FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
alsdec.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 ALS decoder
3  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * MPEG-4 ALS decoder
25  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26  */
27 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "unary.h"
33 #include "mpeg4audio.h"
34 #include "bytestream.h"
35 #include "bgmc.h"
36 #include "bswapdsp.h"
37 #include "internal.h"
38 #include "mlz.h"
39 #include "libavutil/samplefmt.h"
40 #include "libavutil/crc.h"
42 #include "libavutil/intfloat.h"
43 #include "libavutil/intreadwrite.h"
44 
45 #include <stdint.h>
46 
47 /** Rice parameters and corresponding index offsets for decoding the
48  * indices of scaled PARCOR values. The table chosen is set globally
49  * by the encoder and stored in ALSSpecificConfig.
50  */
51 static const int8_t parcor_rice_table[3][20][2] = {
52  { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
53  { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
54  { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
55  { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
56  { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
57  { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
58  {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
59  { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
60  { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
61  { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
62  {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
63  { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
64 };
65 
66 
67 /** Scaled PARCOR values used for the first two PARCOR coefficients.
68  * To be indexed by the Rice coded indices.
69  * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
70  * Actual values are divided by 32 in order to be stored in 16 bits.
71  */
72 static const int16_t parcor_scaled_values[] = {
73  -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
74  -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
75  -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
76  -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
77  -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
78  -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
79  -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
80  -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
81  -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
82  -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
83  -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
84  -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
85  -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
86  -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
87  -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
88  -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
89  -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
90  -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
91  -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
92  -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
93  -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
94  -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
95  -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
96  46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
97  143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
98  244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
99  349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
100  458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
101  571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
102  688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
103  810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
104  935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
105 };
106 
107 
108 /** Gain values of p(0) for long-term prediction.
109  * To be indexed by the Rice coded indices.
110  */
111 static const uint8_t ltp_gain_values [4][4] = {
112  { 0, 8, 16, 24},
113  {32, 40, 48, 56},
114  {64, 70, 76, 82},
115  {88, 92, 96, 100}
116 };
117 
118 
119 /** Inter-channel weighting factors for multi-channel correlation.
120  * To be indexed by the Rice coded indices.
121  */
122 static const int16_t mcc_weightings[] = {
123  204, 192, 179, 166, 153, 140, 128, 115,
124  102, 89, 76, 64, 51, 38, 25, 12,
125  0, -12, -25, -38, -51, -64, -76, -89,
126  -102, -115, -128, -140, -153, -166, -179, -192
127 };
128 
129 
130 /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
131  */
132 static const uint8_t tail_code[16][6] = {
133  { 74, 44, 25, 13, 7, 3},
134  { 68, 42, 24, 13, 7, 3},
135  { 58, 39, 23, 13, 7, 3},
136  {126, 70, 37, 19, 10, 5},
137  {132, 70, 37, 20, 10, 5},
138  {124, 70, 38, 20, 10, 5},
139  {120, 69, 37, 20, 11, 5},
140  {116, 67, 37, 20, 11, 5},
141  {108, 66, 36, 20, 10, 5},
142  {102, 62, 36, 20, 10, 5},
143  { 88, 58, 34, 19, 10, 5},
144  {162, 89, 49, 25, 13, 7},
145  {156, 87, 49, 26, 14, 7},
146  {150, 86, 47, 26, 14, 7},
147  {142, 84, 47, 26, 14, 7},
148  {131, 79, 46, 26, 14, 7}
149 };
150 
151 
152 enum RA_Flag {
156 };
157 
158 
159 typedef struct ALSSpecificConfig {
160  uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
161  int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
162  int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
163  int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
164  int frame_length; ///< frame length for each frame (last frame may differ)
165  int ra_distance; ///< distance between RA frames (in frames, 0...255)
166  enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
167  int adapt_order; ///< adaptive order: 1 = on, 0 = off
168  int coef_table; ///< table index of Rice code parameters
169  int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
170  int max_order; ///< maximum prediction order (0..1023)
171  int block_switching; ///< number of block switching levels
172  int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
173  int sb_part; ///< sub-block partition
174  int joint_stereo; ///< joint stereo: 1 = on, 0 = off
175  int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
176  int chan_config; ///< indicates that a chan_config_info field is present
177  int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
178  int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
179  int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
180  int *chan_pos; ///< original channel positions
181  int crc_enabled; ///< enable Cyclic Redundancy Checksum
183 
184 
185 typedef struct ALSChannelData {
191  int weighting[6];
193 
194 
195 typedef struct ALSDecContext {
200  const AVCRC *crc_table;
201  uint32_t crc_org; ///< CRC value of the original input data
202  uint32_t crc; ///< CRC value calculated from decoded data
203  unsigned int cur_frame_length; ///< length of the current frame to decode
204  unsigned int frame_id; ///< the frame ID / number of the current frame
205  unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
206  unsigned int cs_switch; ///< if true, channel rearrangement is done
207  unsigned int num_blocks; ///< number of blocks used in the current frame
208  unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
209  uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
210  int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
211  int ltp_lag_length; ///< number of bits used for ltp lag value
212  int *const_block; ///< contains const_block flags for all channels
213  unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
214  unsigned int *opt_order; ///< contains opt_order flags for all channels
215  int *store_prev_samples; ///< contains store_prev_samples flags for all channels
216  int *use_ltp; ///< contains use_ltp flags for all channels
217  int *ltp_lag; ///< contains ltp lag values for all channels
218  int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
219  int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
220  int32_t **quant_cof; ///< quantized parcor coefficients for a channel
221  int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
222  int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
223  int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
224  int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
225  ALSChannelData **chan_data; ///< channel data for multi-channel correlation
226  ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
227  int *reverted_channels; ///< stores a flag for each reverted channel
228  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
229  int32_t **raw_samples; ///< decoded raw samples for each channel
230  int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
231  uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
232  MLZ* mlz; ///< masked lz decompression structure
233  SoftFloat_IEEE754 *acf; ///< contains common multiplier for all channels
234  int *last_acf_mantissa; ///< contains the last acf mantissa data of common multiplier for all channels
235  int *shift_value; ///< value by which the binary point is to be shifted for all channels
236  int *last_shift_value; ///< contains last shift value for all channels
237  int **raw_mantissa; ///< decoded mantissa bits of the difference signal
238  unsigned char *larray; ///< buffer to store the output of masked lz decompression
239  int *nbits; ///< contains the number of bits to read for masked lz decompression for all samples
240 } ALSDecContext;
241 
242 
243 typedef struct ALSBlockData {
244  unsigned int block_length; ///< number of samples within the block
245  unsigned int ra_block; ///< if true, this is a random access block
246  int *const_block; ///< if true, this is a constant value block
247  int js_blocks; ///< true if this block contains a difference signal
248  unsigned int *shift_lsbs; ///< shift of values for this block
249  unsigned int *opt_order; ///< prediction order of this block
250  int *store_prev_samples;///< if true, carryover samples have to be stored
251  int *use_ltp; ///< if true, long-term prediction is used
252  int *ltp_lag; ///< lag value for long-term prediction
253  int *ltp_gain; ///< gain values for ltp 5-tap filter
254  int32_t *quant_cof; ///< quantized parcor coefficients
255  int32_t *lpc_cof; ///< coefficients of the direct form prediction
256  int32_t *raw_samples; ///< decoded raw samples / residuals for this block
257  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
258  int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
259 } ALSBlockData;
260 
261 
263 {
264 #ifdef DEBUG
265  AVCodecContext *avctx = ctx->avctx;
266  ALSSpecificConfig *sconf = &ctx->sconf;
267 
268  ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
269  ff_dlog(avctx, "floating = %i\n", sconf->floating);
270  ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
271  ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
272  ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
273  ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
274  ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
275  ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
276  ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
277  ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
278  ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
279  ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
280  ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
281  ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
282  ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
283  ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
284  ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
285  ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
286 #endif
287 }
288 
289 
290 /** Read an ALSSpecificConfig from a buffer into the output struct.
291  */
293 {
294  GetBitContext gb;
295  uint64_t ht_size;
296  int i, config_offset;
297  MPEG4AudioConfig m4ac = {0};
298  ALSSpecificConfig *sconf = &ctx->sconf;
299  AVCodecContext *avctx = ctx->avctx;
300  uint32_t als_id, header_size, trailer_size;
301  int ret;
302 
303  if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
304  return ret;
305 
306  config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
307  avctx->extradata_size * 8, 1);
308 
309  if (config_offset < 0)
310  return AVERROR_INVALIDDATA;
311 
312  skip_bits_long(&gb, config_offset);
313 
314  if (get_bits_left(&gb) < (30 << 3))
315  return AVERROR_INVALIDDATA;
316 
317  // read the fixed items
318  als_id = get_bits_long(&gb, 32);
319  avctx->sample_rate = m4ac.sample_rate;
320  skip_bits_long(&gb, 32); // sample rate already known
321  sconf->samples = get_bits_long(&gb, 32);
322  avctx->channels = m4ac.channels;
323  skip_bits(&gb, 16); // number of channels already known
324  skip_bits(&gb, 3); // skip file_type
325  sconf->resolution = get_bits(&gb, 3);
326  sconf->floating = get_bits1(&gb);
327  sconf->msb_first = get_bits1(&gb);
328  sconf->frame_length = get_bits(&gb, 16) + 1;
329  sconf->ra_distance = get_bits(&gb, 8);
330  sconf->ra_flag = get_bits(&gb, 2);
331  sconf->adapt_order = get_bits1(&gb);
332  sconf->coef_table = get_bits(&gb, 2);
333  sconf->long_term_prediction = get_bits1(&gb);
334  sconf->max_order = get_bits(&gb, 10);
335  sconf->block_switching = get_bits(&gb, 2);
336  sconf->bgmc = get_bits1(&gb);
337  sconf->sb_part = get_bits1(&gb);
338  sconf->joint_stereo = get_bits1(&gb);
339  sconf->mc_coding = get_bits1(&gb);
340  sconf->chan_config = get_bits1(&gb);
341  sconf->chan_sort = get_bits1(&gb);
342  sconf->crc_enabled = get_bits1(&gb);
343  sconf->rlslms = get_bits1(&gb);
344  skip_bits(&gb, 5); // skip 5 reserved bits
345  skip_bits1(&gb); // skip aux_data_enabled
346 
347 
348  // check for ALSSpecificConfig struct
349  if (als_id != MKBETAG('A','L','S','\0'))
350  return AVERROR_INVALIDDATA;
351 
352  ctx->cur_frame_length = sconf->frame_length;
353 
354  // read channel config
355  if (sconf->chan_config)
356  sconf->chan_config_info = get_bits(&gb, 16);
357  // TODO: use this to set avctx->channel_layout
358 
359 
360  // read channel sorting
361  if (sconf->chan_sort && avctx->channels > 1) {
362  int chan_pos_bits = av_ceil_log2(avctx->channels);
363  int bits_needed = avctx->channels * chan_pos_bits + 7;
364  if (get_bits_left(&gb) < bits_needed)
365  return AVERROR_INVALIDDATA;
366 
367  if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
368  return AVERROR(ENOMEM);
369 
370  ctx->cs_switch = 1;
371 
372  for (i = 0; i < avctx->channels; i++) {
373  sconf->chan_pos[i] = -1;
374  }
375 
376  for (i = 0; i < avctx->channels; i++) {
377  int idx;
378 
379  idx = get_bits(&gb, chan_pos_bits);
380  if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
381  av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
382  ctx->cs_switch = 0;
383  break;
384  }
385  sconf->chan_pos[idx] = i;
386  }
387 
388  align_get_bits(&gb);
389  }
390 
391 
392  // read fixed header and trailer sizes,
393  // if size = 0xFFFFFFFF then there is no data field!
