nb_codes, const int8_t *lens, int lens_wrap, const void *symbols, int symbols_wrap, int symbols_size, int offset, int flags, void *logctx)
Build VLC decoding tables suitable for use with get_vlc2()
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int vp4_get_mv(GetBitContext *gb, int axis, int last_motion)
static void vp3_decode_flush(AVCodecContext *avctx)
enum AVColorSpace colorspace
YUV colorspace type.
static const uint8_t zero_run_base[32]
#define MODE_INTER_PRIOR_LAST
#define u(width, name, range_min, range_max)
uint8_t idct_scantable[64]
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
static const uint8_t mode_code_vlc_len[8]
static void * ff_refstruct_alloc_ext(size_t size, unsigned flags, void *opaque, void(*free_cb)(FFRefStructOpaque opaque, void *obj))
A wrapper around ff_refstruct_alloc_ext_c() for the common case of a non-const qualified opaque.
static VLCElem superblock_run_length_vlc[88]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static int read_huffman_tree(HuffTable *huff, GetBitContext *gb, int length, AVCodecContext *avctx)
This structure describes decoded (raw) audio or video data.
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
void ff_vp3dsp_set_bounding_values(int *bounding_values_array, int filter_limit)
const FFCodec ff_vp3_decoder
Vp3Fragment * all_fragments
static VLCElem mode_code_vlc[24+2108 *CONFIG_VP4_DECODER]
uint8_t filter_limit_values[64]
static VLCElem fragment_run_length_vlc[56]
static VLCElem motion_vector_vlc[112]
RefStruct is an API for creating reference-counted objects with minimal overhead.
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before ff_thread_await_progress() has been called on them. reget_buffer() and buffer age optimizations no longer work. *The contents of buffers must not be written to after ff_thread_report_progress() has been called on them. This includes draw_edges(). Porting codecs to frame threading
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
static void render_slice(Vp3DecodeContext *s, int slice)
const VLCElem * vlc_tabs[80]
#define FF_DEBUG_PICT_INFO
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
static VLCElem vlc_tables[VLC_TABLES_SIZE]
#define AV_CODEC_FLAG2_IGNORE_CROP
Discard cropping information from SPS.
#define bit(string, value)
int bounding_values_array[256+2]
static void skip_bits(GetBitContext *s, int n)
int is_copy
When using frame-threaded decoding, this field is set for the first worker thread (e....
int * superblock_fragments
@ AVCOL_SPC_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static int get_coeff(GetBitContext *gb, int token, int16_t *coeff)
AVCodec p
The public AVCodec.
static const uint8_t vp4_mv_vlc[2][7][63][2]
#define CODING_MODE_COUNT
static const struct twinvq_data tab
Writing a table generator This documentation is preliminary Parts of the API are not good and should be changed Basic concepts A table generator consists of two *_tablegen c and *_tablegen h The h file will provide the variable declarations and initialization code for the tables
int flags
AV_CODEC_FLAG_*.
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
#define MODE_INTER_LAST_MV
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
int num_kf_coded_fragment[3]
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
#define TOKEN_ZERO_RUN(coeff, zero_run)
static const uint8_t vp4_pred_block_type_map[8]
static void await_reference_row(Vp3DecodeContext *s, const Vp3Fragment *fragment, int motion_y, int y)
Wait for the reference frame of the current fragment.
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
static int ff_thread_once(char *control, void(*routine)(void))
static const uint8_t motion_vector_vlc_table[63][2]
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static av_cold void free_vlc_tables(FFRefStructOpaque unused, void *obj)
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
static const uint8_t hilbert_offset[16][2]
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
For static VLCs, the number of bits can often be hardcoded at each get_vlc2() callsite.
#define FF_CODEC_DECODE_CB(func)
static void init_loop_filter(Vp3DecodeContext *s)
static const uint8_t vp4_mv_table_selector[32]
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
static int init_block_mapping(Vp3DecodeContext *s)
This function sets up all of the various blocks mappings: superblocks <-> fragments,...
