FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
adpcm.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2001-2003 The FFmpeg Project
3  *
4  * first version by Francois Revol (revol@free.fr)
5  * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6  * by Mike Melanson (melanson@pcisys.net)
7  * CD-ROM XA ADPCM codec by BERO
8  * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
9  * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
10  * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
11  * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
12  * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
13  * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
14  * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
15  *
16  * This file is part of FFmpeg.
17  *
18  * FFmpeg is free software; you can redistribute it and/or
19  * modify it under the terms of the GNU Lesser General Public
20  * License as published by the Free Software Foundation; either
21  * version 2.1 of the License, or (at your option) any later version.
22  *
23  * FFmpeg is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
26  * Lesser General Public License for more details.
27  *
28  * You should have received a copy of the GNU Lesser General Public
29  * License along with FFmpeg; if not, write to the Free Software
30  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
31  */
32 #include "avcodec.h"
33 #include "get_bits.h"
34 #include "bytestream.h"
35 #include "adpcm.h"
36 #include "adpcm_data.h"
37 #include "internal.h"
38 
39 /**
40  * @file
41  * ADPCM decoders
42  * Features and limitations:
43  *
44  * Reference documents:
45  * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
46  * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
47  * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
48  * http://openquicktime.sourceforge.net/
49  * XAnim sources (xa_codec.c) http://xanim.polter.net/
50  * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
51  * SoX source code http://sox.sourceforge.net/
52  *
53  * CD-ROM XA:
54  * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
55  * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
56  * readstr http://www.geocities.co.jp/Playtown/2004/
57  */
58 
59 /* These are for CD-ROM XA ADPCM */
60 static const int xa_adpcm_table[5][2] = {
61  { 0, 0 },
62  { 60, 0 },
63  { 115, -52 },
64  { 98, -55 },
65  { 122, -60 }
66 };
67 
68 static const int ea_adpcm_table[] = {
69  0, 240, 460, 392,
70  0, 0, -208, -220,
71  0, 1, 3, 4,
72  7, 8, 10, 11,
73  0, -1, -3, -4
74 };
75 
76 // padded to zero where table size is less then 16
77 static const int swf_index_tables[4][16] = {
78  /*2*/ { -1, 2 },
79  /*3*/ { -1, -1, 2, 4 },
80  /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
81  /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
82 };
83 
84 /* end of tables */
85 
86 typedef struct ADPCMDecodeContext {
88  int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
90 
92 {
93  ADPCMDecodeContext *c = avctx->priv_data;
94  unsigned int min_channels = 1;
95  unsigned int max_channels = 2;
96 
97  switch(avctx->codec->id) {
100  min_channels = 2;
101  break;
108  max_channels = 6;
109  break;
110  }
111  if (avctx->channels < min_channels || avctx->channels > max_channels) {
112  av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
113  return AVERROR(EINVAL);
114  }
115 
116  switch(avctx->codec->id) {
118  c->status[0].step = c->status[1].step = 511;
119  break;
121  if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
122  return AVERROR_INVALIDDATA;
123  break;
125  if (avctx->extradata && avctx->extradata_size >= 8) {
126  c->status[0].predictor = AV_RL32(avctx->extradata);
127  c->status[1].predictor = AV_RL32(avctx->extradata + 4);
128  }
129  break;
131  if (avctx->extradata && avctx->extradata_size >= 2)
132  c->vqa_version = AV_RL16(avctx->extradata);
133  break;
134  default:
135  break;
136  }
137 
138  switch(avctx->codec->id) {
151  break;
153  avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
155  break;
156  default:
157  avctx->sample_fmt = AV_SAMPLE_FMT_S16;
158  }
159 
160  return 0;
161 }
162 
163 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
164 {
165  int step_index;
166  int predictor;
167  int sign, delta, diff, step;
168 
169  step = ff_adpcm_step_table[c->step_index];
170  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
171  step_index = av_clip(step_index, 0, 88);
172 
173  sign = nibble & 8;
174  delta = nibble & 7;
175  /* perform direct multiplication instead of series of jumps proposed by
176  * the reference ADPCM implementation since modern CPUs can do the mults
177  * quickly enough */
178  diff = ((2 * delta + 1) * step) >> shift;
179  predictor = c->predictor;
180  if (sign) predictor -= diff;
181  else predictor += diff;
182 
183  c->predictor = av_clip_int16(predictor);
184  c->step_index = step_index;
185 
186  return (short)c->predictor;
187 }
188 
190 {
191  int nibble, step_index, predictor, sign, delta, diff, step, shift;
192 
193  shift = bps - 1;
194  nibble = get_bits_le(gb, bps),
195  step = ff_adpcm_step_table[c->step_index];
196  step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble];
197  step_index = av_clip(step_index, 0, 88);
198 
199  sign = nibble & (1 << shift);
200  delta = nibble & ((1 << shift) - 1);
201  diff = ((2 * delta + 1) * step) >> shift;
202  predictor = c->predictor;
203  if (sign) predictor -= diff;
204  else predictor += diff;
205 
206  c->predictor = av_clip_int16(predictor);
207  c->step_index = step_index;
208 
209  return (int16_t)c->predictor;
210 }
211 
212 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
213 {
214  int step_index;
215  int predictor;
216  int diff, step;
217 
218  step = ff_adpcm_step_table[c->step_index];
219  step_index = c->step_index + ff_adpcm_index_table[nibble];
220  step_index = av_clip(step_index, 0, 88);
221 
222  diff = step >> 3;
223  if (nibble & 4) diff += step;
224  if (nibble & 2) diff += step >> 1;
225  if (nibble & 1) diff += step >> 2;
226 
227  if (nibble & 8)
228  predictor = c->predictor - diff;
229  else
230  predictor = c->predictor + diff;
231 
232  c->predictor = av_clip_int16(predictor);
233  c->step_index = step_index;
234 
235  return c->predictor;
236 }
237 