394  if (get_bits_left(&gb) < 64)
395  return AVERROR_INVALIDDATA;
396 
397  header_size = get_bits_long(&gb, 32);
398  trailer_size = get_bits_long(&gb, 32);
399  if (header_size == 0xFFFFFFFF)
400  header_size = 0;
401  if (trailer_size == 0xFFFFFFFF)
402  trailer_size = 0;
403 
404  ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
405 
406 
407  // skip the header and trailer data
408  if (get_bits_left(&gb) < ht_size)
409  return AVERROR_INVALIDDATA;
410 
411  if (ht_size > INT32_MAX)
412  return AVERROR_PATCHWELCOME;
413 
414  skip_bits_long(&gb, ht_size);
415 
416 
417  // initialize CRC calculation
418  if (sconf->crc_enabled) {
419  if (get_bits_left(&gb) < 32)
420  return AVERROR_INVALIDDATA;
421 
424  ctx->crc = 0xFFFFFFFF;
425  ctx->crc_org = ~get_bits_long(&gb, 32);
426  } else
427  skip_bits_long(&gb, 32);
428  }
429 
430 
431  // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
432 
434 
435  return 0;
436 }
437 
438 
439 /** Check the ALSSpecificConfig for unsupported features.
440  */
442 {
443  ALSSpecificConfig *sconf = &ctx->sconf;
444  int error = 0;
445 
446  // report unsupported feature and set error value
447  #define MISSING_ERR(cond, str, errval) \
448  { \
449  if (cond) { \
450  avpriv_report_missing_feature(ctx->avctx, \
451  str); \
452  error = errval; \
453  } \
454  }
455 
456  MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
457 
458  return error;
459 }
460 
461 
462 /** Parse the bs_info field to extract the block partitioning used in
463  * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
464  */
465 static void parse_bs_info(const uint32_t bs_info, unsigned int n,
466  unsigned int div, unsigned int **div_blocks,
467  unsigned int *num_blocks)
468 {
469  if (n < 31 && ((bs_info << n) & 0x40000000)) {
470  // if the level is valid and the investigated bit n is set
471  // then recursively check both children at bits (2n+1) and (2n+2)
472  n *= 2;
473  div += 1;
474  parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
475  parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
476  } else {
477  // else the bit is not set or the last level has been reached
478  // (bit implicitly not set)
479  **div_blocks = div;
480  (*div_blocks)++;
481  (*num_blocks)++;
482  }
483 }
484 
485 
486 /** Read and decode a Rice codeword.
487  */
488 static int32_t decode_rice(GetBitContext *gb, unsigned int k)
489 {
490  int max = get_bits_left(gb) - k;
491  int q = get_unary(gb, 0, max);
492  int r = k ? get_bits1(gb) : !(q & 1);
493 
494  if (k > 1) {
495  q <<= (k - 1);
496  q += get_bits_long(gb, k - 1);
497  } else if (!k) {
498  q >>= 1;
499  }
500  return r ? q : ~q;
501 }
502 
503 
504 /** Convert PARCOR coefficient k to direct filter coefficient.
505  */
506 static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
507 {
508  int i, j;
509 
510  for (i = 0, j = k - 1; i < j; i++, j--) {
511  int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
512  cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
513  cof[i] += tmp1;
514  }
515  if (i == j)
516  cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
517 
518  cof[k] = par[k];
519 }
520 
521 
522 /** Read block switching field if necessary and set actual block sizes.
523  * Also assure that the block sizes of the last frame correspond to the
524  * actual number of samples.
525  */
526 static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
527  uint32_t *bs_info)
528 {
529  ALSSpecificConfig *sconf = &ctx->sconf;
530  GetBitContext *gb = &ctx->gb;
531  unsigned int *ptr_div_blocks = div_blocks;
532  unsigned int b;
533 
534  if (sconf->block_switching) {
535  unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
536  *bs_info = get_bits_long(gb, bs_info_len);
537  *bs_info <<= (32 - bs_info_len);
538  }
539 
540  ctx->num_blocks = 0;
541  parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
542 
543  // The last frame may have an overdetermined block structure given in
544  // the bitstream. In that case the defined block structure would need
545  // more samples than available to be consistent.
546  // The block structure is actually used but the block sizes are adapted
547  // to fit the actual number of available samples.
548  // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
549  // This results in the actual block sizes: 2 2 1 0.
550  // This is not specified in 14496-3 but actually done by the reference
551  // codec RM22 revision 2.
552  // This appears to happen in case of an odd number of samples in the last
553  // frame which is actually not allowed by the block length switching part
554  // of 14496-3.
555  // The ALS conformance files feature an odd number of samples in the last
556  // frame.
557 
558  for (b = 0; b < ctx->num_blocks; b++)
559  div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
560 
561  if (ctx->cur_frame_length != ctx->sconf.frame_length) {
562  unsigned int remaining = ctx->cur_frame_length;
563 
564  for (b = 0; b < ctx->num_blocks; b++) {
565  if (remaining <= div_blocks[b]) {
566  div_blocks[b] = remaining;
567  ctx->num_blocks = b + 1;
568  break;
569  }
570 
571  remaining -= div_blocks[b];
572  }
573  }
574 }
575 
576 
577 /** Read the block data for a constant block
578  */
580 {
581  ALSSpecificConfig *sconf = &ctx->sconf;
582  AVCodecContext *avctx = ctx->avctx;
583  GetBitContext *gb = &ctx->gb;
584 
585  if (bd->block_length <= 0)
586  return AVERROR_INVALIDDATA;
587 
588  *bd->raw_samples = 0;
589  *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
590  bd->js_blocks = get_bits1(gb);
591 
592  // skip 5 reserved bits
593  skip_bits(gb, 5);
594 
595  if (*bd->const_block) {
596  unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
597  *bd->raw_samples = get_sbits_long(gb, const_val_bits);
598  }
599 
600  // ensure constant block decoding by reusing this field
601  *bd->const_block = 1;
602 
603  return 0;
604 }
605 
606 
607 /** Decode the block data for a constant block
608  */
610 {
611  int smp = bd->block_length - 1;
612  int32_t val = *bd->raw_samples;
613  int32_t *dst = bd->raw_samples + 1;
614 
615  // write raw samples into buffer
616  for (; smp; smp--)
617  *dst++ = val;
618 }
619 
620 
621 /** Read the block data for a non-constant block
622  */
624 {
625  ALSSpecificConfig *sconf = &ctx->sconf;
626  AVCodecContext *avctx = ctx->avctx;
627  GetBitContext *gb = &ctx->gb;
628  unsigned int k;
629  unsigned int s[8];
630  unsigned int sx[8];
631  unsigned int sub_blocks, log2_sub_blocks, sb_length;
632  unsigned int start = 0;
633  unsigned int opt_order;
634  int sb;
635  int32_t *quant_cof = bd->quant_cof;
636  int32_t *current_res;
637 
638 
639  // ensure variable block decoding by reusing this field
640  *bd->const_block = 0;
641 
642  *bd->opt_order = 1;
643  bd->js_blocks = get_bits1(gb);
644 
645  opt_order = *bd->opt_order;
646 
647  // determine the number of subblocks for entropy decoding
648  if (!sconf->bgmc && !sconf->sb_part) {
649  log2_sub_blocks = 0;
650  } else {
651  if (sconf->bgmc && sconf->sb_part)
652  log2_sub_blocks = get_bits(gb, 2);
653  else
654  log2_sub_blocks = 2 * get_bits1(gb);
655  }
656 
657  sub_blocks = 1 << log2_sub_blocks;
658 
659  // do not continue in case of a damaged stream since
660  // block_length must be evenly divisible by sub_blocks
661  if (bd->block_length & (sub_blocks - 1)) {
662  av_log(avctx, AV_LOG_WARNING,
663  "Block length is not evenly divisible by the number of subblocks.\n");
664  return AVERROR_INVALIDDATA;
665  }
666 
667  sb_length = bd->block_length >> log2_sub_blocks;
668 
669  if (sconf->bgmc) {
670  s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
671  for (k = 1; k < sub_blocks; k++)
672  s[k] = s[k - 1] + decode_rice(gb, 2);
673 
674  for (k = 0; k < sub_blocks; k++) {
675  sx[k] = s[k] & 0x0F;
676  s [k] >>= 4;
677  }
678  } else {
679  s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
680  for (k = 1; k < sub_blocks; k++)
681  s[k] = s[k - 1] + decode_rice(gb, 0);
682  }
683  for (k = 1; k < sub_blocks; k++)
684  if (s[k] > 32) {
685  av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
686  return AVERROR_INVALIDDATA;
687  }
688 
689  if (get_bits1(gb))
690  *bd->shift_lsbs = get_bits(gb, 4) + 1;
691 
692  *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
693 
694 
695  if (!sconf->rlslms) {
696  if (sconf->adapt_order && sconf->max_order) {
697  int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
698  2, sconf->max_order + 1));
699  *bd->opt_order = get_bits(gb, opt_order_length);
700  if (*bd->opt_order > sconf->max_order) {
701  *bd->opt_order = sconf->max_order;
702  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
703  return AVERROR_INVALIDDATA;
704  }
705  } else {
706  *bd->opt_order = sconf->max_order;
707  }
708  if (*bd->opt_order > bd->block_length) {
709  *bd->opt_order = bd->block_length;
710  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
711  return AVERROR_INVALIDDATA;
712  }
713  opt_order = *bd->opt_order;
714 
715  if (opt_order) {
716  int add_base;
717 
718  if (sconf->coef_table == 3) {
719  add_base = 0x7F;
720 
721  // read coefficient 0
722  quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
723 
724  // read coefficient 1