#define SB_PARTIALLY_CODED
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static void reverse_dc_prediction(Vp3DecodeContext *s, int first_fragment, int fragment_width, int fragment_height)
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
static const int ModeAlphabet[6][CODING_MODE_COUNT]
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
#define CODEC_LONG_NAME(str)
@ AVCOL_PRI_BT470BG
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
#define MODE_USING_GOLDEN
int ff_thread_ref_frame(ThreadFrame *dst, const ThreadFrame *src)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
uint8_t idct_permutation[64]
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
#define MODE_INTER_FOURMV
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
@ AVDISCARD_ALL
discard all
static const int16_t *const coeff_tables[32]
static av_cold int init_frames(Vp3DecodeContext *s)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Used to store optimal huffman encoding results.
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
static const int8_t transform[32][32]
Rational number (pair of numerator and denominator).
struct AVCodecInternal * internal
Private context used for internal data.
void ff_vp3dsp_h_loop_filter_12(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values)
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
@ AV_PICTURE_TYPE_I
Intra.
static unsigned int get_bits1(GetBitContext *s)
static const uint8_t fragment_run_length_vlc_len[30]
static const uint8_t vp4_bias[5 *16][32][2]
void ff_thread_release_ext_buffer(ThreadFrame *f)
Unref a ThreadFrame.
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
#define TOKEN_COEFF(coeff)
static const uint8_t vp4_y_dc_scale_factor[64]
#define UPDATE_THREAD_CONTEXT(func)
static int update_frames(AVCodecContext *avctx)
Release and shuffle frames after decode finishes.
CoeffVLCs * coeff_vlc
The first 16 of the following VLCs are for the dc coefficients; the others are four groups of 16 VLCs...
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
static const uint16_t vp31_ac_scale_factor[64]
uint8_t qr_size[2][3][64]
static const uint8_t vp31_intra_y_dequant[64]
void ff_vp3dsp_v_loop_filter_12(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values)
int total_num_coded_frags
@ AVDISCARD_NONKEY
discard all frames except keyframes
int flags2
AV_CODEC_FLAG2_*.
int(* init)(AVBSFContext *ctx)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
static const int8_t fixed_motion_vector_table[64]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
#define DECLARE_ALIGNED(n, t, v)
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
const FFCodec ff_vp4_decoder
#define FF_CODEC_CAP_EXPORTS_CROPPING
The decoder sets the cropping fields in the output frames manually.
#define AV_NUM_DATA_POINTERS
#define FF_CODEC_CAP_ALLOCATE_PROGRESS
int16_t * dct_tokens[3][64]
This is a list of all tokens in bitstream order.
uint16_t coded_dc_scale_factor[2][64]
ThreadFrame current_frame
static int ref_frame(VVCFrame *dst, const VVCFrame *src)
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
unsigned char * macroblock_coding
#define AV_LOG_INFO
Standard information.
@ AVCOL_TRC_BT709
also ITU-R BT1361
#define FF_THREAD_FRAME
Decode more than one frame at once.
int * nkf_coded_fragment_list
static const struct @198 eob_run_table[7]
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
av_cold void ff_vp3dsp_init(VP3DSPContext *c, int flags)
#define i(width, name, range_min, range_max)
uint8_t * edge_emu_buffer
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
#define av_malloc_array(a, b)
static int vp3_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static const uint8_t superblock_run_length_vlc_lens[34]
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
const uint8_t ff_mjpeg_std_chrominance_quant_tbl[64]
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
#define SUPERBLOCK_VLC_BITS
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
const char * name
Name of the codec implementation.