238 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
239 {
240  int predictor;
241 
242  predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
243  predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
244 
245  c->sample2 = c->sample1;
246  c->sample1 = av_clip_int16(predictor);
247  c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
248  if (c->idelta < 16) c->idelta = 16;
249  if (c->idelta > INT_MAX/768) {
250  av_log(NULL, AV_LOG_WARNING, "idelta overflow\n");
251  c->idelta = INT_MAX/768;
252  }
253 
254  return c->sample1;
255 }
256 
257 static inline short adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
258 {
259  int step_index, predictor, sign, delta, diff, step;
260 
262  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
263  step_index = av_clip(step_index, 0, 48);
264 
265  sign = nibble & 8;
266  delta = nibble & 7;
267  diff = ((2 * delta + 1) * step) >> 3;
268  predictor = c->predictor;
269  if (sign) predictor -= diff;
270  else predictor += diff;
271 
272  c->predictor = av_clip(predictor, -2048, 2047);
273  c->step_index = step_index;
274 
275  return c->predictor << 4;
276 }
277 
278 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
279 {
280  int sign, delta, diff;
281  int new_step;
282 
283  sign = nibble & 8;
284  delta = nibble & 7;
285  /* perform direct multiplication instead of series of jumps proposed by
286  * the reference ADPCM implementation since modern CPUs can do the mults
287  * quickly enough */
288  diff = ((2 * delta + 1) * c->step) >> 3;
289  /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
290  c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
291  c->predictor = av_clip_int16(c->predictor);
292  /* calculate new step and clamp it to range 511..32767 */
293  new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
294  c->step = av_clip(new_step, 511, 32767);
295 
296  return (short)c->predictor;
297 }
298 
299 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
300 {
301  int sign, delta, diff;
302 
303  sign = nibble & (1<<(size-1));
304  delta = nibble & ((1<<(size-1))-1);
305  diff = delta << (7 + c->step + shift);
306 
307  /* clamp result */
308  c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
309 
310  /* calculate new step */
311  if (delta >= (2*size - 3) && c->step < 3)
312  c->step++;
313  else if (delta == 0 && c->step > 0)
314  c->step--;
315 
316  return (short) c->predictor;
317 }
318 
319 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
320 {
321  if(!c->step) {
322  c->predictor = 0;
323  c->step = 127;
324  }
325 
326  c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
327  c->predictor = av_clip_int16(c->predictor);
328  c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
329  c->step = av_clip(c->step, 127, 24567);
330  return c->predictor;
331 }
332 
333 static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
334  const uint8_t *in, ADPCMChannelStatus *left,
335  ADPCMChannelStatus *right, int channels, int sample_offset)
336 {
337  int i, j;
338  int shift,filter,f0,f1;
339  int s_1,s_2;
340  int d,s,t;
341 
342  out0 += sample_offset;
343  if (channels == 1)
344  out1 = out0 + 28;
345  else
346  out1 += sample_offset;
347 
348  for(i=0;i<4;i++) {
349  shift = 12 - (in[4+i*2] & 15);
350  filter = in[4+i*2] >> 4;
351  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
352  avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
353  filter=0;
354  }
355  f0 = xa_adpcm_table[filter][0];
356  f1 = xa_adpcm_table[filter][1];
357 
358  s_1 = left->sample1;
359  s_2 = left->sample2;
360 
361  for(j=0;j<28;j++) {
362  d = in[16+i+j*4];
363 
364  t = sign_extend(d, 4);
365  s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
366  s_2 = s_1;
367  s_1 = av_clip_int16(s);
368  out0[j] = s_1;
369  }
370 
371  if (channels == 2) {
372  left->sample1 = s_1;
373  left->sample2 = s_2;
374  s_1 = right->sample1;
375  s_2 = right->sample2;
376  }
377 
378  shift = 12 - (in[5+i*2] & 15);
379  filter = in[5+i*2] >> 4;
380  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
381  avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
382  filter=0;
383  }
384 
385  f0 = xa_adpcm_table[filter][0];
386  f1 = xa_adpcm_table[filter][1];
387 
388  for(j=0;j<28;j++) {
389  d = in[16+i+j*4];
390 
391  t = sign_extend(d >> 4, 4);
392  s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
393  s_2 = s_1;
394  s_1 = av_clip_int16(s);
395  out1[j] = s_1;
396  }
397 
398  if (channels == 2) {
399  right->sample1 = s_1;
400  right->sample2 = s_2;
401  } else {
402  left->sample1 = s_1;
403  left->sample2 = s_2;
404  }
405 
406  out0 += 28 * (3 - channels);
407  out1 += 28 * (3 - channels);
408  }
409 
410  return 0;
411 }
412 
413 static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
414 {
415  ADPCMDecodeContext *c = avctx->priv_data;
416  GetBitContext gb;
417  const int *table;
418  int k0, signmask, nb_bits, count;
419  int size = buf_size*8;
420  int i;
421 
422  init_get_bits(&gb, buf, size);
423 
424  //read bits & initial values
425  nb_bits = get_bits(&gb, 2)+2;
426  table = swf_index_tables[nb_bits-2];
427  k0 = 1 << (nb_bits-2);
428  signmask = 1 << (nb_bits-1);
429 
430  while (get_bits_count(&gb) <= size - 22*avctx->channels) {
431  for (i = 0; i < avctx->channels; i++) {
432  *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
433  c->status[i].step_index = get_bits(&gb, 6);
434  }
435 
436  for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
437  int i;
438 
439  for (i = 0; i < avctx->channels; i++) {
440  // similar to IMA adpcm
441  int delta = get_bits(&gb, nb_bits);
442  int step = ff_adpcm_step_table[c->status[i].step_index];
443  long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
444  int k = k0;
445 
446  do {
447  if (delta & k)
448  vpdiff += step;
449  step >>= 1;
450  k >>= 1;
451  } while(k);
452  vpdiff += step;
453 
454  if (delta & signmask)
455  c->status[i].predictor -= vpdiff;
456  else
457  c->status[i].predictor += vpdiff;
458 
459  c->status[i].step_index += table[delta & (~signmask)];
460 
461  c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
462  c->status[i].predictor = av_clip_int16(c->status[i].predictor);
463 
464  *samples++ = c->status[i].predictor;
465  }
466  }
467  }
468 }
469 
470 /**
471  * Get the number of samples that will be decoded from the packet.