725  if (opt_order > 1)
726  quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
727 
728  // read coefficients 2 to opt_order
729  for (k = 2; k < opt_order; k++)
730  quant_cof[k] = get_bits(gb, 7);
731  } else {
732  int k_max;
733  add_base = 1;
734 
735  // read coefficient 0 to 19
736  k_max = FFMIN(opt_order, 20);
737  for (k = 0; k < k_max; k++) {
738  int rice_param = parcor_rice_table[sconf->coef_table][k][1];
739  int offset = parcor_rice_table[sconf->coef_table][k][0];
740  quant_cof[k] = decode_rice(gb, rice_param) + offset;
741  if (quant_cof[k] < -64 || quant_cof[k] > 63) {
742  av_log(avctx, AV_LOG_ERROR,
743  "quant_cof %"PRId32" is out of range.\n",
744  quant_cof[k]);
745  return AVERROR_INVALIDDATA;
746  }
747  }
748 
749  // read coefficients 20 to 126
750  k_max = FFMIN(opt_order, 127);
751  for (; k < k_max; k++)
752  quant_cof[k] = decode_rice(gb, 2) + (k & 1);
753 
754  // read coefficients 127 to opt_order
755  for (; k < opt_order; k++)
756  quant_cof[k] = decode_rice(gb, 1);
757 
758  quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
759 
760  if (opt_order > 1)
761  quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
762  }
763 
764  for (k = 2; k < opt_order; k++)
765  quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
766  }
767  }
768 
769  // read LTP gain and lag values
770  if (sconf->long_term_prediction) {
771  *bd->use_ltp = get_bits1(gb);
772 
773  if (*bd->use_ltp) {
774  int r, c;
775 
776  bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
777  bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
778 
779  r = get_unary(gb, 0, 4);
780  c = get_bits(gb, 2);
781  if (r >= 4) {
782  av_log(avctx, AV_LOG_ERROR, "r overflow\n");
783  return AVERROR_INVALIDDATA;
784  }
785 
786  bd->ltp_gain[2] = ltp_gain_values[r][c];
787 
788  bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
789  bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
790 
791  *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
792  *bd->ltp_lag += FFMAX(4, opt_order + 1);
793  }
794  }
795 
796  // read first value and residuals in case of a random access block
797  if (bd->ra_block) {
798  if (opt_order)
799  bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
800  if (opt_order > 1)
801  bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
802  if (opt_order > 2)
803  bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
804 
805  start = FFMIN(opt_order, 3);
806  }
807 
808  // read all residuals
809  if (sconf->bgmc) {
810  int delta[8];
811  unsigned int k [8];
812  unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
813 
814  // read most significant bits
815  unsigned int high;
816  unsigned int low;
817  unsigned int value;
818 
819  ff_bgmc_decode_init(gb, &high, &low, &value);
820 
821  current_res = bd->raw_samples + start;
822 
823  for (sb = 0; sb < sub_blocks; sb++) {
824  unsigned int sb_len = sb_length - (sb ? 0 : start);
825 
826  k [sb] = s[sb] > b ? s[sb] - b : 0;
827  delta[sb] = 5 - s[sb] + k[sb];
828 
829  ff_bgmc_decode(gb, sb_len, current_res,
830  delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
831 
832  current_res += sb_len;
833  }
834 
835  ff_bgmc_decode_end(gb);
836 
837 
838  // read least significant bits and tails
839  current_res = bd->raw_samples + start;
840 
841  for (sb = 0; sb < sub_blocks; sb++, start = 0) {
842  unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
843  unsigned int cur_k = k[sb];
844  unsigned int cur_s = s[sb];
845 
846  for (; start < sb_length; start++) {
847  int32_t res = *current_res;
848 
849  if (res == cur_tail_code) {
850  unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
851  << (5 - delta[sb]);
852 
853  res = decode_rice(gb, cur_s);
854 
855  if (res >= 0) {
856  res += (max_msb ) << cur_k;
857  } else {
858  res -= (max_msb - 1) << cur_k;
859  }
860  } else {
861  if (res > cur_tail_code)
862  res--;
863 
864  if (res & 1)
865  res = -res;
866 
867  res >>= 1;
868 
869  if (cur_k) {
870  res <<= cur_k;
871  res |= get_bits_long(gb, cur_k);
872  }
873  }
874 
875  *current_res++ = res;
876  }
877  }
878  } else {
879  current_res = bd->raw_samples + start;
880 
881  for (sb = 0; sb < sub_blocks; sb++, start = 0)
882  for (; start < sb_length; start++)
883  *current_res++ = decode_rice(gb, s[sb]);
884  }
885 
886  return 0;
887 }
888 
889 
890 /** Decode the block data for a non-constant block
891  */
893 {
894  ALSSpecificConfig *sconf = &ctx->sconf;
895  unsigned int block_length = bd->block_length;
896  unsigned int smp = 0;
897  unsigned int k;
898  int opt_order = *bd->opt_order;
899  int sb;
900  int64_t y;
901  int32_t *quant_cof = bd->quant_cof;
902  int32_t *lpc_cof = bd->lpc_cof;
903  int32_t *raw_samples = bd->raw_samples;
904  int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
905  int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
906 
907  // reverse long-term prediction
908  if (*bd->use_ltp) {
909  int ltp_smp;
910 
911  for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
912  int center = ltp_smp - *bd->ltp_lag;
913  int begin = FFMAX(0, center - 2);
914  int end = center + 3;
915  int tab = 5 - (end - begin);
916  int base;
917 
918  y = 1 << 6;
919 
920  for (base = begin; base < end; base++, tab++)
921  y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
922 
923  raw_samples[ltp_smp] += y >> 7;
924  }
925  }
926 
927  // reconstruct all samples from residuals
928  if (bd->ra_block) {
929  for (smp = 0; smp < opt_order; smp++) {
930  y = 1 << 19;
931 
932  for (sb = 0; sb < smp; sb++)
933  y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
934 
935  *raw_samples++ -= y >> 20;
936  parcor_to_lpc(smp, quant_cof, lpc_cof);
937  }
938  } else {
939  for (k = 0; k < opt_order; k++)
940  parcor_to_lpc(k, quant_cof, lpc_cof);
941 
942  // store previous samples in case that they have to be altered
943  if (*bd->store_prev_samples)
944  memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
945  sizeof(*bd->prev_raw_samples) * sconf->max_order);
946 
947  // reconstruct difference signal for prediction (joint-stereo)
948  if (bd->js_blocks && bd->raw_other) {
949  int32_t *left, *right;
950 
951  if (bd->raw_other > raw_samples) { // D = R - L
952  left = raw_samples;
953  right = bd->raw_other;
954  } else { // D = R - L
955  left = bd->raw_other;
956  right = raw_samples;
957  }
958 
959  for (sb = -1; sb >= -sconf->max_order; sb--)
960  raw_samples[sb] = right[sb] - left[sb];
961  }
962 
963  // reconstruct shifted signal
964  if (*bd->shift_lsbs)
965  for (sb = -1; sb >= -sconf->max_order; sb--)
966  raw_samples[sb] >>= *bd->shift_lsbs;
967  }
968 
969  // reverse linear prediction coefficients for efficiency
970  lpc_cof = lpc_cof + opt_order;
971 
972  for (sb = 0; sb < opt_order; sb++)
973  lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
974 
975  // reconstruct raw samples
976  raw_samples = bd->raw_samples + smp;
977  lpc_cof = lpc_cof_reversed + opt_order;
978 
979  for (; raw_samples < raw_samples_end; raw_samples++) {
980  y = 1 << 19;
981 
982  for (sb = -opt_order; sb < 0; sb++)
983  y += MUL64(lpc_cof[sb], raw_samples[sb]);
984 
985  *raw_samples -= y >> 20;
986  }
987 
988  raw_samples = bd->raw_samples;
989 
990  // restore previous samples in case that they have been altered
991  if (*bd->store_prev_samples)
992  memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
993  sizeof(*raw_samples) * sconf->max_order);
994 
995  return 0;
996 }
997 
998 
999 /** Read the block data.
1000  */
1002 {
1003  int ret;
1004  GetBitContext *gb = &ctx->gb;
1005  ALSSpecificConfig *sconf = &ctx->sconf;
1006 
1007  *bd->shift_lsbs = 0;
1008  // read block type flag and read the samples accordingly
1009  if (get_bits1(gb)) {
1010  ret = read_var_block_data(ctx, bd);
1011  } else {
1012  ret = read_const_block_data(ctx, bd);
1013  }
1014 
1015  if (!sconf->mc_coding || ctx->js_switch)
1016  align_get_bits(gb);
1017 
1018  return ret;
1019 }
1020 
1021 
1022 /** Decode the block data.
1023  */
1025 {
1026  unsigned int smp;
1027  int ret = 0;
1028 
1029  // read block type flag and read the samples accordingly
1030  if (*bd->const_block)
1031  decode_const_block_data(ctx, bd);
1032  else
1033  ret = decode_var_block_data(ctx, bd); // always return 0
1034 
1035  if (ret < 0)
1036  return ret;
1037 
1038  // TODO: read RLSLMS extension data
1039 
1040  if (*bd->shift_lsbs)
1041  for (smp = 0; smp < bd->block_length; smp++)
1042  bd->raw_samples[smp] <<= *bd->shift_lsbs;
1043 
1044  return 0;
1045 }
1046 
1047 
1048 /** Read and decode block data successively.
1049  */
1051 {
1052  int ret;
1053 
1054  if ((ret = read_block(ctx, bd)) < 0)
1055  return ret;
1056 
1057  return decode_block(ctx, bd);
1058 }
1059 
1060 
1061 /** Compute the number of samples left to decode for the current frame and
1062  * sets these samples to zero.
1063  */
1064 static void zero_remaining(unsigned int b, unsigned int b_max,
1065  const unsigned int *div_blocks, int32_t *buf)
1066 {
1067  unsigned int count = 0;
1068 
1069  while (b < b_max)
1070  count += div_blocks[b++];
1071 
1072  if (count)
1073  memset(buf, 0, sizeof(*buf) * count);
1074 }
1075 
1076 
1077 /** Decode blocks independently.
