FFmpeg
apedec.c
Go to the documentation of this file.
1 /*
2  * Monkey's Audio lossless audio decoder
3  * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
4  * based upon libdemac from Dave Chapman.
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include <inttypes.h>
24 
25 #include "libavutil/avassert.h"
27 #include "libavutil/opt.h"
28 #include "lossless_audiodsp.h"
29 #include "avcodec.h"
30 #include "bswapdsp.h"
31 #include "bytestream.h"
32 #include "internal.h"
33 #include "get_bits.h"
34 #include "unary.h"
35 
36 /**
37  * @file
38  * Monkey's Audio lossless audio decoder
39  */
40 
41 #define MAX_CHANNELS 2
42 #define MAX_BYTESPERSAMPLE 3
43 
44 #define APE_FRAMECODE_MONO_SILENCE 1
45 #define APE_FRAMECODE_STEREO_SILENCE 3
46 #define APE_FRAMECODE_PSEUDO_STEREO 4
47 
48 #define HISTORY_SIZE 512
49 #define PREDICTOR_ORDER 8
50 /** Total size of all predictor histories */
51 #define PREDICTOR_SIZE 50
52 
53 #define YDELAYA (18 + PREDICTOR_ORDER*4)
54 #define YDELAYB (18 + PREDICTOR_ORDER*3)
55 #define XDELAYA (18 + PREDICTOR_ORDER*2)
56 #define XDELAYB (18 + PREDICTOR_ORDER)
57 
58 #define YADAPTCOEFFSA 18
59 #define XADAPTCOEFFSA 14
60 #define YADAPTCOEFFSB 10
61 #define XADAPTCOEFFSB 5
62 
63 /**
64  * Possible compression levels
65  * @{
66  */
73 };
74 /** @} */
75 
76 #define APE_FILTER_LEVELS 3
77 
78 /** Filter orders depending on compression level */
79 static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
80  { 0, 0, 0 },
81  { 16, 0, 0 },
82  { 64, 0, 0 },
83  { 32, 256, 0 },
84  { 16, 256, 1280 }
85 };
86 
87 /** Filter fraction bits depending on compression level */
89  { 0, 0, 0 },
90  { 11, 0, 0 },
91  { 11, 0, 0 },
92  { 10, 13, 0 },
93  { 11, 13, 15 }
94 };
95 
96 
97 /** Filters applied to the decoded data */
98 typedef struct APEFilter {
99  int16_t *coeffs; ///< actual coefficients used in filtering
100  int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients
101  int16_t *historybuffer; ///< filter memory
102  int16_t *delay; ///< filtered values
103 
104  int avg;
105 } APEFilter;
106 
107 typedef struct APERice {
108  uint32_t k;
109  uint32_t ksum;
110 } APERice;
111 
112 typedef struct APERangecoder {
113  uint32_t low; ///< low end of interval
114  uint32_t range; ///< length of interval
115  uint32_t help; ///< bytes_to_follow resp. intermediate value
116  unsigned int buffer; ///< buffer for input/output
117 } APERangecoder;
118 
119 /** Filter histories */
120 typedef struct APEPredictor {
122 
123  int32_t lastA[2];
124 
125  int32_t filterA[2];
126  int32_t filterB[2];
127 
128  uint32_t coeffsA[2][4]; ///< adaption coefficients
129  uint32_t coeffsB[2][5]; ///< adaption coefficients
131 
132  unsigned int sample_pos;
133 } APEPredictor;
134 
135 /** Decoder context */
136 typedef struct APEContext {
137  AVClass *class; ///< class for AVOptions
141  int channels;
142  int samples; ///< samples left to decode in current frame
143  int bps;
144 
145  int fileversion; ///< codec version, very important in decoding process
146  int compression_level; ///< compression levels
147  int fset; ///< which filter set to use (calculated from compression level)
148  int flags; ///< global decoder flags
149 
150  uint32_t CRC; ///< frame CRC
151  int frameflags; ///< frame flags
152  APEPredictor predictor; ///< predictor used for final reconstruction
153 
156  int32_t *decoded[MAX_CHANNELS]; ///< decoded data for each channel
157  int blocks_per_loop; ///< maximum number of samples to decode for each call
158 
159  int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory
160 
161  APERangecoder rc; ///< rangecoder used to decode actual values
162  APERice riceX; ///< rice code parameters for the second channel
163  APERice riceY; ///< rice code parameters for the first channel
164  APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction
166 
167  uint8_t *data; ///< current frame data
168  uint8_t *data_end; ///< frame data end
169  int data_size; ///< frame data allocated size
170  const uint8_t *ptr; ///< current position in frame data
171 
172  int error;
173 
174  void (*entropy_decode_mono)(struct APEContext *ctx, int blockstodecode);
175  void (*entropy_decode_stereo)(struct APEContext *ctx, int blockstodecode);
178 } APEContext;
179 
180 static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
181  int32_t *decoded1, int count);
182 
183 static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode);
184 static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode);
185 static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode);
186 static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode);
187 static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode);
188 static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode);
189 static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode);
190 static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode);
191 static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode);
192 
199 
201 {
202  APEContext *s = avctx->priv_data;
203  int i;
204 
205  for (i = 0; i < APE_FILTER_LEVELS; i++)
206  av_freep(&s->filterbuf[i]);
207 
209  av_freep(&s->data);
210  s->decoded_size = s->data_size = 0;
211 
212  return 0;
213 }
214 
216 {
217  APEContext *s = avctx->priv_data;
218  int i;
219 
220  if (avctx->extradata_size != 6) {
221  av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
222  return AVERROR(EINVAL);
223  }
224  if (avctx->channels > 2) {
225  av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
226  return AVERROR(EINVAL);
227  }
228  s->bps = avctx->bits_per_coded_sample;
229  switch (s->bps) {
230  case 8:
231  avctx->sample_fmt = AV_SAMPLE_FMT_U8P;
232  break;
233  case 16:
235  break;
236  case 24:
238  break;
239  default:
240  avpriv_request_sample(avctx,
241  "%d bits per coded sample", s->bps);
242  return AVERROR_PATCHWELCOME;
243  }
244  s->avctx = avctx;
245  s->channels = avctx->channels;
246  s->fileversion = AV_RL16(avctx->extradata);
247  s->compression_level = AV_RL16(avctx->extradata + 2);
248  s->flags = AV_RL16(avctx->extradata + 4);
249 
250  av_log(avctx, AV_LOG_VERBOSE, "Compression Level: %d - Flags: %d\n",
251  s->compression_level, s->flags);
253  !s->compression_level ||
255  av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n",
256  s->compression_level);
257  return AVERROR_INVALIDDATA;
258  }
259  s->fset = s->compression_level / 1000 - 1;
260  for (i = 0; i < APE_FILTER_LEVELS; i++) {
261  if (!ape_filter_orders[s->fset][i])
262  break;
263  FF_ALLOC_OR_GOTO(avctx, s->filterbuf[i],
264  (ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4,
265  filter_alloc_fail);
266  }
267 
268  if (s->fileversion < 3860) {
271  } else if (s->fileversion < 3900) {
274  } else if (s->fileversion < 3930) {
277  } else if (s->fileversion < 3990) {
280  } else {
283  }
284 
285  if (s->fileversion < 3930) {
288  } else if (s->fileversion < 3950) {
291  } else {
294  }
295 
296  ff_bswapdsp_init(&s->bdsp);
297  ff_llauddsp_init(&s->adsp);
299 
300  return 0;
301 filter_alloc_fail:
302  ape_decode_close(avctx);
303  return AVERROR(ENOMEM);
304 }
305 
306 /**
307  * @name APE range decoding functions
308  * @{
309  */
310 
311 #define CODE_BITS 32
312 #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
313 #define SHIFT_BITS (CODE_BITS - 9)
314 #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
315 #define BOTTOM_VALUE (TOP_VALUE >> 8)
316 
317 /** Start the decoder */
318 static inline void range_start_decoding(APEContext *ctx)
319 {
320  ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
321  ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS);
322  ctx->rc.range = (uint32_t) 1 << EXTRA_BITS;
323 }
324 
325 /** Perform normalization */
326 static inline void range_dec_normalize(APEContext *ctx)
327 {
328  while (ctx->rc.range <= BOTTOM_VALUE) {
329  ctx->rc.buffer <<= 8;
330  if(ctx->ptr < ctx->data_end) {
331  ctx->rc.buffer += *ctx->ptr;
332  ctx->ptr++;
333  } else {
334  ctx->error = 1;
335  }
336  ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF);
337  ctx->rc.range <<= 8;
338  }
339 }
340 
341 /**
342  * Calculate cumulative frequency for next symbol. Does NO update!