472  * In one case, this is actually the maximum number of samples possible to
473  * decode with the given buf_size.
474  *
475  * @param[out] coded_samples set to the number of samples as coded in the
476  * packet, or 0 if the codec does not encode the
477  * number of samples in each frame.
478  * @param[out] approx_nb_samples set to non-zero if the number of samples
479  * returned is an approximation.
480  */
482  int buf_size, int *coded_samples, int *approx_nb_samples)
483 {
484  ADPCMDecodeContext *s = avctx->priv_data;
485  int nb_samples = 0;
486  int ch = avctx->channels;
487  int has_coded_samples = 0;
488  int header_size;
489 
490  *coded_samples = 0;
491  *approx_nb_samples = 0;
492 
493  if(ch <= 0)
494  return 0;
495 
496  switch (avctx->codec->id) {
497  /* constant, only check buf_size */
499  if (buf_size < 76 * ch)
500  return 0;
501  nb_samples = 128;
502  break;
504  if (buf_size < 34 * ch)
505  return 0;
506  nb_samples = 64;
507  break;
508  /* simple 4-bit adpcm */
515  nb_samples = buf_size * 2 / ch;
516  break;
517  }
518  if (nb_samples)
519  return nb_samples;
520 
521  /* simple 4-bit adpcm, with header */
522  header_size = 0;
523  switch (avctx->codec->id) {
525  case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
526  case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
527  case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break;
528  }
529  if (header_size > 0)
530  return (buf_size - header_size) * 2 / ch;
531 
532  /* more complex formats */
533  switch (avctx->codec->id) {
535  has_coded_samples = 1;
536  *coded_samples = bytestream2_get_le32(gb);
537  *coded_samples -= *coded_samples % 28;
538  nb_samples = (buf_size - 12) / 30 * 28;
539  break;
541  has_coded_samples = 1;
542  *coded_samples = bytestream2_get_le32(gb);
543  nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
544  break;
546  nb_samples = (buf_size - ch) / ch * 2;
547  break;
551  /* maximum number of samples */
552  /* has internal offsets and a per-frame switch to signal raw 16-bit */
553  has_coded_samples = 1;
554  switch (avctx->codec->id) {
556  header_size = 4 + 9 * ch;
557  *coded_samples = bytestream2_get_le32(gb);
558  break;
560  header_size = 4 + 5 * ch;
561  *coded_samples = bytestream2_get_le32(gb);
562  break;
564  header_size = 4 + 5 * ch;
565  *coded_samples = bytestream2_get_be32(gb);
566  break;
567  }
568  *coded_samples -= *coded_samples % 28;
569  nb_samples = (buf_size - header_size) * 2 / ch;
570  nb_samples -= nb_samples % 28;
571  *approx_nb_samples = 1;
572  break;
574  if (avctx->block_align > 0)
575  buf_size = FFMIN(buf_size, avctx->block_align);
576  nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
577  break;
579  if (avctx->block_align > 0)
580  buf_size = FFMIN(buf_size, avctx->block_align);
581  nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
582  break;
584  if (avctx->block_align > 0)
585  buf_size = FFMIN(buf_size, avctx->block_align);
586  nb_samples = (buf_size - 4 * ch) * 2 / ch;
587  break;
589  {
590  int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
591  int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
592  if (avctx->block_align > 0)
593  buf_size = FFMIN(buf_size, avctx->block_align);
594  nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
595  break;
596  }
598  if (avctx->block_align > 0)
599  buf_size = FFMIN(buf_size, avctx->block_align);
600  nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
601  break;
605  {
606  int samples_per_byte;
607  switch (avctx->codec->id) {
608  case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
609  case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
610  case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
611  }
612  if (!s->status[0].step_index) {
613  nb_samples++;
614  buf_size -= ch;
615  }
616  nb_samples += buf_size * samples_per_byte / ch;
617  break;
618  }
620  {
621  int buf_bits = buf_size * 8 - 2;
622  int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
623  int block_hdr_size = 22 * ch;
624  int block_size = block_hdr_size + nbits * ch * 4095;
625  int nblocks = buf_bits / block_size;
626  int bits_left = buf_bits - nblocks * block_size;
627  nb_samples = nblocks * 4096;
628  if (bits_left >= block_hdr_size)
629  nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
630  break;
631  }
633  if (avctx->extradata) {
634  nb_samples = buf_size / (8 * ch) * 14;
635  break;
636  }
637  has_coded_samples = 1;
638  bytestream2_skip(gb, 4); // channel size
639  *coded_samples = bytestream2_get_be32(gb);
640  *coded_samples -= *coded_samples % 14;
641  nb_samples = (buf_size - (8 + 36 * ch)) / (8 * ch) * 14;
642  break;
644  nb_samples = buf_size / (9 * ch) * 16;
645  break;
647  nb_samples = (buf_size / 128) * 224 / ch;
648  break;
650  nb_samples = buf_size / (16 * ch) * 28;
651  break;
652  }
653 
654  /* validate coded sample count */
655  if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
656  return AVERROR_INVALIDDATA;
657 
658  return nb_samples;
659 }
660 
661 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
662  int *got_frame_ptr, AVPacket *avpkt)
663 {
664  AVFrame *frame = data;
665  const uint8_t *buf = avpkt->data;
666  int buf_size = avpkt->size;
667  ADPCMDecodeContext *c = avctx->priv_data;
668  ADPCMChannelStatus *cs;
669  int n, m, channel, i;
670  short *samples;
671  int16_t **samples_p;
672  int st; /* stereo */
673  int count1, count2;
674  int nb_samples, coded_samples, approx_nb_samples, ret;
675  GetByteContext gb;
676 
677  bytestream2_init(&gb, buf, buf_size);
678  nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
679  if (nb_samples <= 0) {
680  av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
681  return AVERROR_INVALIDDATA;
682  }
683 
684  /* get output buffer */
685  frame->nb_samples = nb_samples;
686  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
687  return ret;
688  samples = (short *)frame->data[0];
689  samples_p = (int16_t **)frame->extended_data;
690 