1078  */
1079 static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1080  unsigned int c, const unsigned int *div_blocks,
1081  unsigned int *js_blocks)
1082 {
1083  int ret;
1084  unsigned int b;
1085  ALSBlockData bd = { 0 };
1086 
1087  bd.ra_block = ra_frame;
1088  bd.const_block = ctx->const_block;
1089  bd.shift_lsbs = ctx->shift_lsbs;
1090  bd.opt_order = ctx->opt_order;
1092  bd.use_ltp = ctx->use_ltp;
1093  bd.ltp_lag = ctx->ltp_lag;
1094  bd.ltp_gain = ctx->ltp_gain[0];
1095  bd.quant_cof = ctx->quant_cof[0];
1096  bd.lpc_cof = ctx->lpc_cof[0];
1098  bd.raw_samples = ctx->raw_samples[c];
1099 
1100 
1101  for (b = 0; b < ctx->num_blocks; b++) {
1102  bd.block_length = div_blocks[b];
1103 
1104  if ((ret = read_decode_block(ctx, &bd)) < 0) {
1105  // damaged block, write zero for the rest of the frame
1106  zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1107  return ret;
1108  }
1109  bd.raw_samples += div_blocks[b];
1110  bd.ra_block = 0;
1111  }
1112 
1113  return 0;
1114 }
1115 
1116 
1117 /** Decode blocks dependently.
1118  */
1119 static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1120  unsigned int c, const unsigned int *div_blocks,
1121  unsigned int *js_blocks)
1122 {
1123  ALSSpecificConfig *sconf = &ctx->sconf;
1124  unsigned int offset = 0;
1125  unsigned int b;
1126  int ret;
1127  ALSBlockData bd[2] = { { 0 } };
1128 
1129  bd[0].ra_block = ra_frame;
1130  bd[0].const_block = ctx->const_block;
1131  bd[0].shift_lsbs = ctx->shift_lsbs;
1132  bd[0].opt_order = ctx->opt_order;
1134  bd[0].use_ltp = ctx->use_ltp;
1135  bd[0].ltp_lag = ctx->ltp_lag;
1136  bd[0].ltp_gain = ctx->ltp_gain[0];
1137  bd[0].quant_cof = ctx->quant_cof[0];
1138  bd[0].lpc_cof = ctx->lpc_cof[0];
1139  bd[0].prev_raw_samples = ctx->prev_raw_samples;
1140  bd[0].js_blocks = *js_blocks;
1141 
1142  bd[1].ra_block = ra_frame;
1143  bd[1].const_block = ctx->const_block;
1144  bd[1].shift_lsbs = ctx->shift_lsbs;
1145  bd[1].opt_order = ctx->opt_order;
1147  bd[1].use_ltp = ctx->use_ltp;
1148  bd[1].ltp_lag = ctx->ltp_lag;
1149  bd[1].ltp_gain = ctx->ltp_gain[0];
1150  bd[1].quant_cof = ctx->quant_cof[0];
1151  bd[1].lpc_cof = ctx->lpc_cof[0];
1152  bd[1].prev_raw_samples = ctx->prev_raw_samples;
1153  bd[1].js_blocks = *(js_blocks + 1);
1154 
1155  // decode all blocks
1156  for (b = 0; b < ctx->num_blocks; b++) {
1157  unsigned int s;
1158 
1159  bd[0].block_length = div_blocks[b];
1160  bd[1].block_length = div_blocks[b];
1161 
1162  bd[0].raw_samples = ctx->raw_samples[c ] + offset;
1163  bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
1164 
1165  bd[0].raw_other = bd[1].raw_samples;
1166  bd[1].raw_other = bd[0].raw_samples;
1167 
1168  if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1169  (ret = read_decode_block(ctx, &bd[1])) < 0)
1170  goto fail;
1171 
1172  // reconstruct joint-stereo blocks
1173  if (bd[0].js_blocks) {
1174  if (bd[1].js_blocks)
1175  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1176 
1177  for (s = 0; s < div_blocks[b]; s++)
1178  bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
1179  } else if (bd[1].js_blocks) {
1180  for (s = 0; s < div_blocks[b]; s++)
1181  bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
1182  }
1183 
1184  offset += div_blocks[b];
1185  bd[0].ra_block = 0;
1186  bd[1].ra_block = 0;
1187  }
1188 
1189  // store carryover raw samples,
1190  // the others channel raw samples are stored by the calling function.
1191  memmove(ctx->raw_samples[c] - sconf->max_order,
1192  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1193  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1194 
1195  return 0;
1196 fail:
1197  // damaged block, write zero for the rest of the frame
1198  zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1199  zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1200  return ret;
1201 }
1202 
1203 static inline int als_weighting(GetBitContext *gb, int k, int off)
1204 {
1205  int idx = av_clip(decode_rice(gb, k) + off,
1206  0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1207  return mcc_weightings[idx];
1208 }
1209 
1210 /** Read the channel data.
1211  */
1213 {
1214  GetBitContext *gb = &ctx->gb;
1215  ALSChannelData *current = cd;
1216  unsigned int channels = ctx->avctx->channels;
1217  int entries = 0;
1218 
1219  while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1220  current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1221 
1222  if (current->master_channel >= channels) {
1223  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1224  return AVERROR_INVALIDDATA;
1225  }
1226 
1227  if (current->master_channel != c) {
1228  current->time_diff_flag = get_bits1(gb);
1229  current->weighting[0] = als_weighting(gb, 1, 16);
1230  current->weighting[1] = als_weighting(gb, 2, 14);
1231  current->weighting[2] = als_weighting(gb, 1, 16);
1232 
1233  if (current->time_diff_flag) {
1234  current->weighting[3] = als_weighting(gb, 1, 16);
1235  current->weighting[4] = als_weighting(gb, 1, 16);
1236  current->weighting[5] = als_weighting(gb, 1, 16);
1237 
1238  current->time_diff_sign = get_bits1(gb);
1239  current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1240  }
1241  }
1242 
1243  current++;
1244  entries++;
1245  }
1246 
1247  if (entries == channels) {
1248  av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1249  return AVERROR_INVALIDDATA;
1250  }
1251 
1252  align_get_bits(gb);
1253  return 0;
1254 }
1255 
1256 
1257 /** Recursively reverts the inter-channel correlation for a block.
1258  */
1260  ALSChannelData **cd, int *reverted,
1261  unsigned int offset, int c)
1262 {
1263  ALSChannelData *ch = cd[c];
1264  unsigned int dep = 0;
1265  unsigned int channels = ctx->avctx->channels;
1266  unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1267 
1268  if (reverted[c])
1269  return 0;
1270 
1271  reverted[c] = 1;
1272 
1273  while (dep < channels && !ch[dep].stop_flag) {
1274  revert_channel_correlation(ctx, bd, cd, reverted, offset,
1275  ch[dep].master_channel);
1276 
1277  dep++;
1278  }
1279 
1280  if (dep == channels) {
1281  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1282  return AVERROR_INVALIDDATA;
1283  }
1284 
1285  bd->const_block = ctx->const_block + c;
1286  bd->shift_lsbs = ctx->shift_lsbs + c;
1287  bd->opt_order = ctx->opt_order + c;
1289  bd->use_ltp = ctx->use_ltp + c;
1290  bd->ltp_lag = ctx->ltp_lag + c;
1291  bd->ltp_gain = ctx->ltp_gain[c];
1292  bd->lpc_cof = ctx->lpc_cof[c];
1293  bd->quant_cof = ctx->quant_cof[c];
1294  bd->raw_samples = ctx->raw_samples[c] + offset;
1295 
1296  for (dep = 0; !ch[dep].stop_flag; dep++) {
1297  ptrdiff_t smp;
1298  ptrdiff_t begin = 1;
1299  ptrdiff_t end = bd->block_length - 1;
1300  int64_t y;
1301  int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1302 
1303  if (ch[dep].master_channel == c)
1304  continue;
1305 
1306  if (ch[dep].time_diff_flag) {
1307  int t = ch[dep].time_diff_index;
1308 
1309  if (ch[dep].time_diff_sign) {
1310  t = -t;
1311  if (begin < t) {
1312  av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
1313  return AVERROR_INVALIDDATA;
1314  }
1315  begin -= t;
1316  } else {
1317  if (end < t) {
1318  av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
1319  return AVERROR_INVALIDDATA;
1320  }
1321  end -= t;
1322  }
1323 
1324  if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1325  FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1326  av_log(ctx->avctx, AV_LOG_ERROR,
1327  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1328  master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
1329  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1330  return AVERROR_INVALIDDATA;
1331  }
1332 
1333  for (smp = begin; smp < end; smp++) {
1334  y = (1 << 6) +
1335  MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
1336  MUL64(ch[dep].weighting[1], master[smp ]) +
1337  MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
1338  MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1339  MUL64(ch[dep].weighting[4], master[smp + t]) +
1340  MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1341 
1342  bd->raw_samples[smp] += y >> 7;
1343  }
1344  } else {
1345 
1346  if (begin - 1 < ctx->raw_buffer - master ||
1347  end + 1 > ctx->raw_buffer + channels * channel_size - master) {
1348  av_log(ctx->avctx, AV_LOG_ERROR,
1349  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1350  master + begin - 1, master + end + 1,
1351  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1352  return AVERROR_INVALIDDATA;
1353  }
1354 
1355  for (smp = begin; smp < end; smp++) {
1356  y = (1 << 6) +
1357  MUL64(ch[dep].weighting[0], master[smp - 1]) +
1358  MUL64(ch[dep].weighting[1], master[smp ]) +
1359  MUL64(ch[dep].weighting[2], master[smp + 1]);
1360 
1361  bd->raw_samples[smp] += y >> 7;
1362  }
1363  }
1364  }
1365 
1366  return 0;
1367 }
1368 
1369 
1370 /** multiply two softfloats and handle the rounding off
1371  */
1373  uint64_t mantissa_temp;
1374  uint64_t mask_64;
1375  int cutoff_bit_count;
1376  unsigned char last_2_bits;
1377  unsigned int mantissa;
1378  int32_t sign;
1379  uint32_t return_val = 0;
1380  int bit_count = 48;
1381 
1382  sign = a.sign ^ b.sign;
1383 
1384  // Multiply mantissa bits in a 64-bit register
1385  mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
1386  mask_64 = (uint64_t)0x1 << 47;
1387 
1388  // Count the valid bit count
1389  while (!(mantissa_temp & mask_64) && mask_64) {
1390  bit_count--;
1391  mask_64 >>= 1;
1392  }
1393 
1394  // Round off
1395  cutoff_bit_count = bit_count - 24;
1396  if (cutoff_bit_count > 0) {
1397  last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
1398  if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
1399  // Need to round up
1400  mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
1401  }
1402  }
1403 
1404  mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
1405 
1406  // Need one more shift?