343  * @param ctx decoder context
344  * @param tot_f is the total frequency or (code_value)1<<shift
345  * @return the cumulative frequency
346  */
347 static inline int range_decode_culfreq(APEContext *ctx, int tot_f)
348 {
349  range_dec_normalize(ctx);
350  ctx->rc.help = ctx->rc.range / tot_f;
351  return ctx->rc.low / ctx->rc.help;
352 }
353 
354 /**
355  * Decode value with given size in bits
356  * @param ctx decoder context
357  * @param shift number of bits to decode
358  */
359 static inline int range_decode_culshift(APEContext *ctx, int shift)
360 {
361  range_dec_normalize(ctx);
362  ctx->rc.help = ctx->rc.range >> shift;
363  return ctx->rc.low / ctx->rc.help;
364 }
365 
366 
367 /**
368  * Update decoding state
369  * @param ctx decoder context
370  * @param sy_f the interval length (frequency of the symbol)
371  * @param lt_f the lower end (frequency sum of < symbols)
372  */
373 static inline void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
374 {
375  ctx->rc.low -= ctx->rc.help * lt_f;
376  ctx->rc.range = ctx->rc.help * sy_f;
377 }
378 
379 /** Decode n bits (n <= 16) without modelling */
380 static inline int range_decode_bits(APEContext *ctx, int n)
381 {
382  int sym = range_decode_culshift(ctx, n);
383  range_decode_update(ctx, 1, sym);
384  return sym;
385 }
386 
387 
388 #define MODEL_ELEMENTS 64
389 
390 /**
391  * Fixed probabilities for symbols in Monkey Audio version 3.97
392  */
393 static const uint16_t counts_3970[22] = {
394  0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
395  62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
396  65450, 65469, 65480, 65487, 65491, 65493,
397 };
398 
399 /**
400  * Probability ranges for symbols in Monkey Audio version 3.97
401  */
402 static const uint16_t counts_diff_3970[21] = {
403  14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
404  1104, 677, 415, 248, 150, 89, 54, 31,
405  19, 11, 7, 4, 2,
406 };
407 
408 /**
409  * Fixed probabilities for symbols in Monkey Audio version 3.98
410  */
411 static const uint16_t counts_3980[22] = {
412  0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
413  64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
414  65485, 65488, 65490, 65491, 65492, 65493,
415 };
416 
417 /**
418  * Probability ranges for symbols in Monkey Audio version 3.98
419  */
420 static const uint16_t counts_diff_3980[21] = {
421  19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
422  261, 119, 65, 31, 19, 10, 6, 3,
423  3, 2, 1, 1, 1,
424 };
425 
426 /**
427  * Decode symbol
428  * @param ctx decoder context
429  * @param counts probability range start position
430  * @param counts_diff probability range widths
431  */
432 static inline int range_get_symbol(APEContext *ctx,
433  const uint16_t counts[],
434  const uint16_t counts_diff[])
435 {
436  int symbol, cf;
437 
438  cf = range_decode_culshift(ctx, 16);
439 
440  if(cf > 65492){
441  symbol= cf - 65535 + 63;
442  range_decode_update(ctx, 1, cf);
443  if(cf > 65535)
444  ctx->error=1;
445  return symbol;
446  }
447  /* figure out the symbol inefficiently; a binary search would be much better */
448  for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
449 
450  range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
451 
452  return symbol;
453 }
454 /** @} */ // group rangecoder
455 
456 static inline void update_rice(APERice *rice, unsigned int x)
457 {
458  int lim = rice->k ? (1 << (rice->k + 4)) : 0;
459  rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
460 
461  if (rice->ksum < lim)
462  rice->k--;
463  else if (rice->ksum >= (1 << (rice->k + 5)) && rice->k < 24)
464  rice->k++;
465 }
466 
467 static inline int get_rice_ook(GetBitContext *gb, int k)
468 {
469  unsigned int x;
470 
471  x = get_unary(gb, 1, get_bits_left(gb));
472 
473  if (k)
474  x = (x << k) | get_bits(gb, k);
475 
476  return x;
477 }
478 
480  APERice *rice)
481 {
482  unsigned int x, overflow;
483 
484  overflow = get_unary(gb, 1, get_bits_left(gb));
485 
486  if (ctx->fileversion > 3880) {
487  while (overflow >= 16) {
488  overflow -= 16;
489  rice->k += 4;
490  }
491  }
492 
493  if (!rice->k)
494  x = overflow;
495  else if(rice->k <= MIN_CACHE_BITS) {
496  x = (overflow << rice->k) + get_bits(gb, rice->k);
497  } else {
498  av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %"PRIu32"\n", rice->k);
499  return AVERROR_INVALIDDATA;
500  }
501  rice->ksum += x - (rice->ksum + 8 >> 4);
502  if (rice->ksum < (rice->k ? 1 << (rice->k + 4) : 0))
503  rice->k--;
504  else if (rice->ksum >= (1 << (rice->k + 5)) && rice->k < 24)
505  rice->k++;
506 
507  /* Convert to signed */
508  return ((x >> 1) ^ ((x & 1) - 1)) + 1;
509 }
510 
511 static inline int ape_decode_value_3900(APEContext *ctx, APERice *rice)
512 {
513  unsigned int x, overflow;
514  int tmpk;
515 
517 
518  if (overflow == (MODEL_ELEMENTS - 1)) {
519  tmpk = range_decode_bits(ctx, 5);
520  overflow = 0;
521  } else
522  tmpk = (rice->k < 1) ? 0 : rice->k - 1;
523 
524  if (tmpk <= 16 || ctx->fileversion < 3910) {
525  if (tmpk > 23) {
526  av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk);
527  return AVERROR_INVALIDDATA;
528  }
529  x = range_decode_bits(ctx, tmpk);
530  } else if (tmpk <= 31) {
531  x = range_decode_bits(ctx, 16);
532  x |= (range_decode_bits(ctx, tmpk - 16) << 16);
533  } else {
534  av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk);
535  return AVERROR_INVALIDDATA;
536  }
537  x += overflow << tmpk;
538 
539  update_rice(rice, x);
540 
541  /* Convert to signed */
542  return ((x >> 1) ^ ((x & 1) - 1)) + 1;
543 }
544 
545 static inline int ape_decode_value_3990(APEContext *ctx, APERice *rice)
546 {
547  unsigned int x, overflow;
548  int base, pivot;
549 
550  pivot = rice->ksum >> 5;
551  if (pivot == 0)
552  pivot = 1;
553 
555 
556  if (overflow == (MODEL_ELEMENTS - 1)) {
557  overflow = (unsigned)range_decode_bits(ctx, 16) << 16;
558  overflow |= range_decode_bits(ctx, 16);
559  }
560 
561  if (pivot < 0x10000) {
562  base = range_decode_culfreq(ctx, pivot);
563  range_decode_update(ctx, 1, base);
564  } else {
565  int base_hi = pivot, base_lo;
566  int bbits = 0;
567 
568  while (base_hi & ~0xFFFF) {
569  base_hi >>= 1;
570  bbits++;
571  }
572  base_hi = range_decode_culfreq(ctx, base_hi + 1);
573  range_decode_update(ctx, 1, base_hi);
574  base_lo = range_decode_culfreq(ctx, 1 << bbits);
575  range_decode_update(ctx, 1, base_lo);
576 
577  base = (base_hi << bbits) + base_lo;
578  }
579 
580  x = base + overflow * pivot;
581 
582  update_rice(rice, x);
583 
584  /* Convert to signed */
585  return ((x >> 1) ^ ((x & 1) - 1)) + 1;
586 }
587 
589  int32_t *out, APERice *rice, int blockstodecode)
590 {
591  int i;
592  unsigned ksummax, ksummin;
593 
594  rice->ksum = 0;
595  for (i = 0; i < FFMIN(blockstodecode, 5); i++) {
596  out[i] = get_rice_ook(&ctx->gb, 10);
597  rice->ksum += out[i];
598  }
599  rice->k = av_log2(rice->ksum / 10) + 1;
600  if (rice->k >= 24)
601  return;
602  for (; i < FFMIN(blockstodecode, 64); i++) {
603  out[i] = get_rice_ook(&ctx->gb, rice->k);
604  rice->ksum += out[i];
605  rice->k = av_log2(rice->ksum / ((i + 1) * 2)) + 1;
606  if (rice->k >= 24)
607  return;
608  }
609  ksummax = 1 << rice->k + 7;
610  ksummin = rice->k ? (1 << rice->k + 6) : 0;
611  for (; i < blockstodecode; i++) {
612  out[i] = get_rice_ook(&ctx->gb, rice->k);
613  rice->ksum += out[i] - out[i - 64];
614  while (rice->ksum < ksummin) {