691  /* use coded_samples when applicable */
692  /* it is always <= nb_samples, so the output buffer will be large enough */
693  if (coded_samples) {
694  if (!approx_nb_samples && coded_samples != nb_samples)
695  av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
696  frame->nb_samples = nb_samples = coded_samples;
697  }
698 
699  st = avctx->channels == 2 ? 1 : 0;
700 
701  switch(avctx->codec->id) {
703  /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
704  Channel data is interleaved per-chunk. */
705  for (channel = 0; channel < avctx->channels; channel++) {
706  int predictor;
707  int step_index;
708  cs = &(c->status[channel]);
709  /* (pppppp) (piiiiiii) */
710 
711  /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
712  predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
713  step_index = predictor & 0x7F;
714  predictor &= ~0x7F;
715 
716  if (cs->step_index == step_index) {
717  int diff = predictor - cs->predictor;
718  if (diff < 0)
719  diff = - diff;
720  if (diff > 0x7f)
721  goto update;
722  } else {
723  update:
724  cs->step_index = step_index;
725  cs->predictor = predictor;
726  }
727 
728  if (cs->step_index > 88u){
729  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
730  channel, cs->step_index);
731  return AVERROR_INVALIDDATA;
732  }
733 
734  samples = samples_p[channel];
735 
736  for (m = 0; m < 64; m += 2) {
737  int byte = bytestream2_get_byteu(&gb);
738  samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
739  samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
740  }
741  }
742  break;
744  for(i=0; i<avctx->channels; i++){
745  cs = &(c->status[i]);
746  cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
747 
748  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
749  if (cs->step_index > 88u){
750  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
751  i, cs->step_index);
752  return AVERROR_INVALIDDATA;
753  }
754  }
755 
756  if (avctx->bits_per_coded_sample != 4) {
757  int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
759 
761  for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
762  for (i = 0; i < avctx->channels; i++) {
763  cs = &c->status[i];
764  samples = &samples_p[i][1 + n * samples_per_block];
765  for (m = 0; m < samples_per_block; m++) {
766  samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
767  avctx->bits_per_coded_sample);
768  }
769  }
770  }
771  bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4);
772  } else {
773  for (n = 0; n < (nb_samples - 1) / 8; n++) {
774  for (i = 0; i < avctx->channels; i++) {
775  cs = &c->status[i];
776  samples = &samples_p[i][1 + n * 8];
777  for (m = 0; m < 8; m += 2) {
778  int v = bytestream2_get_byteu(&gb);
779  samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
780  samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
781  }
782  }
783  }
784  }
785  break;
787  for (i = 0; i < avctx->channels; i++)
788  c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
789 
790  for (i = 0; i < avctx->channels; i++) {
791  c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
792  if (c->status[i].step_index > 88u) {
793  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
794  i, c->status[i].step_index);
795  return AVERROR_INVALIDDATA;
796  }
797  }
798 
799  for (i = 0; i < avctx->channels; i++) {
800  samples = (int16_t *)frame->data[i];
801  cs = &c->status[i];
802  for (n = nb_samples >> 1; n > 0; n--) {
803  int v = bytestream2_get_byteu(&gb);
804  *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
805  *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
806  }
807  }
808  break;
810  {
811  int block_predictor;
812 
813  block_predictor = bytestream2_get_byteu(&gb);
814  if (block_predictor > 6) {
815  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
816  block_predictor);
817  return AVERROR_INVALIDDATA;
818  }
819  c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
820  c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
821  if (st) {
822  block_predictor = bytestream2_get_byteu(&gb);
823  if (block_predictor > 6) {
824  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
825  block_predictor);
826  return AVERROR_INVALIDDATA;
827  }
828  c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
829  c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
830  }
831  c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
832  if (st){
833  c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
834  }
835 
836  c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
837  if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
838  c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
839  if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
840 
841  *samples++ = c->status[0].sample2;
842  if (st) *samples++ = c->status[1].sample2;
843  *samples++ = c->status[0].sample1;
844  if (st) *samples++ = c->status[1].sample1;
845  for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
846  int byte = bytestream2_get_byteu(&gb);
847  *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
848  *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
849  }
850  break;
851  }
853  for (channel = 0; channel < avctx->channels; channel++) {
854  cs = &c->status[channel];
855  cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
856  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
857  if (cs->step_index > 88u){
858  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
859  channel, cs->step_index);
860  return AVERROR_INVALIDDATA;
861  }
862  }
863  for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
864  int v = bytestream2_get_byteu(&gb);
865  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
866  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
867  }
868  break;
870  {
871  int last_byte = 0;
872  int nibble;
873  int decode_top_nibble_next = 0;
874  int diff_channel;
875  const int16_t *samples_end = samples + avctx->channels * nb_samples;
876 
877  bytestream2_skipu(&gb, 10);
878  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