1407  if (mantissa & 0x01000000ul) {
1408  bit_count++;
1409  mantissa >>= 1;
1410  }
1411 
1412  if (!sign) {
1413  return_val = 0x80000000U;
1414  }
1415 
1416  return_val |= (a.exp + b.exp + bit_count - 47) << 23;
1417  return_val |= mantissa;
1418  return av_bits2sf_ieee754(return_val);
1419 }
1420 
1421 
1422 /** Read and decode the floating point sample data
1423  */
1424 static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
1425  AVCodecContext *avctx = ctx->avctx;
1426  GetBitContext *gb = &ctx->gb;
1427  SoftFloat_IEEE754 *acf = ctx->acf;
1428  int *shift_value = ctx->shift_value;
1429  int *last_shift_value = ctx->last_shift_value;
1430  int *last_acf_mantissa = ctx->last_acf_mantissa;
1431  int **raw_mantissa = ctx->raw_mantissa;
1432  int *nbits = ctx->nbits;
1433  unsigned char *larray = ctx->larray;
1434  int frame_length = ctx->cur_frame_length;
1435  SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
1436  unsigned int partA_flag;
1437  unsigned int highest_byte;
1438  unsigned int shift_amp;
1439  uint32_t tmp_32;
1440  int use_acf;
1441  int nchars;
1442  int i;
1443  int c;
1444  long k;
1445  long nbits_aligned;
1446  unsigned long acc;
1447  unsigned long j;
1448  uint32_t sign;
1449  uint32_t e;
1450  uint32_t mantissa;
1451 
1452  skip_bits_long(gb, 32); //num_bytes_diff_float
1453  use_acf = get_bits1(gb);
1454 
1455  if (ra_frame) {
1456  memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
1457  memset(last_shift_value, 0, avctx->channels * sizeof(*last_shift_value) );
1458  ff_mlz_flush_dict(ctx->mlz);
1459  }
1460 
1461  for (c = 0; c < avctx->channels; ++c) {
1462  if (use_acf) {
1463  //acf_flag
1464  if (get_bits1(gb)) {
1465  tmp_32 = get_bits(gb, 23);
1466  last_acf_mantissa[c] = tmp_32;
1467  } else {
1468  tmp_32 = last_acf_mantissa[c];
1469  }
1470  acf[c] = av_bits2sf_ieee754(tmp_32);
1471  } else {
1472  acf[c] = FLOAT_1;
1473  }
1474 
1475  highest_byte = get_bits(gb, 2);
1476  partA_flag = get_bits1(gb);
1477  shift_amp = get_bits1(gb);
1478 
1479  if (shift_amp) {
1480  shift_value[c] = get_bits(gb, 8);
1481  last_shift_value[c] = shift_value[c];
1482  } else {
1483  shift_value[c] = last_shift_value[c];
1484  }
1485 
1486  if (partA_flag) {
1487  if (!get_bits1(gb)) { //uncompressed
1488  for (i = 0; i < frame_length; ++i) {
1489  if (ctx->raw_samples[c][i] == 0) {
1490  ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
1491  }
1492  }
1493  } else { //compressed
1494  nchars = 0;
1495  for (i = 0; i < frame_length; ++i) {
1496  if (ctx->raw_samples[c][i] == 0) {
1497  nchars += 4;
1498  }
1499  }
1500 
1501  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1502  if(tmp_32 != nchars) {
1503  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%d, %d).\n", tmp_32, nchars);
1504  return AVERROR_INVALIDDATA;
1505  }
1506 
1507  for (i = 0; i < frame_length; ++i) {
1508  ctx->raw_mantissa[c][i] = AV_RB32(larray);
1509  }
1510  }
1511  }
1512 
1513  //decode part B
1514  if (highest_byte) {
1515  for (i = 0; i < frame_length; ++i) {
1516  if (ctx->raw_samples[c][i] != 0) {
1517  //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
1518  if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1519  nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
1520  } else {
1521  nbits[i] = 23;
1522  }
1523  nbits[i] = FFMIN(nbits[i], highest_byte*8);
1524  }
1525  }
1526 
1527  if (!get_bits1(gb)) { //uncompressed
1528  for (i = 0; i < frame_length; ++i) {
1529  if (ctx->raw_samples[c][i] != 0) {
1530  raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
1531  }
1532  }
1533  } else { //compressed
1534  nchars = 0;
1535  for (i = 0; i < frame_length; ++i) {
1536  if (ctx->raw_samples[c][i]) {
1537  nchars += (int) nbits[i] / 8;
1538  if (nbits[i] & 7) {
1539  ++nchars;
1540  }
1541  }
1542  }
1543 
1544  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1545  if(tmp_32 != nchars) {
1546  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%d, %d).\n", tmp_32, nchars);
1547  return AVERROR_INVALIDDATA;
1548  }
1549 
1550  j = 0;
1551  for (i = 0; i < frame_length; ++i) {
1552  if (ctx->raw_samples[c][i]) {
1553  if (nbits[i] & 7) {
1554  nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
1555  } else {
1556  nbits_aligned = nbits[i];
1557  }
1558  acc = 0;
1559  for (k = 0; k < nbits_aligned/8; ++k) {
1560  acc = (acc << 8) + larray[j++];
1561  }
1562  acc >>= (nbits_aligned - nbits[i]);
1563  raw_mantissa[c][i] = acc;
1564  }
1565  }
1566  }
1567  }
1568 
1569  for (i = 0; i < frame_length; ++i) {
1570  SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
1571  pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
1572 
1573  if (ctx->raw_samples[c][i] != 0) {
1574  if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1575  pcm_sf = multiply(acf[c], pcm_sf);
1576  }
1577 
1578  sign = pcm_sf.sign;
1579  e = pcm_sf.exp;
1580  mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
1581 
1582  while(mantissa >= 0x1000000) {
1583  e++;
1584  mantissa >>= 1;
1585  }
1586 
1587  if (mantissa) e += (shift_value[c] - 127);
1588  mantissa &= 0x007fffffUL;
1589 
1590  tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
1591  ctx->raw_samples[c][i] = tmp_32;
1592  } else {
1593  ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
1594  }
1595  }
1596  align_get_bits(gb);
1597  }
1598  return 0;
1599 }
1600 
1601 
1602 /** Read the frame data.
1603  */
1604 static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1605 {
1606  ALSSpecificConfig *sconf = &ctx->sconf;
1607  AVCodecContext *avctx = ctx->avctx;
1608  GetBitContext *gb = &ctx->gb;
1609  unsigned int div_blocks[32]; ///< block sizes.
1610  unsigned int c;
1611  unsigned int js_blocks[2];
1612  uint32_t bs_info = 0;
1613  int ret;
1614 
1615  // skip the size of the ra unit if present in the frame
1616  if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1617  skip_bits_long(gb, 32);
1618 
1619  if (sconf->mc_coding && sconf->joint_stereo) {
1620  ctx->js_switch = get_bits1(gb);
1621  align_get_bits(gb);
1622  }
1623 
1624  if (!sconf->mc_coding || ctx->js_switch) {
1625  int independent_bs = !sconf->joint_stereo;
1626 
1627  for (c = 0; c < avctx->channels; c++) {
1628  js_blocks[0] = 0;
1629  js_blocks[1] = 0;
1630 
1631  get_block_sizes(ctx, div_blocks, &bs_info);
1632 
1633  // if joint_stereo and block_switching is set, independent decoding
1634  // is signaled via the first bit of bs_info
1635  if (sconf->joint_stereo && sconf->block_switching)
1636  if (bs_info >> 31)
1637  independent_bs = 2;
1638 
1639  // if this is the last channel, it has to be decoded independently
1640  if (c == avctx->channels - 1)
1641  independent_bs = 1;
1642 
1643  if (independent_bs) {
1644  ret = decode_blocks_ind(ctx, ra_frame, c,
1645  div_blocks, js_blocks);
1646  if (ret < 0)
1647  return ret;
1648  independent_bs--;
1649  } else {
1650  ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1651  if (ret < 0)
1652  return ret;
1653 
1654  c++;
1655  }
1656 
1657  // store carryover raw samples
1658  memmove(ctx->raw_samples[c] - sconf->max_order,
1659  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1660  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1661  }
1662  } else { // multi-channel coding
1663  ALSBlockData bd = { 0 };
1664  int b, ret;
1665  int *reverted_channels = ctx->reverted_channels;
1666  unsigned int offset = 0;
1667 
1668  for (c = 0; c < avctx->channels; c++)
1669  if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1670  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1671  return AVERROR_INVALIDDATA;
1672  }
1673 
1674  memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1675 
1676  bd.ra_block = ra_frame;
1678 
1679  get_block_sizes(ctx, div_blocks, &bs_info);
1680 
1681  for (b = 0; b < ctx->num_blocks; b++) {
1682  bd.block_length = div_blocks[b];
1683  if (bd.block_length <= 0) {
1684  av_log(ctx->avctx, AV_LOG_WARNING,
1685  "Invalid block length %u in channel data!\n",
1686  bd.block_length);
1687  continue;
1688  }
1689 
1690  for (c = 0; c < avctx->channels; c++) {
1691  bd.const_block = ctx->const_block + c;
1692  bd.shift_lsbs = ctx->shift_lsbs + c;
1693  bd.opt_order = ctx->opt_order + c;
1695  bd.use_ltp = ctx->use_ltp + c;
1696  bd.ltp_lag = ctx->ltp_lag + c;
1697  bd.ltp_gain = ctx->ltp_gain[c];
1698  bd.lpc_cof = ctx->lpc_cof[c];
1699  bd.quant_cof = ctx->quant_cof[c];
1700  bd.raw_samples = ctx->raw_samples[c] + offset;
1701  bd.raw_other = NULL;
1702 
1703  if ((ret = read_block(ctx, &bd)) < 0)
1704  return ret;
1705  if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1706  return ret;
1707  }
1708 
1709  for (c = 0; c < avctx->channels; c++) {
1710  ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1711  reverted_channels, offset, c);
1712  if (ret < 0)
1713  return ret;
1714  }
1715  for (c = 0; c < avctx->channels; c++) {
1716  bd.const_block = ctx->const_block + c;
1717  bd.shift_lsbs = ctx->shift_lsbs + c;
1718  bd.opt_order = ctx->opt_order + c;
1720  bd.use_ltp = ctx->use_ltp + c;
1721  bd.ltp_lag = ctx->ltp_lag + c;
1722  bd.ltp_gain = ctx->ltp_gain[c];
1723  bd.lpc_cof = ctx->lpc_cof[c];
1724  bd.quant_cof = ctx->quant_cof[c];
1725  bd.raw_samples = ctx->raw_samples[c] + offset;
1726 
1727  if ((ret = decode_block(ctx, &bd)) < 0)
1728  return ret;
1729  }
1730 
1731  memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1732  offset += div_blocks[b];
1733  bd.ra_block = 0;
1734  }
1735 
1736  // store carryover raw samples
1737  for (c = 0; c < avctx->channels; c++)
1738  memmove(ctx->raw_samples[c] - sconf->max_order,
1739  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1740  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1741  }
1742 
1743  if (sconf->floating) {
1744  read_diff_float_data(ctx, ra_frame);
1745  }
1746 
1747  if (get_bits_left(gb) < 0) {
1748  av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1749  return AVERROR_INVALIDDATA;
1750  }
1751 
1752  return 0;
1753 }
1754 
1755 
1756 /** Decode an ALS frame.