615  rice->k--;
616  ksummin = rice->k ? ksummin >> 1 : 0;
617  ksummax >>= 1;
618  }
619  while (rice->ksum >= ksummax) {
620  rice->k++;
621  if (rice->k > 24)
622  return;
623  ksummax <<= 1;
624  ksummin = ksummin ? ksummin << 1 : 128;
625  }
626  }
627 
628  for (i = 0; i < blockstodecode; i++)
629  out[i] = ((out[i] >> 1) ^ ((out[i] & 1) - 1)) + 1;
630 }
631 
632 static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode)
633 {
634  decode_array_0000(ctx, &ctx->gb, ctx->decoded[0], &ctx->riceY,
635  blockstodecode);
636 }
637 
638 static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode)
639 {
640  decode_array_0000(ctx, &ctx->gb, ctx->decoded[0], &ctx->riceY,
641  blockstodecode);
642  decode_array_0000(ctx, &ctx->gb, ctx->decoded[1], &ctx->riceX,
643  blockstodecode);
644 }
645 
646 static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode)
647 {
648  int32_t *decoded0 = ctx->decoded[0];
649 
650  while (blockstodecode--)
651  *decoded0++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceY);
652 }
653 
654 static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode)
655 {
656  int32_t *decoded0 = ctx->decoded[0];
657  int32_t *decoded1 = ctx->decoded[1];
658  int blocks = blockstodecode;
659 
660  while (blockstodecode--)
661  *decoded0++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceY);
662  while (blocks--)
663  *decoded1++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceX);
664 }
665 
666 static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode)
667 {
668  int32_t *decoded0 = ctx->decoded[0];
669 
670  while (blockstodecode--)
671  *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
672 }
673 
674 static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode)
675 {
676  int32_t *decoded0 = ctx->decoded[0];
677  int32_t *decoded1 = ctx->decoded[1];
678  int blocks = blockstodecode;
679 
680  while (blockstodecode--)
681  *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
682  range_dec_normalize(ctx);
683  // because of some implementation peculiarities we need to backpedal here
684  ctx->ptr -= 1;
686  while (blocks--)
687  *decoded1++ = ape_decode_value_3900(ctx, &ctx->riceX);
688 }
689 
690 static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode)
691 {
692  int32_t *decoded0 = ctx->decoded[0];
693  int32_t *decoded1 = ctx->decoded[1];
694 
695  while (blockstodecode--) {
696  *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
697  *decoded1++ = ape_decode_value_3900(ctx, &ctx->riceX);
698  }
699 }
700 
701 static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode)
702 {
703  int32_t *decoded0 = ctx->decoded[0];
704 
705  while (blockstodecode--)
706  *decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY);
707 }
708 
709 static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode)
710 {
711  int32_t *decoded0 = ctx->decoded[0];
712  int32_t *decoded1 = ctx->decoded[1];
713 
714  while (blockstodecode--) {
715  *decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY);
716  *decoded1++ = ape_decode_value_3990(ctx, &ctx->riceX);
717  }
718 }
719 
721 {
722  /* Read the CRC */
723  if (ctx->fileversion >= 3900) {
724  if (ctx->data_end - ctx->ptr < 6)
725  return AVERROR_INVALIDDATA;
726  ctx->CRC = bytestream_get_be32(&ctx->ptr);
727  } else {
728  ctx->CRC = get_bits_long(&ctx->gb, 32);
729  }
730 
731  /* Read the frame flags if they exist */
732  ctx->frameflags = 0;
733  if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
734  ctx->CRC &= ~0x80000000;
735 
736  if (ctx->data_end - ctx->ptr < 6)
737  return AVERROR_INVALIDDATA;
738  ctx->frameflags = bytestream_get_be32(&ctx->ptr);
739  }
740 
741  /* Initialize the rice structs */
742  ctx->riceX.k = 10;
743  ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
744  ctx->riceY.k = 10;
745  ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
746 
747  if (ctx->fileversion >= 3900) {
748  /* The first 8 bits of input are ignored. */
749  ctx->ptr++;
750 
752  }
753 
754  return 0;
755 }
756 
758  375,
759 };
760 
761 static const int32_t initial_coeffs_a_3800[3] = {
762  64, 115, 64,
763 };
764 
765 static const int32_t initial_coeffs_b_3800[2] = {
766  740, 0
767 };
768 
769 static const int32_t initial_coeffs_3930[4] = {
770  360, 317, -109, 98
771 };
772 
774 {
775  APEPredictor *p = &ctx->predictor;
776 
777  /* Zero the history buffers */
778  memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(*p->historybuffer));
779  p->buf = p->historybuffer;
780 
781  /* Initialize and zero the coefficients */
782  if (ctx->fileversion < 3930) {
784  memcpy(p->coeffsA[0], initial_coeffs_fast_3320,
785  sizeof(initial_coeffs_fast_3320));
786  memcpy(p->coeffsA[1], initial_coeffs_fast_3320,
787  sizeof(initial_coeffs_fast_3320));
788  } else {
789  memcpy(p->coeffsA[0], initial_coeffs_a_3800,
790  sizeof(initial_coeffs_a_3800));
791  memcpy(p->coeffsA[1], initial_coeffs_a_3800,
792  sizeof(initial_coeffs_a_3800));
793  }
794  } else {
795  memcpy(p->coeffsA[0], initial_coeffs_3930, sizeof(initial_coeffs_3930));
796  memcpy(p->coeffsA[1], initial_coeffs_3930, sizeof(initial_coeffs_3930));
797  }
798  memset(p->coeffsB, 0, sizeof(p->coeffsB));
799  if (ctx->fileversion < 3930) {
800  memcpy(p->coeffsB[0], initial_coeffs_b_3800,
801  sizeof(initial_coeffs_b_3800));
802  memcpy(p->coeffsB[1], initial_coeffs_b_3800,
803  sizeof(initial_coeffs_b_3800));
804  }
805 
806  p->filterA[0] = p->filterA[1] = 0;
807  p->filterB[0] = p->filterB[1] = 0;
808  p->lastA[0] = p->lastA[1] = 0;
809 
810  p->sample_pos = 0;
811 }
812 
813 /** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
814 static inline int APESIGN(int32_t x) {
815  return (x < 0) - (x > 0);
816 }
817 
819  const int decoded, const int filter,
820  const int delayA)
821 {
822  int32_t predictionA;
823 
824  p->buf[delayA] = p->lastA[filter];
825  if (p->sample_pos < 3) {
826  p->lastA[filter] = decoded;
827  p->filterA[filter] = decoded;
828  return decoded;
829  }
830 
831  predictionA = p->buf[delayA] * 2 - p->buf[delayA - 1];
832  p->lastA[filter] = decoded + ((int32_t)(predictionA * p->coeffsA[filter][0]) >> 9);
833 
834  if ((decoded ^ predictionA) > 0)
835  p->coeffsA[filter][0]++;
836  else
837  p->coeffsA[filter][0]--;
838 
839  p->filterA[filter] += (unsigned)p->lastA[filter];
840 
841  return p->filterA[filter];
842 }
843 
845  const int decoded, const int filter,
846  const int delayA, const int delayB,
847  const int start, const int shift)
848 {
849  int32_t predictionA, predictionB, sign;
850  int32_t d0, d1, d2, d3, d4;
851 
852  p->buf[delayA] = p->lastA[filter];
853  p->buf[delayB] = p->filterB[filter];
854  if (p->sample_pos < start) {
855  predictionA = decoded + p->filterA[filter];
856  p->lastA[filter] = decoded;
857  p->filterB[filter] = decoded;
858  p->filterA[filter] = predictionA;
859  return predictionA;
860  }
861  d2 = p->buf[delayA];
862  d1 = (p->buf[delayA] - p->buf[delayA - 1]) * 2U;
863  d0 = p->buf[delayA] + ((p->buf[delayA - 2] - p->buf[delayA - 1]) * 8U);
864  d3 = p->buf[delayB] * 2U - p->buf[delayB - 1];
865  d4 = p->buf[delayB];
866 
867  predictionA = d0 * p->coeffsA[filter][0] +
868  d1 * p->coeffsA[filter][1] +
869  d2 * p->coeffsA[filter][2];
870 
871  sign = APESIGN(decoded);
872  p->coeffsA[filter][0] += (((d0 >> 30) & 2) - 1) * sign;
873  p->coeffsA[filter][1] += (((d1 >> 28) & 8) - 4) * sign;
874  p->coeffsA[filter][2] += (((d2 >> 28) & 8) - 4) * sign;
875 