879  c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
880  c->status[0].step_index = bytestream2_get_byteu(&gb);
881  c->status[1].step_index = bytestream2_get_byteu(&gb);
882  if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
883  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
884  c->status[0].step_index, c->status[1].step_index);
885  return AVERROR_INVALIDDATA;
886  }
887  /* sign extend the predictors */
888  diff_channel = c->status[1].predictor;
889 
890  /* DK3 ADPCM support macro */
891 #define DK3_GET_NEXT_NIBBLE() \
892  if (decode_top_nibble_next) { \
893  nibble = last_byte >> 4; \
894  decode_top_nibble_next = 0; \
895  } else { \
896  last_byte = bytestream2_get_byteu(&gb); \
897  nibble = last_byte & 0x0F; \
898  decode_top_nibble_next = 1; \
899  }
900 
901  while (samples < samples_end) {
902 
903  /* for this algorithm, c->status[0] is the sum channel and
904  * c->status[1] is the diff channel */
905 
906  /* process the first predictor of the sum channel */
908  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
909 
910  /* process the diff channel predictor */
912  adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
913 
914  /* process the first pair of stereo PCM samples */
915  diff_channel = (diff_channel + c->status[1].predictor) / 2;
916  *samples++ = c->status[0].predictor + c->status[1].predictor;
917  *samples++ = c->status[0].predictor - c->status[1].predictor;
918 
919  /* process the second predictor of the sum channel */
921  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
922 
923  /* process the second pair of stereo PCM samples */
924  diff_channel = (diff_channel + c->status[1].predictor) / 2;
925  *samples++ = c->status[0].predictor + c->status[1].predictor;
926  *samples++ = c->status[0].predictor - c->status[1].predictor;
927  }
928 
929  if ((bytestream2_tell(&gb) & 1))
930  bytestream2_skip(&gb, 1);
931  break;
932  }
934  for (channel = 0; channel < avctx->channels; channel++) {
935  cs = &c->status[channel];
936  cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
937  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
938  if (cs->step_index > 88u){
939  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
940  channel, cs->step_index);
941  return AVERROR_INVALIDDATA;
942  }
943  }
944 
945  for (n = nb_samples >> (1 - st); n > 0; n--) {
946  int v1, v2;
947  int v = bytestream2_get_byteu(&gb);
948  /* nibbles are swapped for mono */
949  if (st) {
950  v1 = v >> 4;
951  v2 = v & 0x0F;
952  } else {
953  v2 = v >> 4;
954  v1 = v & 0x0F;
955  }
956  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
957  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
958  }
959  break;
961  while (bytestream2_get_bytes_left(&gb) > 0) {
962  int v = bytestream2_get_byteu(&gb);
963  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
964  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
965  }
966  break;
968  while (bytestream2_get_bytes_left(&gb) > 0) {
969  int v = bytestream2_get_byteu(&gb);
970  *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 );
971  *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
972  }
973  break;
975  for (channel = 0; channel < avctx->channels; channel++) {
976  cs = &c->status[channel];
977  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
978  cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
979  if (cs->step_index > 88u){
980  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
981  channel, cs->step_index);
982  return AVERROR_INVALIDDATA;
983  }
984  }
985  for (n = 0; n < nb_samples / 2; n++) {
986  int byte[2];
987 
988  byte[0] = bytestream2_get_byteu(&gb);
989  if (st)
990  byte[1] = bytestream2_get_byteu(&gb);
991  for(channel = 0; channel < avctx->channels; channel++) {
992  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
993  }
994  for(channel = 0; channel < avctx->channels; channel++) {
995  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4 , 3);
996  }
997  }
998  break;
1000  if (c->vqa_version == 3) {
1001  for (channel = 0; channel < avctx->channels; channel++) {
1002  int16_t *smp = samples_p[channel];
1003 
1004  for (n = nb_samples / 2; n > 0; n--) {
1005  int v = bytestream2_get_byteu(&gb);
1006  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1007  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1008  }
1009  }
1010  } else {
1011  for (n = nb_samples / 2; n > 0; n--) {
1012  for (channel = 0; channel < avctx->channels; channel++) {
1013  int v = bytestream2_get_byteu(&gb);
1014  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1015  samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1016  }
1017  samples += avctx->channels;
1018  }
1019  }
1020  bytestream2_seek(&gb, 0, SEEK_END);
1021  break;
1022  case AV_CODEC_ID_ADPCM_XA:
1023  {
1024  int16_t *out0 = samples_p[0];
1025  int16_t *out1 = samples_p[1];
1026  int samples_per_block = 28 * (3 - avctx->channels) * 4;
1027  int sample_offset = 0;
1028  while (bytestream2_get_bytes_left(&gb) >= 128) {
1029  if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
1030  &c->status[0], &c->status[1],
1031  avctx->channels, sample_offset)) < 0)
1032  return ret;
1033  bytestream2_skipu(&gb, 128);
1034  sample_offset += samples_per_block;
1035  }
1036  break;
1037  }
1039  for (i=0; i<=st; i++) {
1040  c->status[i].step_index = bytestream2_get_le32u(&gb);
1041  if (c->status[i].step_index > 88u) {
1042  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1043  i, c->status[i].step_index);
1044  return AVERROR_INVALIDDATA;
1045  }
1046  }
1047  for (i=0; i<=st; i++)
1048  c->status[i].predictor = bytestream2_get_le32u(&gb);
1049 
1050  for (n = nb_samples >> (1 - st); n > 0; n--) {
1051  int byte = bytestream2_get_byteu(&gb);
1052  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
1053  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
1054  }
1055  break;
1057  for (n = nb_samples >> (1 - st); n > 0; n--) {
1058  int byte = bytestream2_get_byteu(&gb);