1757  */
1758 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1759  AVPacket *avpkt)
1760 {
1761  ALSDecContext *ctx = avctx->priv_data;
1762  AVFrame *frame = data;
1763  ALSSpecificConfig *sconf = &ctx->sconf;
1764  const uint8_t *buffer = avpkt->data;
1765  int buffer_size = avpkt->size;
1766  int invalid_frame, ret;
1767  unsigned int c, sample, ra_frame, bytes_read, shift;
1768 
1769  if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1770  return ret;
1771 
1772  // In the case that the distance between random access frames is set to zero
1773  // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1774  // For the first frame, if prediction is used, all samples used from the
1775  // previous frame are assumed to be zero.
1776  ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1777 
1778  // the last frame to decode might have a different length
1779  if (sconf->samples != 0xFFFFFFFF)
1780  ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1781  sconf->frame_length);
1782  else
1783  ctx->cur_frame_length = sconf->frame_length;
1784 
1785  // decode the frame data
1786  if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1787  av_log(ctx->avctx, AV_LOG_WARNING,
1788  "Reading frame data failed. Skipping RA unit.\n");
1789 
1790  ctx->frame_id++;
1791 
1792  /* get output buffer */
1793  frame->nb_samples = ctx->cur_frame_length;
1794  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1795  return ret;
1796 
1797  // transform decoded frame into output format
1798  #define INTERLEAVE_OUTPUT(bps) \
1799  { \
1800  int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
1801  shift = bps - ctx->avctx->bits_per_raw_sample; \
1802  if (!ctx->cs_switch) { \
1803  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1804  for (c = 0; c < avctx->channels; c++) \
1805  *dest++ = ctx->raw_samples[c][sample] << shift; \
1806  } else { \
1807  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1808  for (c = 0; c < avctx->channels; c++) \
1809  *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
1810  } \
1811  }
1812 
1813  if (ctx->avctx->bits_per_raw_sample <= 16) {
1814  INTERLEAVE_OUTPUT(16)
1815  } else {
1816  INTERLEAVE_OUTPUT(32)
1817  }
1818 
1819  // update CRC
1820  if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1821  int swap = HAVE_BIGENDIAN != sconf->msb_first;
1822 
1823  if (ctx->avctx->bits_per_raw_sample == 24) {
1824  int32_t *src = (int32_t *)frame->data[0];
1825 
1826  for (sample = 0;
1827  sample < ctx->cur_frame_length * avctx->channels;
1828  sample++) {
1829  int32_t v;
1830 
1831  if (swap)
1832  v = av_bswap32(src[sample]);
1833  else
1834  v = src[sample];
1835  if (!HAVE_BIGENDIAN)
1836  v >>= 8;
1837 
1838  ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1839  }
1840  } else {
1841  uint8_t *crc_source;
1842 
1843  if (swap) {
1844  if (ctx->avctx->bits_per_raw_sample <= 16) {
1845  int16_t *src = (int16_t*) frame->data[0];
1846  int16_t *dest = (int16_t*) ctx->crc_buffer;
1847  for (sample = 0;
1848  sample < ctx->cur_frame_length * avctx->channels;
1849  sample++)
1850  *dest++ = av_bswap16(src[sample]);
1851  } else {
1852  ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1853  (uint32_t *) frame->data[0],
1854  ctx->cur_frame_length * avctx->channels);
1855  }
1856  crc_source = ctx->crc_buffer;
1857  } else {
1858  crc_source = frame->data[0];
1859  }
1860 
1861  ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1862  ctx->cur_frame_length * avctx->channels *
1864  }
1865 
1866 
1867  // check CRC sums if this is the last frame
1868  if (ctx->cur_frame_length != sconf->frame_length &&
1869  ctx->crc_org != ctx->crc) {
1870  av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1871  if (avctx->err_recognition & AV_EF_EXPLODE)
1872  return AVERROR_INVALIDDATA;
1873  }
1874  }
1875 
1876  *got_frame_ptr = 1;
1877 
1878  bytes_read = invalid_frame ? buffer_size :
1879  (get_bits_count(&ctx->gb) + 7) >> 3;
1880 
1881  return bytes_read;
1882 }
1883 
1884 
1885 /** Uninitialize the ALS decoder.
1886  */
1888 {
1889  ALSDecContext *ctx = avctx->priv_data;
1890  int i;
1891 
1892  av_freep(&ctx->sconf.chan_pos);
1893 
1894  ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1895 
1896  av_freep(&ctx->const_block);
1897  av_freep(&ctx->shift_lsbs);
1898  av_freep(&ctx->opt_order);
1900  av_freep(&ctx->use_ltp);
1901  av_freep(&ctx->ltp_lag);
1902  av_freep(&ctx->ltp_gain);
1903  av_freep(&ctx->ltp_gain_buffer);
1904  av_freep(&ctx->quant_cof);
1905  av_freep(&ctx->lpc_cof);
1906  av_freep(&ctx->quant_cof_buffer);
1907  av_freep(&ctx->lpc_cof_buffer);
1909  av_freep(&ctx->prev_raw_samples);
1910  av_freep(&ctx->raw_samples);
1911  av_freep(&ctx->raw_buffer);
1912  av_freep(&ctx->chan_data);
1913  av_freep(&ctx->chan_data_buffer);
1914  av_freep(&ctx->reverted_channels);
1915  av_freep(&ctx->crc_buffer);
1916  if (ctx->mlz) {
1917  av_freep(&ctx->mlz->dict);
1918  av_freep(&ctx->mlz);
1919  }
1920  av_freep(&ctx->acf);
1921  av_freep(&ctx->last_acf_mantissa);
1922  av_freep(&ctx->shift_value);
1923  av_freep(&ctx->last_shift_value);
1924  if (ctx->raw_mantissa) {
1925  for (i = 0; i < avctx->channels; i++) {
1926  av_freep(&ctx->raw_mantissa[i]);
1927  }
1928  av_freep(&ctx->raw_mantissa);
1929  }
1930  av_freep(&ctx->larray);
1931  av_freep(&ctx->nbits);
1932 
1933  return 0;
1934 }
1935 
1936 
1937 /** Initialize the ALS decoder.
1938  */
1940 {
1941  unsigned int c;
1942  unsigned int channel_size;
1943  int num_buffers, ret;
1944  ALSDecContext *ctx = avctx->priv_data;
1945  ALSSpecificConfig *sconf = &ctx->sconf;
1946  ctx->avctx = avctx;
1947 
1948  if (!avctx->extradata) {
1949  av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1950  return AVERROR_INVALIDDATA;
1951  }
1952 
1953  if ((ret = read_specific_config(ctx)) < 0) {
1954  av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1955  goto fail;
1956  }
1957 
1958  if ((ret = check_specific_config(ctx)) < 0) {
1959  goto fail;
1960  }
1961 
1962  if (sconf->bgmc) {
1963  ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1964  if (ret < 0)
1965  goto fail;
1966  }
1967  if (sconf->floating) {
1968  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1969  avctx->bits_per_raw_sample = 32;
1970  } else {
1971  avctx->sample_fmt = sconf->resolution > 1
1973  avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
1974  if (avctx->bits_per_raw_sample > 32) {
1975  av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
1976  avctx->bits_per_raw_sample);
1977  ret = AVERROR_INVALIDDATA;
1978  goto fail;
1979  }
1980  }
1981 
1982  // set maximum Rice parameter for progressive decoding based on resolution
1983  // This is not specified in 14496-3 but actually done by the reference
1984  // codec RM22 revision 2.