876  predictionB = d3 * p->coeffsB[filter][0] -
877  d4 * p->coeffsB[filter][1];
878  p->lastA[filter] = decoded + (predictionA >> 11);
879  sign = APESIGN(p->lastA[filter]);
880  p->coeffsB[filter][0] += (((d3 >> 29) & 4) - 2) * sign;
881  p->coeffsB[filter][1] -= (((d4 >> 30) & 2) - 1) * sign;
882 
883  p->filterB[filter] = p->lastA[filter] + (predictionB >> shift);
884  p->filterA[filter] = p->filterB[filter] + ((int)(p->filterA[filter] * 31U) >> 5);
885 
886  return p->filterA[filter];
887 }
888 
889 static void long_filter_high_3800(int32_t *buffer, int order, int shift, int length)
890 {
891  int i, j;
892  int32_t dotprod, sign;
893  int32_t coeffs[256], delay[256];
894 
895  if (order >= length)
896  return;
897 
898  memset(coeffs, 0, order * sizeof(*coeffs));
899  for (i = 0; i < order; i++)
900  delay[i] = buffer[i];
901  for (i = order; i < length; i++) {
902  dotprod = 0;
903  sign = APESIGN(buffer[i]);
904  for (j = 0; j < order; j++) {
905  dotprod += delay[j] * (unsigned)coeffs[j];
906  coeffs[j] += ((delay[j] >> 31) | 1) * sign;
907  }
908  buffer[i] -= dotprod >> shift;
909  for (j = 0; j < order - 1; j++)
910  delay[j] = delay[j + 1];
911  delay[order - 1] = buffer[i];
912  }
913 }
914 
916 {
917  int i, j;
918  int32_t dotprod, sign;
919  int32_t coeffs[8] = { 0 }, delay[8] = { 0 };
920 
921  for (i = 0; i < length; i++) {
922  dotprod = 0;
923  sign = APESIGN(buffer[i]);
924  for (j = 7; j >= 0; j--) {
925  dotprod += delay[j] * coeffs[j];
926  coeffs[j] += ((delay[j] >> 31) | 1) * sign;
927  }
928  for (j = 7; j > 0; j--)
929  delay[j] = delay[j - 1];
930  delay[0] = buffer[i];
931  buffer[i] -= dotprod >> 9;
932  }
933 }
934 
936 {
937  APEPredictor *p = &ctx->predictor;
938  int32_t *decoded0 = ctx->decoded[0];
939  int32_t *decoded1 = ctx->decoded[1];
940  int start = 4, shift = 10;
941 
943  start = 16;
944  long_filter_high_3800(decoded0, 16, 9, count);
945  long_filter_high_3800(decoded1, 16, 9, count);
946  } else if (ctx->compression_level == COMPRESSION_LEVEL_EXTRA_HIGH) {
947  int order = 128, shift2 = 11;
948 
949  if (ctx->fileversion >= 3830) {
950  order <<= 1;
951  shift++;
952  shift2++;
953  long_filter_ehigh_3830(decoded0 + order, count - order);
954  long_filter_ehigh_3830(decoded1 + order, count - order);
955  }
956  start = order;
957  long_filter_high_3800(decoded0, order, shift2, count);
958  long_filter_high_3800(decoded1, order, shift2, count);
959  }
960 
961  while (count--) {
962  int X = *decoded0, Y = *decoded1;
964  *decoded0 = filter_fast_3320(p, Y, 0, YDELAYA);
965  decoded0++;
966  *decoded1 = filter_fast_3320(p, X, 1, XDELAYA);
967  decoded1++;
968  } else {
969  *decoded0 = filter_3800(p, Y, 0, YDELAYA, YDELAYB,
970  start, shift);
971  decoded0++;
972  *decoded1 = filter_3800(p, X, 1, XDELAYA, XDELAYB,
973  start, shift);
974  decoded1++;
975  }
976 
977  /* Combined */
978  p->buf++;
979  p->sample_pos++;
980 
981  /* Have we filled the history buffer? */
982  if (p->buf == p->historybuffer + HISTORY_SIZE) {
983  memmove(p->historybuffer, p->buf,
984  PREDICTOR_SIZE * sizeof(*p->historybuffer));
985  p->buf = p->historybuffer;
986  }
987  }
988 }
989 
991 {
992  APEPredictor *p = &ctx->predictor;
993  int32_t *decoded0 = ctx->decoded[0];
994  int start = 4, shift = 10;
995 
997  start = 16;
998  long_filter_high_3800(decoded0, 16, 9, count);
999  } else if (ctx->compression_level == COMPRESSION_LEVEL_EXTRA_HIGH) {
1000  int order = 128, shift2 = 11;
1001 
1002  if (ctx->fileversion >= 3830) {
1003  order <<= 1;
1004  shift++;
1005  shift2++;
1006  long_filter_ehigh_3830(decoded0 + order, count - order);
1007  }
1008  start = order;
1009  long_filter_high_3800(decoded0, order, shift2, count);
1010  }
1011 
1012  while (count--) {
1014  *decoded0 = filter_fast_3320(p, *decoded0, 0, YDELAYA);
1015  decoded0++;
1016  } else {
1017  *decoded0 = filter_3800(p, *decoded0, 0, YDELAYA, YDELAYB,
1018  start, shift);
1019  decoded0++;
1020  }
1021 
1022  /* Combined */
1023  p->buf++;
1024  p->sample_pos++;
1025 
1026  /* Have we filled the history buffer? */
1027  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1028  memmove(p->historybuffer, p->buf,
1029  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1030  p->buf = p->historybuffer;
1031  }
1032  }
1033 }
1034 
1036  const int decoded, const int filter,
1037  const int delayA)
1038 {
1039  int32_t predictionA, sign;
1040  int32_t d0, d1, d2, d3;
1041 
1042  p->buf[delayA] = p->lastA[filter];
1043  d0 = p->buf[delayA ];
1044  d1 = p->buf[delayA ] - p->buf[delayA - 1];
1045  d2 = p->buf[delayA - 1] - p->buf[delayA - 2];
1046  d3 = p->buf[delayA - 2] - p->buf[delayA - 3];
1047 
1048  predictionA = d0 * p->coeffsA[filter][0] +
1049  d1 * p->coeffsA[filter][1] +
1050  d2 * p->coeffsA[filter][2] +
1051  d3 * p->coeffsA[filter][3];
1052 
1053  p->lastA[filter] = decoded + (predictionA >> 9);
1054  p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
1055 
1056  sign = APESIGN(decoded);
1057  p->coeffsA[filter][0] += ((d0 < 0) * 2 - 1) * sign;
1058  p->coeffsA[filter][1] += ((d1 < 0) * 2 - 1) * sign;
1059  p->coeffsA[filter][2] += ((d2 < 0) * 2 - 1) * sign;
1060  p->coeffsA[filter][3] += ((d3 < 0) * 2 - 1) * sign;
1061 
1062  return p->filterA[filter];
1063 }
1064 
1066 {
1067  APEPredictor *p = &ctx->predictor;
1068  int32_t *decoded0 = ctx->decoded[0];
1069  int32_t *decoded1 = ctx->decoded[1];
1070 
1071  ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count);
1072 
1073  while (count--) {
1074  /* Predictor Y */
1075  int Y = *decoded1, X = *decoded0;
1076  *decoded0 = predictor_update_3930(p, Y, 0, YDELAYA);
1077  decoded0++;
1078  *decoded1 = predictor_update_3930(p, X, 1, XDELAYA);
1079  decoded1++;
1080 
1081  /* Combined */
1082  p->buf++;
1083 
1084  /* Have we filled the history buffer? */
1085  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1086  memmove(p->historybuffer, p->buf,
1087  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1088  p->buf = p->historybuffer;
1089  }
1090  }
1091 }
1092 
1094 {
1095  APEPredictor *p = &ctx->predictor;
1096  int32_t *decoded0 = ctx->decoded[0];
1097 
1098  ape_apply_filters(ctx, ctx->decoded[0], NULL, count);
1099 
1100  while (count--) {
1101  *decoded0 = predictor_update_3930(p, *decoded0, 0, YDELAYA);
1102  decoded0++;
1103 
1104  p->buf++;
1105 
1106  /* Have we filled the history buffer? */
1107  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1108  memmove(p->historybuffer, p->buf,
1109  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1110  p->buf = p->historybuffer;
1111  }
1112  }
1113 }
1114 
1116  const int decoded, const int filter,
1117  const int delayA, const int delayB,
1118  const int adaptA, const int adaptB)
1119 {
1120  int32_t predictionA, predictionB, sign;
1121 
1122  p->buf[delayA] = p->lastA[filter];
1123  p->buf[adaptA] = APESIGN(p->buf[delayA]);
1124  p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
1125  p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
1126 
1127  predictionA = p->buf[delayA ] * p->coeffsA[filter][0] +
1128  p->buf[delayA - 1] * p->coeffsA[filter][1] +
1129  p->buf[delayA - 2] * p->coeffsA[filter][2] +
1130  p->buf[delayA - 3] * p->coeffsA[filter][3];
1131 
1132  /* Apply a scaled first-order filter compression */
1133  p->buf[delayB] = p->filterA[filter ^ 1] - ((int)(p->filterB[filter] * 31U) >> 5);
1134  p->buf[adaptB] = APESIGN(p->buf[delayB]);
1135  p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