1059  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
1060  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
1061  }
1062  break;
1063  case AV_CODEC_ID_ADPCM_EA:
1064  {
1065  int previous_left_sample, previous_right_sample;
1066  int current_left_sample, current_right_sample;
1067  int next_left_sample, next_right_sample;
1068  int coeff1l, coeff2l, coeff1r, coeff2r;
1069  int shift_left, shift_right;
1070 
1071  /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
1072  each coding 28 stereo samples. */
1073 
1074  if(avctx->channels != 2)
1075  return AVERROR_INVALIDDATA;
1076 
1077  current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1078  previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1079  current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1080  previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1081 
1082  for (count1 = 0; count1 < nb_samples / 28; count1++) {
1083  int byte = bytestream2_get_byteu(&gb);
1084  coeff1l = ea_adpcm_table[ byte >> 4 ];
1085  coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
1086  coeff1r = ea_adpcm_table[ byte & 0x0F];
1087  coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
1088 
1089  byte = bytestream2_get_byteu(&gb);
1090  shift_left = 20 - (byte >> 4);
1091  shift_right = 20 - (byte & 0x0F);
1092 
1093  for (count2 = 0; count2 < 28; count2++) {
1094  byte = bytestream2_get_byteu(&gb);
1095  next_left_sample = sign_extend(byte >> 4, 4) << shift_left;
1096  next_right_sample = sign_extend(byte, 4) << shift_right;
1097 
1098  next_left_sample = (next_left_sample +
1099  (current_left_sample * coeff1l) +
1100  (previous_left_sample * coeff2l) + 0x80) >> 8;
1101  next_right_sample = (next_right_sample +
1102  (current_right_sample * coeff1r) +
1103  (previous_right_sample * coeff2r) + 0x80) >> 8;
1104 
1105  previous_left_sample = current_left_sample;
1106  current_left_sample = av_clip_int16(next_left_sample);
1107  previous_right_sample = current_right_sample;
1108  current_right_sample = av_clip_int16(next_right_sample);
1109  *samples++ = current_left_sample;
1110  *samples++ = current_right_sample;
1111  }
1112  }
1113 
1114  bytestream2_skip(&gb, 2); // Skip terminating 0x0000
1115 
1116  break;
1117  }
1119  {
1120  int coeff[2][2], shift[2];
1121 
1122  for(channel = 0; channel < avctx->channels; channel++) {
1123  int byte = bytestream2_get_byteu(&gb);
1124  for (i=0; i<2; i++)
1125  coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1126  shift[channel] = 20 - (byte & 0x0F);
1127  }
1128  for (count1 = 0; count1 < nb_samples / 2; count1++) {
1129  int byte[2];
1130 
1131  byte[0] = bytestream2_get_byteu(&gb);
1132  if (st) byte[1] = bytestream2_get_byteu(&gb);
1133  for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1134  for(channel = 0; channel < avctx->channels; channel++) {
1135  int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
1136  sample = (sample +
1137  c->status[channel].sample1 * coeff[channel][0] +
1138  c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1139  c->status[channel].sample2 = c->status[channel].sample1;
1140  c->status[channel].sample1 = av_clip_int16(sample);
1141  *samples++ = c->status[channel].sample1;
1142  }
1143  }
1144  }
1145  bytestream2_seek(&gb, 0, SEEK_END);
1146  break;
1147  }
1150  case AV_CODEC_ID_ADPCM_EA_R3: {
1151  /* channel numbering
1152  2chan: 0=fl, 1=fr
1153  4chan: 0=fl, 1=rl, 2=fr, 3=rr
1154  6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1155  const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1156  int previous_sample, current_sample, next_sample;
1157  int coeff1, coeff2;
1158  int shift;
1159  unsigned int channel;
1160  uint16_t *samplesC;
1161  int count = 0;
1162  int offsets[6];
1163 
1164  for (channel=0; channel<avctx->channels; channel++)
1165  offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1166  bytestream2_get_le32(&gb)) +
1167  (avctx->channels + 1) * 4;
1168 
1169  for (channel=0; channel<avctx->channels; channel++) {
1170  bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1171  samplesC = samples_p[channel];
1172 
1173  if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1174  current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1175  previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1176  } else {
1177  current_sample = c->status[channel].predictor;
1178  previous_sample = c->status[channel].prev_sample;
1179  }
1180 
1181  for (count1 = 0; count1 < nb_samples / 28; count1++) {
1182  int byte = bytestream2_get_byte(&gb);
1183  if (byte == 0xEE) { /* only seen in R2 and R3 */
1184  current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1185  previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1186 
1187  for (count2=0; count2<28; count2++)
1188  *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1189  } else {
1190  coeff1 = ea_adpcm_table[ byte >> 4 ];
1191  coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1192  shift = 20 - (byte & 0x0F);
1193 
1194  for (count2=0; count2<28; count2++) {
1195  if (count2 & 1)
1196  next_sample = sign_extend(byte, 4) << shift;
1197  else {
1198  byte = bytestream2_get_byte(&gb);
1199  next_sample = sign_extend(byte >> 4, 4) << shift;
1200  }
1201 
1202  next_sample += (current_sample * coeff1) +
1203  (previous_sample * coeff2);
1204  next_sample = av_clip_int16(next_sample >> 8);
1205 
1206  previous_sample = current_sample;
1207  current_sample = next_sample;
1208  *samplesC++ = current_sample;
1209  }
1210  }
1211  }
1212  if (!count) {
1213  count = count1;
1214  } else if (count != count1) {
1215  av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1216  count = FFMAX(count, count1);
1217  }
1218 
1219  if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1220  c->status[channel].predictor = current_sample;
1221  c->status[channel].prev_sample = previous_sample;
1222  }
1223  }
1224 
1225  frame->nb_samples = count * 28;
1226  bytestream2_seek(&gb, 0, SEEK_END);
1227  break;
1228  }