1985  ctx->s_max = sconf->resolution > 1 ? 31 : 15;
1986 
1987  // set lag value for long-term prediction
1988  ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
1989  (avctx->sample_rate >= 192000);
1990 
1991  // allocate quantized parcor coefficient buffer
1992  num_buffers = sconf->mc_coding ? avctx->channels : 1;
1993 
1994  ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
1995  ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
1996  ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
1997  sizeof(*ctx->quant_cof_buffer));
1998  ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
1999  sizeof(*ctx->lpc_cof_buffer));
2001  sizeof(*ctx->lpc_cof_buffer));
2002 
2003  if (!ctx->quant_cof || !ctx->lpc_cof ||
2004  !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
2005  !ctx->lpc_cof_reversed_buffer) {
2006  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2007  ret = AVERROR(ENOMEM);
2008  goto fail;
2009  }
2010 
2011  // assign quantized parcor coefficient buffers
2012  for (c = 0; c < num_buffers; c++) {
2013  ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
2014  ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
2015  }
2016 
2017  // allocate and assign lag and gain data buffer for ltp mode
2018  ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
2019  ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
2020  ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
2021  ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
2022  ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
2023  ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
2024  ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
2025  ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
2026 
2027  if (!ctx->const_block || !ctx->shift_lsbs ||
2028  !ctx->opt_order || !ctx->store_prev_samples ||
2029  !ctx->use_ltp || !ctx->ltp_lag ||
2030  !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
2031  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2032  ret = AVERROR(ENOMEM);
2033  goto fail;
2034  }
2035 
2036  for (c = 0; c < num_buffers; c++)
2037  ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
2038 
2039  // allocate and assign channel data buffer for mcc mode
2040  if (sconf->mc_coding) {
2041  ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
2042  sizeof(*ctx->chan_data_buffer));
2043  ctx->chan_data = av_mallocz_array(num_buffers,
2044  sizeof(*ctx->chan_data));
2045  ctx->reverted_channels = av_malloc_array(num_buffers,
2046  sizeof(*ctx->reverted_channels));
2047 
2048  if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
2049  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2050  ret = AVERROR(ENOMEM);
2051  goto fail;
2052  }
2053 
2054  for (c = 0; c < num_buffers; c++)
2055  ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
2056  } else {
2057  ctx->chan_data = NULL;
2058  ctx->chan_data_buffer = NULL;
2059  ctx->reverted_channels = NULL;
2060  }
2061 
2062  channel_size = sconf->frame_length + sconf->max_order;
2063 
2064  ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
2065  ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
2066  ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
2067 
2068  if (sconf->floating) {
2069  ctx->acf = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
2070  ctx->shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
2071  ctx->last_shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
2072  ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
2073  ctx->raw_mantissa = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
2074 
2075  ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
2076  ctx->nbits = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
2077  ctx->mlz = av_mallocz(sizeof(*ctx->mlz));
2078 
2079  if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
2080  || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
2081  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2082  ret = AVERROR(ENOMEM);
2083  goto fail;
2084  }
2085 
2086  ff_mlz_init_dict(avctx, ctx->mlz);
2087  ff_mlz_flush_dict(ctx->mlz);
2088 
2089  for (c = 0; c < avctx->channels; ++c) {
2090  ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
2091  }
2092  }
2093 
2094  // allocate previous raw sample buffer
2095  if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
2096  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2097  ret = AVERROR(ENOMEM);
2098  goto fail;
2099  }
2100 
2101  // assign raw samples buffers
2102  ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
2103  for (c = 1; c < avctx->channels; c++)
2104  ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
2105 
2106  // allocate crc buffer
2107  if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
2110  avctx->channels *
2112  sizeof(*ctx->crc_buffer));
2113  if (!ctx->crc_buffer) {
2114  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2115  ret = AVERROR(ENOMEM);
2116  goto fail;
2117  }
2118  }
2119 
2120  ff_bswapdsp_init(&ctx->bdsp);
2121 
2122  return 0;
2123 
2124 fail:
2125  decode_end(avctx);
2126  return ret;
2127 }
2128 
2129 
2130 /** Flush (reset) the frame ID after seeking.
2131  */
2132 static av_cold void flush(AVCodecContext *avctx)
2133 {
2134  ALSDecContext *ctx = avctx->priv_data;
2135 
2136  ctx->frame_id = 0;
2137 }
2138 
2139 
2141  .name = "als",
2142  .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
2143  .type = AVMEDIA_TYPE_AUDIO,
2144  .id = AV_CODEC_ID_MP4ALS,
2145  .priv_data_size = sizeof(ALSDecContext),
2146  .init = decode_init,
2147  .close = decode_end,
2148  .decode = decode_frame,
2149  .flush = flush,
2150  .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
2151 };
#define MUL64(a, b)
Definition: mathops.h:53
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
AVCodec ff_als_decoder
Definition: alsdec.c:2140
static int als_weighting(GetBitContext *gb, int k, int off)
Definition: alsdec.c:1203
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a non-constant block.
Definition: alsdec.c:892
int msb_first
1 = original CRC calculated on big-endian system, 0 = little-endian
Definition: alsdec.c:163
#define NULL
Definition: coverity.c:32
const char const char void * val
Definition: avisynth_c.h:771
unsigned char * larray
buffer to store the output of masked lz decompression
Definition: alsdec.c:238
const char * s
Definition: avisynth_c.h:768
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:190
int * use_ltp
contains use_ltp flags for all channels
Definition: alsdec.c:216
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
av_cold void ff_bgmc_end(uint8_t **cf_lut, int **cf_lut_status)
Release the lookup table arrays.
Definition: bgmc.c:480
MLZ * mlz
masked lz decompression structure
Definition: alsdec.c:232
int32_t ** raw_samples
decoded raw samples for each channel
Definition: alsdec.c:229
uint8_t * crc_buffer
buffer of byte order corrected samples used for CRC check
Definition: alsdec.c:231
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:247
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static const int16_t mcc_weightings[]
Inter-channel weighting factors for multi-channel correlation.
Definition: alsdec.c:122
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:204
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int acc
Definition: yuv2rgb.c:546
int block_switching
number of block switching levels
Definition: alsdec.c:171
int rlslms
use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
Definition: alsdec.c:178
int size
Definition: avcodec.h:1608
const char * b
Definition: vf_curves.c:113
static int check_specific_config(ALSDecContext *ctx)
Check the ALSSpecificConfig for unsupported features.
Definition: alsdec.c:441
#define av_bswap16
Definition: bswap.h:31
int av_log2(unsigned v)
Definition: intmath.c:26
int adapt_order
adaptive order: 1 = on, 0 = off
Definition: alsdec.c:167
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
Read the frame data.
Definition: alsdec.c:1604
int32_t * lpc_cof_reversed_buffer
temporary buffer to set up a reversed versio of lpc_cof_buffer
Definition: alsdec.c:224
GetBitContext gb
Definition: alsdec.c:198
Block Gilbert-Moore decoder header.
int * nbits
contains the number of bits to read for masked lz decompression for all samples
Definition: alsdec.c:239
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:252
const char * master
Definition: vf_curves.c:114
unsigned int js_switch
if true, joint-stereo decoding is enforced
Definition: alsdec.c:205
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:3084
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Read and decode block data successively.
Definition: alsdec.c:1050
#define INTERLEAVE_OUTPUT(bps)
#define src
Definition: vp8dsp.c:254
#define sample
AVCodec.
Definition: avcodec.h:3607
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
Read and decode a Rice codeword.
Definition: alsdec.c:488
static int get_sbits_long(GetBitContext *s, int n)
Read 0-32 bits as a signed integer.
Definition: get_bits.h:370
int * ltp_lag
contains ltp lag values for all channels
Definition: alsdec.c:217
int * const_block
contains const_block flags for all channels
Definition: alsdec.c:212
static const uint8_t ltp_gain_values[4][4]
Gain values of p(0) for long-term prediction.
Definition: alsdec.c:111
static av_cold int decode_init(AVCodecContext *avctx)
Initialize the ALS decoder.
Definition: alsdec.c:1939
BswapDSPContext bdsp
Definition: alsdec.c:199
int32_t * lpc_cof
coefficients of the direct form prediction
Definition: alsdec.c:255
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2452
uint8_t
#define av_cold
Definition: attributes.h:82
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a constant block.
Definition: alsdec.c:609
float delta
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int ** ltp_gain
gain values for ltp 5-tap filter for a channel
Definition: alsdec.c:218
static SoftFloat_IEEE754 av_bits2sf_ieee754(uint32_t n)
Make a softfloat out of the bitstream.
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1797
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
Definition: bytestream.h:87
int chan_sort
channel rearrangement: 1 = on, 0 = off
Definition: alsdec.c:177
static AVFrame * frame
int joint_stereo
joint stereo: 1 = on, 0 = off
Definition: alsdec.c:174
Public header for CRC hash function implementation.
static SoftFloat_IEEE754 av_int2sf_ieee754(int64_t n, int e)
Convert integer to softfloat.
uint8_t * data
Definition: avcodec.h:1607
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:199
#define ff_dlog(a,...)
bitstream reader API header.
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks independently.
Definition: alsdec.c:1079
void ff_bgmc_decode_init(GetBitContext *gb, unsigned int *h, unsigned int *l, unsigned int *v)
Initialize decoding and reads the first value.
Definition: bgmc.c:488
unsigned int block_length
number of samples within the block
Definition: alsdec.c:244
static void zero_remaining(unsigned int b, unsigned int b_max, const unsigned int *div_blocks, int32_t *buf)
Compute the number of samples left to decode for the current frame and sets these samples to zero...
Definition: alsdec.c:1064
int ra_distance
distance between RA frames (in frames, 0...255)
Definition: alsdec.c:165
int weighting[6]
Definition: alsdec.c:191
int32_t * quant_cof_buffer
contains all quantized parcor coefficients
Definition: alsdec.c:221
signed 32 bits
Definition: samplefmt.h:62
ALSChannelData * chan_data_buffer
contains channel data for all channels
Definition: alsdec.c:226
#define av_log(a,...)
int bgmc
"Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
Definition: alsdec.c:172
#define U(x)
Definition: vp56_arith.h:37
MLZDict * dict
Definition: mlz.h:54
unsigned int cs_switch
if true, channel rearrangement is done
Definition: alsdec.c:206
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:572
int * use_ltp
if true, long-term prediction is used
Definition: alsdec.c:251
enum RA_Flag ra_flag
indicates where the size of ra units is stored
Definition: alsdec.c:166
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ltp_lag_length
number of bits used for ltp lag value
Definition: alsdec.c:211
#define PTRDIFF_SPECIFIER
Definition: internal.h:251
#define AVERROR(e)
Definition: error.h:43
static av_cold void dprint_specific_config(ALSDecContext *ctx)
Definition: alsdec.c:262
unsigned int * opt_order
prediction order of this block
Definition: alsdec.c:249
int * chan_pos
original channel positions
Definition: alsdec.c:180
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:176
AVCodecContext * avctx
Definition: alsdec.c:196
static const int16_t parcor_scaled_values[]
Scaled PARCOR values used for the first two PARCOR coefficients.
Definition: alsdec.c:72
static const SoftFloat FLOAT_1
1.0
Definition: softfloat.h:41
const char * r
Definition: vf_curves.c:111
static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
multiply two softfloats and handle the rounding off
Definition: alsdec.c:1372
int32_t ** lpc_cof
coefficients of the direct form prediction filter for a channel
Definition: alsdec.c:222
static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame)
Read and decode the floating point sample data.
Definition: alsdec.c:1424
int chan_config_info
mapping of channels to loudspeaker locations. Unused until setting channel configuration is implement...
Definition: alsdec.c:179
unsigned int num_blocks
number of blocks used in the current frame
Definition: alsdec.c:207
const char * name
Name of the codec implementation.
Definition: avcodec.h:3614
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:228
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks dependently.
Definition: alsdec.c:1119
void ff_bgmc_decode_end(GetBitContext *gb)
Finish decoding.