1136  p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
1137  p->filterB[filter] = p->filterA[filter ^ 1];
1138 
1139  predictionB = p->buf[delayB ] * p->coeffsB[filter][0] +
1140  p->buf[delayB - 1] * p->coeffsB[filter][1] +
1141  p->buf[delayB - 2] * p->coeffsB[filter][2] +
1142  p->buf[delayB - 3] * p->coeffsB[filter][3] +
1143  p->buf[delayB - 4] * p->coeffsB[filter][4];
1144 
1145  p->lastA[filter] = decoded + ((int)((unsigned)predictionA + (predictionB >> 1)) >> 10);
1146  p->filterA[filter] = p->lastA[filter] + ((int)(p->filterA[filter] * 31U) >> 5);
1147 
1148  sign = APESIGN(decoded);
1149  p->coeffsA[filter][0] += p->buf[adaptA ] * sign;
1150  p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign;
1151  p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign;
1152  p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign;
1153  p->coeffsB[filter][0] += p->buf[adaptB ] * sign;
1154  p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign;
1155  p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign;
1156  p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign;
1157  p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign;
1158 
1159  return p->filterA[filter];
1160 }
1161 
1163 {
1164  APEPredictor *p = &ctx->predictor;
1165  int32_t *decoded0 = ctx->decoded[0];
1166  int32_t *decoded1 = ctx->decoded[1];
1167 
1168  ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count);
1169 
1170  while (count--) {
1171  /* Predictor Y */
1172  *decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB,
1174  decoded0++;
1175  *decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB,
1177  decoded1++;
1178 
1179  /* Combined */
1180  p->buf++;
1181 
1182  /* Have we filled the history buffer? */
1183  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1184  memmove(p->historybuffer, p->buf,
1185  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1186  p->buf = p->historybuffer;
1187  }
1188  }
1189 }
1190 
1192 {
1193  APEPredictor *p = &ctx->predictor;
1194  int32_t *decoded0 = ctx->decoded[0];
1195  int32_t predictionA, currentA, A, sign;
1196 
1197  ape_apply_filters(ctx, ctx->decoded[0], NULL, count);
1198 
1199  currentA = p->lastA[0];
1200 
1201  while (count--) {
1202  A = *decoded0;
1203 
1204  p->buf[YDELAYA] = currentA;
1205  p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
1206 
1207  predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] +
1208  p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
1209  p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
1210  p->buf[YDELAYA - 3] * p->coeffsA[0][3];
1211 
1212  currentA = A + (predictionA >> 10);
1213 
1214  p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]);
1215  p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
1216 
1217  sign = APESIGN(A);
1218  p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ] * sign;
1219  p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign;
1220  p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign;
1221  p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign;
1222 
1223  p->buf++;
1224 
1225  /* Have we filled the history buffer? */
1226  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1227  memmove(p->historybuffer, p->buf,
1228  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1229  p->buf = p->historybuffer;
1230  }
1231 
1232  p->filterA[0] = currentA + ((int)(p->filterA[0] * 31U) >> 5);
1233  *(decoded0++) = p->filterA[0];
1234  }
1235 
1236  p->lastA[0] = currentA;
1237 }
1238 
1239 static void do_init_filter(APEFilter *f, int16_t *buf, int order)
1240 {
1241  f->coeffs = buf;
1242  f->historybuffer = buf + order;
1243  f->delay = f->historybuffer + order * 2;
1244  f->adaptcoeffs = f->historybuffer + order;
1245 
1246  memset(f->historybuffer, 0, (order * 2) * sizeof(*f->historybuffer));
1247  memset(f->coeffs, 0, order * sizeof(*f->coeffs));
1248  f->avg = 0;
1249 }
1250 
1251 static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
1252 {
1253  do_init_filter(&f[0], buf, order);
1254  do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
1255 }
1256 
1258  int32_t *data, int count, int order, int fracbits)
1259 {
1260  int res;
1261  int absres;
1262 
1263  while (count--) {
1264  /* round fixedpoint scalar product */
1266  f->delay - order,
1267  f->adaptcoeffs - order,
1268  order, APESIGN(*data));
1269  res = (res + (1 << (fracbits - 1))) >> fracbits;
1270  res += *data;
1271  *data++ = res;
1272 
1273  /* Update the output history */
1274  *f->delay++ = av_clip_int16(res);
1275 
1276  if (version < 3980) {
1277  /* Version ??? to < 3.98 files (untested) */
1278  f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
1279  f->adaptcoeffs[-4] >>= 1;
1280  f->adaptcoeffs[-8] >>= 1;
1281  } else {
1282  /* Version 3.98 and later files */
1283 
1284  /* Update the adaption coefficients */
1285  absres = FFABS(res);
1286  if (absres)
1287  *f->adaptcoeffs = APESIGN(res) *
1288  (8 << ((absres > f->avg * 3) + (absres > f->avg * 4 / 3)));
1289  /* equivalent to the following code
1290  if (absres <= f->avg * 4 / 3)
1291  *f->adaptcoeffs = APESIGN(res) * 8;
1292  else if (absres <= f->avg * 3)
1293  *f->adaptcoeffs = APESIGN(res) * 16;
1294  else
1295  *f->adaptcoeffs = APESIGN(res) * 32;
1296  */
1297  else
1298  *f->adaptcoeffs = 0;
1299 
1300  f->avg += (absres - f->avg) / 16;
1301 
1302  f->adaptcoeffs[-1] >>= 1;
1303  f->adaptcoeffs[-2] >>= 1;
1304  f->adaptcoeffs[-8] >>= 1;
1305  }
1306 
1307  f->adaptcoeffs++;
1308 
1309  /* Have we filled the history buffer? */
1310  if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
1311  memmove(f->historybuffer, f->delay - (order * 2),
1312  (order * 2) * sizeof(*f->historybuffer));
1313  f->delay = f->historybuffer + order * 2;
1314  f->adaptcoeffs = f->historybuffer + order;
1315  }
1316  }
1317 }
1318 
1320  int32_t *data0, int32_t *data1,
1321  int count, int order, int fracbits)
1322 {
1323  do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
1324  if (data1)
1325  do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
1326 }
1327 
1328 static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
1329  int32_t *decoded1, int count)
1330 {
1331  int i;
1332 
1333  for (i = 0; i < APE_FILTER_LEVELS; i++) {
1334  if (!ape_filter_orders[ctx->fset][i])
1335  break;
1336  apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count,
1337  ape_filter_orders[ctx->fset][i],
1338  ape_filter_fracbits[ctx->fset][i]);
1339  }
1340 }
1341 
1343 {
1344  int i, ret;
1345  if ((ret = init_entropy_decoder(ctx)) < 0)
1346  return ret;
1348 
1349  for (i = 0; i < APE_FILTER_LEVELS; i++) {
1350  if (!ape_filter_orders[ctx->fset][i])
1351  break;
1352  init_filter(ctx, ctx->filters[i], ctx->filterbuf[i],
1353  ape_filter_orders[ctx->fset][i]);
1354  }
1355  return 0;
1356 }
1357 
1359 {
1361  /* We are pure silence, so we're done. */
1362  av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
1363  return;
1364  }
1365 
1366  ctx->entropy_decode_mono(ctx, count);
1367 
1368  /* Now apply the predictor decoding */
1369  ctx->predictor_decode_mono(ctx, count);
1370 
1371  /* Pseudo-stereo - just copy left channel to right channel */
1372  if (ctx->channels == 2) {
1373  memcpy(ctx->decoded[1], ctx->decoded[0], count * sizeof(*ctx->decoded[1]));
1374  }
1375 }
1376 
1378 {
1379  unsigned left, right;
1380  int32_t *decoded0 = ctx->decoded[0];
1381  int32_t *decoded1 = ctx->decoded[1];