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
int ff_thread_get_ext_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around ff_get_buffer() for frame-multithreaded codecs.
void * av_calloc(size_t nmemb, size_t size)
int * coded_fragment_list[3]
const uint8_t ff_zigzag_direct[64]
@ AVCOL_PRI_BT470M
also FCC Title 47 Code of Federal Regulations 73.682 (a)(20)
void ff_vlc_free(VLC *vlc)
#define FFSWAP(type, a, b)
static av_cold void free_tables(AVCodecContext *avctx)
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, const VLCElem *vlc_table, int coeff_index, int plane, int eob_run)
#define MODE_INTER_PLUS_MV
int num_coded_frags[3][64]
number of blocks that contain DCT coefficients at the given level or higher
void ff_refstruct_replace(void *dstp, const void *src)
Ensure *dstp refers to the same object as src.
static const uint8_t vp4_block_pattern_table_selector[14]
the pkt_dts and pkt_pts fields in AVFrame will work as usual Restrictions on codec whose streams don t reset across will not work because their bitstreams cannot be decoded in parallel *The contents of buffers must not be read before as well as code calling up to before the decode process starts Call ff_thread_finish_setup() afterwards. If some code can 't be moved
const FFCodec ff_theora_decoder
static const uint8_t vp4_filter_limit_values[64]
static const VLCElem * coeff_vlc[2][8][4]
main external API structure.
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
called when all pixels up to row y are complete
@ AVCHROMA_LOC_CENTER
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
static const uint8_t vp4_generic_dequant[64]
static const uint8_t zero_run_get_bits[32]
uint32_t coded_ac_scale_factor[64]
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, ptrdiff_t dst_pitch, int dst_height)
Convert and output the current plane.
static const uint8_t vp31_inter_dequant[64]
static void body(uint32_t ABCD[4], const uint8_t *src, size_t nblocks)
static const uint8_t vp4_block_pattern_vlc[2][14][2]
int avpriv_split_xiph_headers(const uint8_t *extradata, int extradata_size, int first_header_size, const uint8_t *header_start[3], int header_len[3])
Split a single extradata buffer into the three headers that most Xiph codecs use.
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
const av_cold VLCElem * ff_vlc_init_tables_from_lengths(VLCInitState *state, int nb_bits, int nb_codes, const int8_t *lens, int lens_wrap, const void *symbols, int symbols_wrap, int symbols_size, int offset, int flags)
unsigned char * superblock_coding
#define COMPATIBLE_FRAME(x)
#define AVERROR_DECODER_NOT_FOUND
Decoder not found.
int coded_width
Bitstream width / height, may be different from width/height e.g.
@ AV_PICTURE_TYPE_P
Predicted.
static const VLCElem * ff_vlc_init_tables(VLCInitState *state, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, int flags)
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
#define avpriv_request_sample(...)
static const uint8_t vp3_bias[5 *16][32][2]
static int get_eob_run(GetBitContext *gb, int token)
#define VLC_INIT_STATIC_TABLE_FROM_LENGTHS(vlc_table, nb_bits, nb_codes, lens, lens_wrap, syms, syms_wrap, syms_size, offset, flags)
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
HuffTable huffman_table[5 *16]
#define VLC_INIT_STATE(_table)
static const uint8_t vp31_filter_limit_values[64]
This structure stores compressed data.
static av_cold int vp3_decode_init(AVCodecContext *avctx)
uint8_t base_matrix[384][64]
static const uint8_t vp31_dc_scale_factor[64]
int width
picture width / height.
int * kf_coded_fragment_list
#define AV_CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
uint16_t qr_base[2][3][64]
static av_cold int vp3_decode_end(AVCodecContext *avctx)
The exact code depends on how similar the blocks are and how related they are to the block
static const double coeff[2][5]
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define MKTAG(a, b, c, d)
static const uint8_t vp4_uv_dc_scale_factor[64]
#define MAXIMUM_LONG_BIT_RUN
static av_cold void init_tables_once(void)
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
int8_t(*[2] motion_val)[2]
VP4Predictor * dc_pred_row
static const uint8_t coeff_get_bits[32]
int16_t * dct_tokens_base
void ff_refstruct_unref(void *objp)
Decrement the reference count of the underlying object and automatically free the object if there are...
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel.
int16_t qmat[3][2][3][64]
qmat[qpi][is_inter][plane]
#define TOKEN_EOB(eob_run)