Definition: bgmc.c:498
const AVCRC * crc_table
Definition: alsdec.c:200
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
GLsizei count
Definition: opengl_enc.c:109
#define FFMAX(a, b)
Definition: common.h:94
static void error(const char *err)
int * bgmc_lut_status
pointer at lookup table status flags used for BGMC
Definition: alsdec.c:210
static void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.h:226
#define fail()
Definition: checkasm.h:84
ALSSpecificConfig sconf
Definition: alsdec.c:197
int * store_prev_samples
if true, carryover samples have to be stored
Definition: alsdec.c:250
unsigned int * shift_lsbs
contains shift_lsbs flags for all channels
Definition: alsdec.c:213
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2971
#define FFMIN(a, b)
Definition: common.h:96
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a non-constant block.
Definition: alsdec.c:623
int ff_mlz_decompression(MLZ *mlz, GetBitContext *gb, int size, unsigned char *buff)
Run mlz decompression on the next size bits and the output will be stored in buff.
Definition: mlz.c:123
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
int chan_config
indicates that a chan_config_info field is present
Definition: alsdec.c:176
int32_t
AVFormatContext * ctx
Definition: movenc.c:48
#define EXP_BIAS
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:357
int * last_shift_value
contains last shift value for all channels
Definition: alsdec.c:236
static int av_cmp_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Compare a with b strictly.
void ff_bgmc_decode(GetBitContext *gb, unsigned int num, int32_t *dst, int delta, unsigned int sx, unsigned int *h, unsigned int *l, unsigned int *v, uint8_t *cf_lut, int *cf_lut_status)
Read and decode a block Gilbert-Moore coded symbol.
Definition: bgmc.c:505
static av_cold int decode_end(AVCodecContext *avctx)
Uninitialize the ALS decoder.
Definition: alsdec.c:1887
int * const_block
if true, this is a constant value block
Definition: alsdec.c:246
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:2982
int n
Definition: avisynth_c.h:684
int floating
1 = IEEE 32-bit floating-point, 0 = integer
Definition: alsdec.c:162
int time_diff_flag
Definition: alsdec.c:188
SoftFloat_IEEE754 * acf
contains common multiplier for all channels
Definition: alsdec.c:233
int master_channel
Definition: alsdec.c:187
uint32_t crc
CRC value calculated from decoded data.
Definition: alsdec.c:202
int coef_table
table index of Rice code parameters
Definition: alsdec.c:168
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a constant block.
Definition: alsdec.c:579
#define FF_ARRAY_ELEMS(a)
int sb_part
sub-block partition
Definition: alsdec.c:173
MLZ data strucure.
Definition: mlz.h:47
int32_t * raw_other
decoded raw samples of the other channel of a channel pair
Definition: alsdec.c:258
uint8_t * bgmc_lut
pointer at lookup tables used for BGMC
Definition: alsdec.c:209
av_cold void ff_mlz_init_dict(void *context, MLZ *mlz)
Initialize the dictionary.
Definition: mlz.c:23
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int * ltp_gain
gain values for ltp 5-tap filter
Definition: alsdec.c:253
int js_blocks
true if this block contains a difference signal
Definition: alsdec.c:247
#define av_bswap32
Definition: bswap.h:33
unsigned int ra_block
if true, this is a random access block
Definition: alsdec.c:245
Libavcodec external API header.
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
Convert PARCOR coefficient k to direct filter coefficient.
Definition: alsdec.c:506
int * shift_value
value by which the binary point is to be shifted for all channels
Definition: alsdec.c:235
int sample_rate
samples per second
Definition: avcodec.h:2444
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:441
main external API structure.
Definition: avcodec.h:1682
ALSChannelData ** chan_data
channel data for multi-channel correlation
Definition: alsdec.c:225
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Decode an ALS frame.
Definition: alsdec.c:1758
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: utils.c:948
#define MISSING_ERR(cond, str, errval)
void * buf
Definition: avisynth_c.h:690
int extradata_size
Definition: avcodec.h:1798
#define AV_EF_CAREFUL
consider things that violate the spec, are fast to calculate and have not been seen in the wild as er...
Definition: avcodec.h:2985
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:299
static void skip_bits1(GetBitContext *s)
Definition: get_bits.h:324
unsigned int s_max
maximum Rice parameter allowed in entropy coding
Definition: alsdec.c:208
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:292
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time...
Definition: avcodec.h:1009
int * ltp_lag
lag value for long-term prediction
Definition: alsdec.c:252
int32_t * lpc_cof_buffer
contains all coefficients of the direct form prediction filter
Definition: alsdec.c:223
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data...
Definition: avcodec.h:2979
static const int8_t parcor_rice_table[3][20][2]
Rice parameters and corresponding index offsets for decoding the indices of scaled PARCOR values...
Definition: alsdec.c:51
RA_Flag
Definition: alsdec.c:152
static av_cold int read_specific_config(ALSDecContext *ctx)
Read an ALSSpecificConfig from a buffer into the output struct.
Definition: alsdec.c:292
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:332
int long_term_prediction
long term prediction (LTP): 1 = on, 0 = off
Definition: alsdec.c:169
int32_t * raw_samples
decoded raw samples / residuals for this block
Definition: alsdec.c:256
int * reverted_channels
stores a flag for each reverted channel
Definition: alsdec.c:227
int * last_acf_mantissa
contains the last acf mantissa data of common multiplier for all channels
Definition: alsdec.c:234
unsigned int * opt_order
contains opt_order flags for all channels
Definition: alsdec.c:214
int32_t * raw_buffer
contains all decoded raw samples including carryover samples
Definition: alsdec.c:230
int max_order
maximum prediction order (0..1023)
Definition: alsdec.c:170
uint32_t samples
number of samples, 0xFFFFFFFF if unknown
Definition: alsdec.c:160
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:204
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:106
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:343
int mc_coding
extended inter-channel coding (multi channel coding): 1 = on, 0 = off
Definition: alsdec.c:175
int
static const uint8_t tail_code[16][6]
Tail codes used in arithmetic coding using block Gilbert-Moore codes.
Definition: alsdec.c:132
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:282
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:257
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:33
av_cold void ff_mlz_flush_dict(MLZ *mlz)
Flush the dictionary.
Definition: mlz.c:35
static av_cold void flush(AVCodecContext *avctx)
Flush (reset) the frame ID after seeking.
Definition: alsdec.c:2132
signed 16 bits
Definition: samplefmt.h:61
int time_diff_index
Definition: alsdec.c:190
int * ltp_gain_buffer
contains all gain values for ltp 5-tap filter
Definition: alsdec.c:219
int32_t * quant_cof
quantized parcor coefficients
Definition: alsdec.c:254
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(constuint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(constint16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(constint32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(constint64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(constint64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(constfloat *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(constdouble *) pi *(INT64_C(1)<< 63)))#defineFMT_PAIR_FUNC(out, in) staticconv_func_type *constfmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};staticvoidcpy1(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, len);}staticvoidcpy2(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 2 *len);}staticvoidcpy4(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 4 *len);}staticvoidcpy8(uint8_t **dst, constuint8_t **src, intlen){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, constint *ch_map, intflags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) returnNULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) returnNULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case1:ctx->simd_f=cpy1;break;case2:ctx->simd_f=cpy2;break;case4:ctx->simd_f=cpy4;break;case8:ctx->simd_f=cpy8;break;}}if(HAVE_YASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);returnctx;}voidswri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}intswri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, intlen){intch;intoff=0;constintos=(out->planar?1:out->ch_count)*out->bps;unsignedmisaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){intplanes=in->planar?in->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){intplanes=out->planar?out->ch_count:1;unsignedm=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){intplanes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
int avpriv_mpeg4audio_get_config(MPEG4AudioConfig *c, const uint8_t *buf, int bit_size, int sync_extension)
Parse MPEG-4 systems extradata to retrieve audio configuration.
Definition: mpeg4audio.c:86
#define MKBETAG(a, b, c, d)
Definition: common.h:343
static void parse_bs_info(const uint32_t bs_info, unsigned int n, unsigned int div, unsigned int **div_blocks, unsigned int *num_blocks)
Parse the bs_info field to extract the block partitioning used in block switching mode...
Definition: alsdec.c:465
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1724
int32_t ** quant_cof
quantized parcor coefficients for a channel
Definition: alsdec.c:220
int channels
number of audio channels
Definition: avcodec.h:2445
int crc_enabled
enable Cyclic Redundancy Checksum
Definition: alsdec.c:181
int ** raw_mantissa
decoded mantissa bits of the difference signal
Definition: alsdec.c:237
uint32_t crc_org
CRC value of the original input data.
Definition: alsdec.c:201
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data.
Definition: alsdec.c:1024
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data.
Definition: alsdec.c:1001
int frame_length
frame length for each frame (last frame may differ)
Definition: alsdec.c:164
static AVCodec * c
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:449
int stop_flag
Definition: alsdec.c:186
static const struct twinvq_data tab
unsigned int * shift_lsbs
shift of values for this block
Definition: alsdec.c:248
#define av_freep(p)
void INT64 start
Definition: avisynth_c.h:690
static int decode(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *pkt)
Definition: ffmpeg.c:2045
av_cold int ff_bgmc_init(AVCodecContext *avctx, uint8_t **cf_lut, int **cf_lut_status)
Initialize the lookup table arrays.
Definition: bgmc.c:460
#define av_malloc_array(a, b)
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
Read the channel data.
Definition: alsdec.c:1212
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks, uint32_t *bs_info)
Read block switching field if necessary and set actual block sizes.
Definition: alsdec.c:526
int * store_prev_samples
contains store_prev_samples flags for all channels
Definition: alsdec.c:215
static SoftFloat_IEEE754 av_div_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Divide a by b.
unsigned int frame_id
the frame ID / number of the current frame
Definition: alsdec.c:204
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd, ALSChannelData **cd, int *reverted, unsigned int offset, int c)
Recursively reverts the inter-channel correlation for a block.
Definition: alsdec.c:1259
This structure stores compressed data.
Definition: avcodec.h:1584
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:247
uint32_t AVCRC
Definition: crc.h:47
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:959
for(j=16;j >0;--j)
unsigned int cur_frame_length
length of the current frame to decode
Definition: alsdec.c:203
static av_always_inline int get_bitsz(GetBitContext *s, int n)
Read 0-25 bits.
Definition: get_bits.h:262
GLuint buffer
Definition: opengl_enc.c:102
int resolution
000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
Definition: alsdec.c:161
int time_diff_sign
Definition: alsdec.c:189