1382 
1384  /* We are pure silence, so we're done. */
1385  av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
1386  return;
1387  }
1388 
1389  ctx->entropy_decode_stereo(ctx, count);
1390 
1391  /* Now apply the predictor decoding */
1392  ctx->predictor_decode_stereo(ctx, count);
1393 
1394  /* Decorrelate and scale to output depth */
1395  while (count--) {
1396  left = *decoded1 - (unsigned)(*decoded0 / 2);
1397  right = left + *decoded0;
1398 
1399  *(decoded0++) = left;
1400  *(decoded1++) = right;
1401  }
1402 }
1403 
1405  int *got_frame_ptr, AVPacket *avpkt)
1406 {
1407  AVFrame *frame = data;
1408  const uint8_t *buf = avpkt->data;
1409  APEContext *s = avctx->priv_data;
1410  uint8_t *sample8;
1411  int16_t *sample16;
1412  int32_t *sample24;
1413  int i, ch, ret;
1414  int blockstodecode;
1415  uint64_t decoded_buffer_size;
1416 
1417  /* this should never be negative, but bad things will happen if it is, so
1418  check it just to make sure. */
1419  av_assert0(s->samples >= 0);
1420 
1421  if(!s->samples){
1422  uint32_t nblocks, offset;
1423  int buf_size;
1424 
1425  if (!avpkt->size) {
1426  *got_frame_ptr = 0;
1427  return 0;
1428  }
1429  if (avpkt->size < 8) {
1430  av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1431  return AVERROR_INVALIDDATA;
1432  }
1433  buf_size = avpkt->size & ~3;
1434  if (buf_size != avpkt->size) {
1435  av_log(avctx, AV_LOG_WARNING, "packet size is not a multiple of 4. "
1436  "extra bytes at the end will be skipped.\n");
1437  }
1438  if (s->fileversion < 3950) // previous versions overread two bytes
1439  buf_size += 2;
1440  av_fast_padded_malloc(&s->data, &s->data_size, buf_size);
1441  if (!s->data)
1442  return AVERROR(ENOMEM);
1443  s->bdsp.bswap_buf((uint32_t *) s->data, (const uint32_t *) buf,
1444  buf_size >> 2);
1445  memset(s->data + (buf_size & ~3), 0, buf_size & 3);
1446  s->ptr = s->data;
1447  s->data_end = s->data + buf_size;
1448 
1449  nblocks = bytestream_get_be32(&s->ptr);
1450  offset = bytestream_get_be32(&s->ptr);
1451  if (s->fileversion >= 3900) {
1452  if (offset > 3) {
1453  av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
1454  av_freep(&s->data);
1455  s->data_size = 0;
1456  return AVERROR_INVALIDDATA;
1457  }
1458  if (s->data_end - s->ptr < offset) {
1459  av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1460  return AVERROR_INVALIDDATA;
1461  }
1462  s->ptr += offset;
1463  } else {
1464  if ((ret = init_get_bits8(&s->gb, s->ptr, s->data_end - s->ptr)) < 0)
1465  return ret;
1466  if (s->fileversion > 3800)
1467  skip_bits_long(&s->gb, offset * 8);
1468  else
1469  skip_bits_long(&s->gb, offset);
1470  }
1471 
1472  if (!nblocks || nblocks > INT_MAX / 2 / sizeof(*s->decoded_buffer) - 8) {
1473  av_log(avctx, AV_LOG_ERROR, "Invalid sample count: %"PRIu32".\n",
1474  nblocks);
1475  return AVERROR_INVALIDDATA;
1476  }
1477 
1478  /* Initialize the frame decoder */
1479  if (init_frame_decoder(s) < 0) {
1480  av_log(avctx, AV_LOG_ERROR, "Error reading frame header\n");
1481  return AVERROR_INVALIDDATA;
1482  }
1483  s->samples = nblocks;
1484  }
1485 
1486  if (!s->data) {
1487  *got_frame_ptr = 0;
1488  return avpkt->size;
1489  }
1490 
1491  blockstodecode = FFMIN(s->blocks_per_loop, s->samples);
1492  // for old files coefficients were not interleaved,
1493  // so we need to decode all of them at once
1494  if (s->fileversion < 3930)
1495  blockstodecode = s->samples;
1496 
1497  /* reallocate decoded sample buffer if needed */
1498  decoded_buffer_size = 2LL * FFALIGN(blockstodecode, 8) * sizeof(*s->decoded_buffer);
1499  av_assert0(decoded_buffer_size <= INT_MAX);
1500  av_fast_malloc(&s->decoded_buffer, &s->decoded_size, decoded_buffer_size);
1501  if (!s->decoded_buffer)
1502  return AVERROR(ENOMEM);
1503  memset(s->decoded_buffer, 0, s->decoded_size);
1504  s->decoded[0] = s->decoded_buffer;
1505  s->decoded[1] = s->decoded_buffer + FFALIGN(blockstodecode, 8);
1506 
1507  /* get output buffer */
1508  frame->nb_samples = blockstodecode;
1509  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1510  return ret;
1511 
1512  s->error=0;
1513 
1514  if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
1515  ape_unpack_mono(s, blockstodecode);
1516  else
1517  ape_unpack_stereo(s, blockstodecode);
1518  emms_c();
1519 
1520  if (s->error) {
1521  s->samples=0;
1522  av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
1523  return AVERROR_INVALIDDATA;
1524  }
1525 
1526  switch (s->bps) {
1527  case 8:
1528  for (ch = 0; ch < s->channels; ch++) {
1529  sample8 = (uint8_t *)frame->data[ch];
1530  for (i = 0; i < blockstodecode; i++)
1531  *sample8++ = (s->decoded[ch][i] + 0x80) & 0xff;
1532  }
1533  break;
1534  case 16:
1535  for (ch = 0; ch < s->channels; ch++) {
1536  sample16 = (int16_t *)frame->data[ch];
1537  for (i = 0; i < blockstodecode; i++)
1538  *sample16++ = s->decoded[ch][i];
1539  }
1540  break;
1541  case 24:
1542  for (ch = 0; ch < s->channels; ch++) {
1543  sample24 = (int32_t *)frame->data[ch];
1544  for (i = 0; i < blockstodecode; i++)
1545  *sample24++ = s->decoded[ch][i] << 8;
1546  }
1547  break;
1548  }
1549 
1550  s->samples -= blockstodecode;
1551 
1552  *got_frame_ptr = 1;
1553 
1554  return !s->samples ? avpkt->size : 0;
1555 }
1556 
1558 {
1559  APEContext *s = avctx->priv_data;
1560  s->samples= 0;
1561 }
1562 
1563 #define OFFSET(x) offsetof(APEContext, x)
1564 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
1565 static const AVOption options[] = {
1566  { "max_samples", "maximum number of samples decoded per call", OFFSET(blocks_per_loop), AV_OPT_TYPE_INT, { .i64 = 4608 }, 1, INT_MAX, PAR, "max_samples" },
1567  { "all", "no maximum. decode all samples for each packet at once", 0, AV_OPT_TYPE_CONST, { .i64 = INT_MAX }, INT_MIN, INT_MAX, PAR, "max_samples" },
1568  { NULL},
1569 };
1570 
1571 static const AVClass ape_decoder_class = {
1572  .class_name = "APE decoder",
1573  .item_name = av_default_item_name,
1574  .option = options,
1575  .version = LIBAVUTIL_VERSION_INT,
1576 };
1577 
1579  .name = "ape",
1580  .long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
1581  .type = AVMEDIA_TYPE_AUDIO,
1582  .id = AV_CODEC_ID_APE,
1583  .priv_data_size = sizeof(APEContext),
1584  .init = ape_decode_init,
1585  .close = ape_decode_close,
1587  .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DELAY |
1589  .flush = ape_flush,
1590  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P,
1594  .priv_class = &ape_decoder_class,
1595 };
static int init_frame_decoder(APEContext *ctx)
Definition: apedec.c:1342
static const int32_t initial_coeffs_3930[4]
Definition: apedec.c:769
static void decode_array_0000(APEContext *ctx, GetBitContext *gb, int32_t *out, APERice *rice, int blockstodecode)
Definition: apedec.c:588
int compression_level
compression levels
Definition: apedec.c:146
AVCodec ff_ape_decoder
Definition: apedec.c:1578
#define MODEL_ELEMENTS
Definition: apedec.c:388
static av_always_inline int filter_3800(APEPredictor *p, const int decoded, const int filter, const int delayA, const int delayB, const int start, const int shift)
Definition: apedec.c:844
#define NULL
Definition: coverity.c:32
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int decoded_size
Definition: apedec.c:155
#define YADAPTCOEFFSB
Definition: apedec.c:60
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:295
static void range_start_decoding(APEContext *ctx)
Start the decoder.