1230  for (channel=0; channel<avctx->channels; channel++) {
1231  int coeff[2][4], shift[4];
1232  int16_t *s = samples_p[channel];
1233  for (n = 0; n < 4; n++, s += 32) {
1234  int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1235  for (i=0; i<2; i++)
1236  coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1237  s[0] = val & ~0x0F;
1238 
1239  val = sign_extend(bytestream2_get_le16u(&gb), 16);
1240  shift[n] = 20 - (val & 0x0F);
1241  s[1] = val & ~0x0F;
1242  }
1243 
1244  for (m=2; m<32; m+=2) {
1245  s = &samples_p[channel][m];
1246  for (n = 0; n < 4; n++, s += 32) {
1247  int level, pred;
1248  int byte = bytestream2_get_byteu(&gb);
1249 
1250  level = sign_extend(byte >> 4, 4) << shift[n];
1251  pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1252  s[0] = av_clip_int16((level + pred + 0x80) >> 8);
1253 
1254  level = sign_extend(byte, 4) << shift[n];
1255  pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1256  s[1] = av_clip_int16((level + pred + 0x80) >> 8);
1257  }
1258  }
1259  }
1260  break;
1262  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1263  c->status[0].step_index = bytestream2_get_le16u(&gb);
1264  bytestream2_skipu(&gb, 4);
1265  if (c->status[0].step_index > 88u) {
1266  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1267  c->status[0].step_index);
1268  return AVERROR_INVALIDDATA;
1269  }
1270 
1271  for (n = nb_samples >> (1 - st); n > 0; n--) {
1272  int v = bytestream2_get_byteu(&gb);
1273 
1274  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
1275  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
1276  }
1277  break;
1279  for (i = 0; i < avctx->channels; i++) {
1280  c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1281  c->status[i].step_index = bytestream2_get_byteu(&gb);
1282  bytestream2_skipu(&gb, 1);
1283  if (c->status[i].step_index > 88u) {
1284  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1285  c->status[i].step_index);
1286  return AVERROR_INVALIDDATA;
1287  }
1288  }
1289 
1290  for (n = nb_samples >> (1 - st); n > 0; n--) {
1291  int v = bytestream2_get_byteu(&gb);
1292 
1293  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4, 3);
1294  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf, 3);
1295  }
1296  break;
1297  case AV_CODEC_ID_ADPCM_CT:
1298  for (n = nb_samples >> (1 - st); n > 0; n--) {
1299  int v = bytestream2_get_byteu(&gb);
1300  *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
1301  *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1302  }
1303  break;
1307  if (!c->status[0].step_index) {
1308  /* the first byte is a raw sample */
1309  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1310  if (st)
1311  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1312  c->status[0].step_index = 1;
1313  nb_samples--;
1314  }
1315  if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1316  for (n = nb_samples >> (1 - st); n > 0; n--) {
1317  int byte = bytestream2_get_byteu(&gb);
1318  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1319  byte >> 4, 4, 0);
1320  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1321  byte & 0x0F, 4, 0);
1322  }
1323  } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1324  for (n = (nb_samples<<st) / 3; n > 0; n--) {
1325  int byte = bytestream2_get_byteu(&gb);
1326  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1327  byte >> 5 , 3, 0);
1328  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1329  (byte >> 2) & 0x07, 3, 0);
1330  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1331  byte & 0x03, 2, 0);
1332  }
1333  } else {
1334  for (n = nb_samples >> (2 - st); n > 0; n--) {
1335  int byte = bytestream2_get_byteu(&gb);
1336  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1337  byte >> 6 , 2, 2);
1338  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1339  (byte >> 4) & 0x03, 2, 2);
1340  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1341  (byte >> 2) & 0x03, 2, 2);
1342  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1343  byte & 0x03, 2, 2);
1344  }
1345  }
1346  break;
1347  case AV_CODEC_ID_ADPCM_SWF:
1348  adpcm_swf_decode(avctx, buf, buf_size, samples);
1349  bytestream2_seek(&gb, 0, SEEK_END);
1350  break;
1352  for (n = nb_samples >> (1 - st); n > 0; n--) {
1353  int v = bytestream2_get_byteu(&gb);
1354  *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1355  *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
1356  }
1357  break;
1358  case AV_CODEC_ID_ADPCM_AFC:
1359  {
1360  int samples_per_block;
1361  int blocks;
1362 
1363  if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
1364  samples_per_block = avctx->extradata[0] / 16;
1365  blocks = nb_samples / avctx->extradata[0];
1366  } else {
1367  samples_per_block = nb_samples / 16;
1368  blocks = 1;
1369  }
1370 
1371  for (m = 0; m < blocks; m++) {
1372  for (channel = 0; channel < avctx->channels; channel++) {
1373  int prev1 = c->status[channel].sample1;
1374  int prev2 = c->status[channel].sample2;
1375 
1376  samples = samples_p[channel] + m * 16;
1377  /* Read in every sample for this channel. */
1378  for (i = 0; i < samples_per_block; i++) {
1379  int byte = bytestream2_get_byteu(&gb);
1380  int scale = 1 << (byte >> 4);
1381  int index = byte & 0xf;
1382  int factor1 = ff_adpcm_afc_coeffs[0][index];
1383  int factor2 = ff_adpcm_afc_coeffs[1][index];
1384 
1385  /* Decode 16 samples. */
1386  for (n = 0; n < 16; n++) {
1387  int32_t sampledat;
1388 
1389  if (n & 1) {
1390  sampledat = sign_extend(byte, 4);
1391  } else {
1392  byte = bytestream2_get_byteu(&gb);
1393  sampledat = sign_extend(byte >> 4, 4);
1394  }
1395 
1396  sampledat = ((prev1 * factor1 + prev2 * factor2) +
1397  ((sampledat * scale) << 11)) >> 11;
1398  *samples = av_clip_int16(sampledat);
1399  prev2 = prev1;
1400  prev1 = *samples++;
1401  }
1402  }
1403 
1404  c->status[channel].sample1 = prev1;
1405  c->status[channel].sample2 = prev2;
1406  }
1407  }
1408  bytestream2_seek(&gb, 0, SEEK_END);
1409  break;
1410  }
1411  case AV_CODEC_ID_ADPCM_THP:
1412  {