Definition: apedec.c:318
AVOption.
Definition: opt.h:246
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:100
static void flush(AVCodecContext *avctx)
#define XDELAYA
Definition: apedec.c:55
static void apply_filter(APEContext *ctx, APEFilter *f, int32_t *data0, int32_t *data1, int count, int order, int fracbits)
Definition: apedec.c:1319
int fileversion
codec version, very important in decoding process
Definition: apedec.c:145
static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode)
Definition: apedec.c:638
int32_t filterA[2]
Definition: apedec.c:125
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:291
void(* entropy_decode_mono)(struct APEContext *ctx, int blockstodecode)
Definition: apedec.c:174
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
#define avpriv_request_sample(...)
void(* entropy_decode_stereo)(struct APEContext *ctx, int blockstodecode)
Definition: apedec.c:175
static int APESIGN(int32_t x)
Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero)
Definition: apedec.c:814
static void update_rice(APERice *rice, unsigned int x)
Definition: apedec.c:456
int size
Definition: avcodec.h:1478
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63)))#define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};static void cpy1(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, len);}static void cpy2(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 2 *len);}static void cpy4(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 4 *len);}static void cpy8(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;}}if(HAVE_X86ASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;}void swri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len){int ch;int off=0;const int os=(out->planar?1:out->ch_count)*out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){int planes=in->planar?in->ch_count:1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){int planes=out->planar?out->ch_count:1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){int planes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode)
Definition: apedec.c:674
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:191
static av_cold int ape_decode_init(AVCodecContext *avctx)
Definition: apedec.c:215
unsigned int buffer
buffer for input/output
Definition: apedec.c:116
int av_log2(unsigned v)
Definition: intmath.c:26
static void long_filter_high_3800(int32_t *buffer, int order, int shift, int length)
Definition: apedec.c:889
static int init_entropy_decoder(APEContext *ctx)
Definition: apedec.c:720
static void ape_flush(AVCodecContext *avctx)
Definition: apedec.c:1557
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
Definition: utils.c:70
static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode)
Definition: apedec.c:690
int version
Definition: avisynth_c.h:858
static av_always_inline int predictor_update_3930(APEPredictor *p, const int decoded, const int filter, const int delayA)
Definition: apedec.c:1035
#define AV_CH_LAYOUT_STEREO
#define OFFSET(x)
Definition: apedec.c:1563
#define XADAPTCOEFFSA
Definition: apedec.c:59
AVCodec.
Definition: avcodec.h:3481
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
Definition: bytestream.h:87
Undefined Behavior In the C some operations are like signed integer overflow
Definition: undefined.txt:3
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:42
int16_t * filterbuf[APE_FILTER_LEVELS]
filter memory
Definition: apedec.c:159
Definition: vf_addroi.c:26
static void predictor_decode_mono_3800(APEContext *ctx, int count)
Definition: apedec.c:990
uint8_t base
Definition: vp3data.h:202
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: avcodec.h:1006
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static int ape_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: apedec.c:1404
Filter histories.
Definition: apedec.c:120
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2233
uint8_t
#define av_cold
Definition: attributes.h:82
int16_t * delay
filtered values
Definition: apedec.c:102
AVOptions.
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
static void do_init_filter(APEFilter *f, int16_t *buf, int order)
Definition: apedec.c:1239
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
#define f(width, name)
Definition: cbs_vp9.c:255
static const int32_t initial_coeffs_a_3800[3]
Definition: apedec.c:761
static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode)
Definition: apedec.c:654
static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode)
Definition: apedec.c:701
static void ape_unpack_mono(APEContext *ctx, int count)
Definition: apedec.c:1358
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1666
APERangecoder rc
rangecoder used to decode actual values
Definition: apedec.c:161
#define YDELAYB
Definition: apedec.c:54
static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS]
Filter fraction bits depending on compression level.
Definition: apedec.c:88
uint8_t * data
Definition: avcodec.h:1477
static void ape_apply_filters(APEContext *ctx, int32_t *decoded0, int32_t *decoded1, int count)
Definition: apedec.c:1328
bitstream reader API header.
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
Definition: avcodec.h:2789
Decoder context.
Definition: apedec.c:136
#define A(x)
Definition: vp56_arith.h:28
#define FFALIGN(x, a)
Definition: macros.h:48
#define av_log(a,...)
static const uint16_t counts_3970[22]
Fixed probabilities for symbols in Monkey Audio version 3.97.
Definition: apedec.c:393
static void range_dec_normalize(APEContext *ctx)
Perform normalization.
Definition: apedec.c:326
#define U(x)
Definition: vp56_arith.h:37
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
static const uint16_t counts_diff_3980[21]
Probability ranges for symbols in Monkey Audio version 3.98.
Definition: apedec.c:420
int bps
Definition: apedec.c:143
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:259
void(* predictor_decode_mono)(struct APEContext *ctx, int count)
Definition: apedec.c:176
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define YDELAYA
Definition: apedec.c:53
int32_t lastA[2]
Definition: apedec.c:123
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
static av_cold int ape_decode_close(AVCodecContext *avctx)
Definition: apedec.c:200
static int ape_decode_value_3900(APEContext *ctx, APERice *rice)
Definition: apedec.c:511
int32_t historybuffer[HISTORY_SIZE+PREDICTOR_SIZE]
Definition: apedec.c:130
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
#define XDELAYB
Definition: apedec.c:56
int32_t * decoded_buffer
Definition: apedec.c:154
simple assert() macros that are a bit more flexible than ISO C assert().
GLsizei GLsizei * length
Definition: opengl_enc.c:114
int avg
Definition: apedec.c:104
const char * name
Name of the codec implementation.
Definition: avcodec.h:3488
static int range_decode_culshift(APEContext *ctx, int shift)
Decode value with given size in bits.
Definition: apedec.c:359
#define APE_FILTER_LEVELS
Definition: apedec.c:76
GLsizei count
Definition: opengl_enc.c:108
int error
Definition: apedec.c:172
uint64_t channel_layout
Audio channel layout.
Definition: avcodec.h:2276
static int range_decode_bits(APEContext *ctx, int n)
Decode n bits (n <= 16) without modelling.
Definition: apedec.c:380
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:500
audio channel layout utility functions
#define Y
Definition: boxblur.h:38
static void predictor_decode_mono_3930(APEContext *ctx, int count)
Definition: apedec.c:1093
uint8_t * data
current frame data
Definition: apedec.c:167
static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS]
Filter orders depending on compression level.
Definition: apedec.c:79
#define FFMIN(a, b)
Definition: common.h:96
signed 32 bits, planar
Definition: samplefmt.h:68
static int get_rice_ook(GetBitContext *gb, int k)
Definition: apedec.c:467
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
static av_always_inline int filter_fast_3320(APEPredictor *p, const int decoded, const int filter, const int delayA)
Definition: apedec.c:818
AVCodecContext * avctx
Definition: apedec.c:138
static void ape_unpack_stereo(APEContext *ctx, int count)
Definition: apedec.c:1377
const uint8_t * ptr
current position in frame data
Definition: apedec.c:170
int32_t
static int range_decode_culfreq(APEContext *ctx, int tot_f)
Calculate cumulative frequency for next symbol.
Definition: apedec.c:347
AVFormatContext * ctx
Definition: movenc.c:48
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
int n
Definition: avisynth_c.h:760
int32_t(* scalarproduct_and_madd_int16)(int16_t *v1, const int16_t *v2, const int16_t *v3, int len, int mul)
Calculate scalar product of v1 and v2, and v1[i] += v3[i] * mul.
unsigned 8 bits, planar
Definition: samplefmt.h:66
static void predictor_decode_stereo_3930(APEContext *ctx, int count)
Definition: apedec.c:1065
uint32_t ksum
Definition: apedec.c:109
av_cold void ff_llauddsp_init(LLAudDSPContext *c)
uint32_t help
bytes_to_follow resp. intermediate value
Definition: apedec.c:115
uint32_t coeffsA[2][4]
adaption coefficients
Definition: apedec.c:128
static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode)
Definition: apedec.c:709
#define APE_FRAMECODE_PSEUDO_STEREO
Definition: apedec.c:46
uint32_t range
length of interval
Definition: apedec.c:114
if(ret)
int samples
samples left to decode in current frame
Definition: apedec.c:142
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int fset
which filter set to use (calculated from compression level)
Definition: apedec.c:147
static int ape_decode_value_3860(APEContext *ctx, GetBitContext *gb, APERice *rice)
Definition: apedec.c:479
APERice riceX
rice code parameters for the second channel
Definition: apedec.c:162
Libavcodec external API header.
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
static void predictor_decode_stereo_3950(APEContext *ctx, int count)
Definition: apedec.c:1162
static void predictor_decode_stereo_3800(APEContext *ctx, int count)
Definition: apedec.c:935
LLAudDSPContext adsp
Definition: apedec.c:140
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
#define APE_FRAMECODE_STEREO_SILENCE
Definition: apedec.c:45
static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
Definition: apedec.c:1251
int frameflags
frame flags
Definition: apedec.c:151
main external API structure.
Definition: avcodec.h:1565
static int ape_decode_value_3990(APEContext *ctx, APERice *rice)
Definition: apedec.c:545
uint32_t CRC
frame CRC
Definition: apedec.c:150
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1964
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2]...the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so...,+,-,+,-,+,+,-,+,-,+,...hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32-hcoeff[1]-hcoeff[2]-...a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2}an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||.........intra?||||:Block01:yes no||||:Block02:.................||||:Block03::y DC::ref index:||||:Block04::cb DC::motion x:||||.........:cr DC::motion y:||||.................|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------------------------------|||Y subbands||Cb subbands||Cr subbands||||------||------||------|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||------||------||------||||------||------||------|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||------||------||------||||------||------||------|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||------||------||------||||------||------||------|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------------------------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction------------|\Dequantization-------------------\||Reference frames|\IDWT|--------------|Motion\|||Frame 0||Frame 1||Compensation.OBMC v-------|--------------|--------------.\------> Frame n output Frame Frame<----------------------------------/|...|-------------------Range Coder:============Binary Range Coder:-------------------The implemented range coder is an adapted version based upon"Range encoding: an algorithm for removing redundancy from a digitised message."by G.N.N.Martin.The symbols encoded by the Snow range coder are bits(0|1).The associated probabilities are not fix but change depending on the symbol mix seen so far.bit seen|new state---------+-----------------------------------------------0|256-state_transition_table[256-old_state];1|state_transition_table[old_state];state_transition_table={0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:-------------------------FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1.the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:206
void * buf
Definition: avisynth_c.h:766
BswapDSPContext bdsp
Definition: apedec.c:139
unsigned int sample_pos
Definition: apedec.c:132
int extradata_size
Definition: avcodec.h:1667
static const uint16_t counts_3980[22]
Fixed probabilities for symbols in Monkey Audio version 3.98.
Definition: apedec.c:411
static int range_get_symbol(APEContext *ctx, const uint16_t counts[], const uint16_t counts_diff[])
Decode symbol.
Definition: apedec.c:432
Describe the class of an AVClass context structure.
Definition: log.h:67
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time...
Definition: avcodec.h:1024
uint32_t low
low end of interval
Definition: apedec.c:113
int flags
global decoder flags
Definition: apedec.c:148
APECompressionLevel
Possible compression levels.
Definition: apedec.c:67
void(* predictor_decode_stereo)(struct APEContext *ctx, int count)
Definition: apedec.c:177
#define EXTRA_BITS
Definition: apedec.c:314
static void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
Update decoding state.
Definition: apedec.c:373
static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode)
Definition: apedec.c:666
uint32_t k
Definition: apedec.c:108
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:546
#define MAX_CHANNELS
Definition: apedec.c:41
static const int32_t initial_coeffs_fast_3320[1]
Definition: apedec.c:757
#define MIN_CACHE_BITS
Definition: get_bits.h:128
static void do_apply_filter(APEContext *ctx, int version, APEFilter *f, int32_t *data, int count, int order, int fracbits)
Definition: apedec.c:1257
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:309
#define PREDICTOR_SIZE
Total size of all predictor histories.
Definition: apedec.c:51
static const uint16_t counts_diff_3970[21]
Probability ranges for symbols in Monkey Audio version 3.97.
Definition: apedec.c:402
int blocks_per_loop
maximum number of samples to decode for each call
Definition: apedec.c:157
int
uint8_t * data_end
frame data end
Definition: apedec.c:168
common internal api header.
APERice riceY
rice code parameters for the first channel
Definition: apedec.c:163
static const int shift2[6]
Definition: dxa.c:51
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:46
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:140
APEFilter filters[APE_FILTER_LEVELS][2]
filters used for reconstruction
Definition: apedec.c:164
static av_always_inline int predictor_update_filter(APEPredictor *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB)
Definition: apedec.c:1115
int16_t * coeffs
actual coefficients used in filtering
Definition: apedec.c:99
int32_t filterB[2]
Definition: apedec.c:126
#define YADAPTCOEFFSA
Definition: apedec.c:58
#define PAR
Definition: apedec.c:1564
static void init_predictor_decoder(APEContext *ctx)
Definition: apedec.c:773
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1592
static const int32_t initial_coeffs_b_3800[2]
Definition: apedec.c:765
APEPredictor predictor
predictor used for final reconstruction
Definition: apedec.c:152
static const AVClass ape_decoder_class
Definition: apedec.c:1571
int channels
number of audio channels
Definition: avcodec.h:2226
static void long_filter_ehigh_3830(int32_t *buffer, int length)
Definition: apedec.c:915
static void predictor_decode_mono_3950(APEContext *ctx, int count)
Definition: apedec.c:1191
GetBitContext gb
Definition: apedec.c:165
Filters applied to the decoded data.
Definition: apedec.c:98
static const struct PPFilter filters[]
Definition: postprocess.c:134
uint32_t coeffsB[2][5]
adaption coefficients
Definition: apedec.c:129
#define XADAPTCOEFFSB
Definition: apedec.c:61
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a it should return
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:701
int32_t * decoded[MAX_CHANNELS]
decoded data for each channel
Definition: apedec.c:156
int32_t * buf
Definition: apedec.c:121
FILE * out
Definition: movenc.c:54
#define av_freep(p)
void INT64 start
Definition: avisynth_c.h:766
signed 16 bits, planar
Definition: samplefmt.h:67
#define HISTORY_SIZE
Definition: apedec.c:48
#define av_always_inline
Definition: attributes.h:39
int data_size
frame data allocated size
Definition: apedec.c:169
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
static const AVOption options[]
Definition: apedec.c:1565
#define AV_CH_LAYOUT_MONO
int16_t * adaptcoeffs
adaptive filter coefficients used for correcting of actual filter coefficients
Definition: apedec.c:100
int channels
Definition: apedec.c:141
#define BOTTOM_VALUE
Definition: apedec.c:315
This structure stores compressed data.
Definition: avcodec.h:1454
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:361
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:981
for(j=16;j >0;--j)
static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode)
Definition: apedec.c:632
GLuint buffer
Definition: opengl_enc.c:101
int16_t * historybuffer
filter memory
Definition: apedec.c:101
static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode)
Definition: apedec.c:646