1413  int table[6][16];
1414  int ch;
1415 
1416  if (avctx->extradata) {
1418  if (avctx->extradata_size < 32 * avctx->channels) {
1419  av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
1420  return AVERROR_INVALIDDATA;
1421  }
1422 
1423  bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
1424  for (i = 0; i < avctx->channels; i++)
1425  for (n = 0; n < 16; n++)
1426  table[i][n] = sign_extend(bytestream2_get_be16u(&tb), 16);
1427  } else {
1428  for (i = 0; i < avctx->channels; i++)
1429  for (n = 0; n < 16; n++)
1430  table[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16);
1431 
1432  /* Initialize the previous sample. */
1433  for (i = 0; i < avctx->channels; i++) {
1434  c->status[i].sample1 = sign_extend(bytestream2_get_be16u(&gb), 16);
1435  c->status[i].sample2 = sign_extend(bytestream2_get_be16u(&gb), 16);
1436  }
1437  }
1438 
1439  for (ch = 0; ch < avctx->channels; ch++) {
1440  samples = samples_p[ch];
1441 
1442  /* Read in every sample for this channel. */
1443  for (i = 0; i < nb_samples / 14; i++) {
1444  int byte = bytestream2_get_byteu(&gb);
1445  int index = (byte >> 4) & 7;
1446  unsigned int exp = byte & 0x0F;
1447  int factor1 = table[ch][index * 2];
1448  int factor2 = table[ch][index * 2 + 1];
1449 
1450  /* Decode 14 samples. */
1451  for (n = 0; n < 14; n++) {
1452  int32_t sampledat;
1453 
1454  if (n & 1) {
1455  sampledat = sign_extend(byte, 4);
1456  } else {
1457  byte = bytestream2_get_byteu(&gb);
1458  sampledat = sign_extend(byte >> 4, 4);
1459  }
1460 
1461  sampledat = ((c->status[ch].sample1 * factor1
1462  + c->status[ch].sample2 * factor2) >> 11) + (sampledat << exp);
1463  *samples = av_clip_int16(sampledat);
1464  c->status[ch].sample2 = c->status[ch].sample1;
1465  c->status[ch].sample1 = *samples++;
1466  }
1467  }
1468  }
1469  break;
1470  }
1471  case AV_CODEC_ID_ADPCM_DTK:
1472  for (channel = 0; channel < avctx->channels; channel++) {
1473  samples = samples_p[channel];
1474 
1475  /* Read in every sample for this channel. */
1476  for (i = 0; i < nb_samples / 28; i++) {
1477  int byte, header;
1478  if (channel)
1479  bytestream2_skipu(&gb, 1);
1480  header = bytestream2_get_byteu(&gb);
1481  bytestream2_skipu(&gb, 3 - channel);
1482 
1483  /* Decode 28 samples. */
1484  for (n = 0; n < 28; n++) {
1485  int32_t sampledat, prev;
1486 
1487  switch (header >> 4) {
1488  case 1:
1489  prev = (c->status[channel].sample1 * 0x3c);
1490  break;
1491  case 2:
1492  prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
1493  break;
1494  case 3:
1495  prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
1496  break;
1497  default:
1498  prev = 0;
1499  }
1500 
1501  prev = av_clip((prev + 0x20) >> 6, -0x200000, 0x1fffff);
1502 
1503  byte = bytestream2_get_byteu(&gb);
1504  if (!channel)
1505  sampledat = sign_extend(byte, 4);
1506  else
1507  sampledat = sign_extend(byte >> 4, 4);
1508 
1509  sampledat = (((sampledat << 12) >> (header & 0xf)) << 6) + prev;
1510  *samples++ = av_clip_int16(sampledat >> 6);
1511  c->status[channel].sample2 = c->status[channel].sample1;
1512  c->status[channel].sample1 = sampledat;
1513  }
1514  }
1515  if (!channel)
1516  bytestream2_seek(&gb, 0, SEEK_SET);
1517  }
1518  break;
1519 
1520  default:
1521  return -1;
1522  }
1523 
1524  if (avpkt->size && bytestream2_tell(&gb) == 0) {
1525  av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
1526  return AVERROR_INVALIDDATA;
1527  }
1528 
1529  *got_frame_ptr = 1;
1530 
1531  return bytestream2_tell(&gb);
1532 }
1533 
1534 
1542 
1543 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
1544 AVCodec ff_ ## name_ ## _decoder = { \
1545  .name = #name_, \
1546  .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1547  .type = AVMEDIA_TYPE_AUDIO, \
1548  .id = id_, \
1549  .priv_data_size = sizeof(ADPCMDecodeContext), \
1550  .init = adpcm_decode_init, \
1551  .decode = adpcm_decode_frame, \
1552  .capabilities = CODEC_CAP_DR1, \
1553  .sample_fmts = sample_fmts_, \
1554 }
1555 
1556 /* Note: Do not forget to add new entries to the Makefile as well. */
1557 ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
1558 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC");
1559 ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
1560 ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK, sample_fmts_s16p, adpcm_dtk, "ADPCM Nintendo Gamecube DTK");
1561 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
1562 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1563 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1564 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1565 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1566 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1567 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
1568 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
1569 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1570 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1571 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1572 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1573 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1574 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI");
1575 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
1576 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD, sample_fmts_s16, adpcm_ima_rad, "ADPCM IMA Radical");
1577 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1578 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
1579 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
1580 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft");
1581 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1582 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1583 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1584 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
1585 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1586 ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
1587 ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");