FFmpeg
apedec.c
Go to the documentation of this file.
1 /*
2  * Monkey's Audio lossless audio decoder
3  * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
4  * based upon libdemac from Dave Chapman.
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include <inttypes.h>
24 
25 #include "libavutil/avassert.h"
27 #include "libavutil/opt.h"
28 #include "lossless_audiodsp.h"
29 #include "avcodec.h"
30 #include "bswapdsp.h"
31 #include "bytestream.h"
32 #include "internal.h"
33 #include "get_bits.h"
34 #include "unary.h"
35 
36 /**
37  * @file
38  * Monkey's Audio lossless audio decoder
39  */
40 
41 #define MAX_CHANNELS 2
42 #define MAX_BYTESPERSAMPLE 3
43 
44 #define APE_FRAMECODE_MONO_SILENCE 1
45 #define APE_FRAMECODE_STEREO_SILENCE 3
46 #define APE_FRAMECODE_PSEUDO_STEREO 4
47 
48 #define HISTORY_SIZE 512
49 #define PREDICTOR_ORDER 8
50 /** Total size of all predictor histories */
51 #define PREDICTOR_SIZE 50
52 
53 #define YDELAYA (18 + PREDICTOR_ORDER*4)
54 #define YDELAYB (18 + PREDICTOR_ORDER*3)
55 #define XDELAYA (18 + PREDICTOR_ORDER*2)
56 #define XDELAYB (18 + PREDICTOR_ORDER)
57 
58 #define YADAPTCOEFFSA 18
59 #define XADAPTCOEFFSA 14
60 #define YADAPTCOEFFSB 10
61 #define XADAPTCOEFFSB 5
62 
63 /**
64  * Possible compression levels
65  * @{
66  */
73 };
74 /** @} */
75 
76 #define APE_FILTER_LEVELS 3
77 
78 /** Filter orders depending on compression level */
79 static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
80  { 0, 0, 0 },
81  { 16, 0, 0 },
82  { 64, 0, 0 },
83  { 32, 256, 0 },
84  { 16, 256, 1280 }
85 };
86 
87 /** Filter fraction bits depending on compression level */
89  { 0, 0, 0 },
90  { 11, 0, 0 },
91  { 11, 0, 0 },
92  { 10, 13, 0 },
93  { 11, 13, 15 }
94 };
95 
96 
97 /** Filters applied to the decoded data */
98 typedef struct APEFilter {
99  int16_t *coeffs; ///< actual coefficients used in filtering
100  int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients
101  int16_t *historybuffer; ///< filter memory
102  int16_t *delay; ///< filtered values
103 
104  int avg;
105 } APEFilter;
106 
107 typedef struct APERice {
108  uint32_t k;
109  uint32_t ksum;
110 } APERice;
111 
112 typedef struct APERangecoder {
113  uint32_t low; ///< low end of interval
114  uint32_t range; ///< length of interval
115  uint32_t help; ///< bytes_to_follow resp. intermediate value
116  unsigned int buffer; ///< buffer for input/output
117 } APERangecoder;
118 
119 /** Filter histories */
120 typedef struct APEPredictor {
122 
123  int32_t lastA[2];
124 
125  int32_t filterA[2];
126  int32_t filterB[2];
127 
128  uint32_t coeffsA[2][4]; ///< adaption coefficients
129  uint32_t coeffsB[2][5]; ///< adaption coefficients
131 
132  unsigned int sample_pos;
133 } APEPredictor;
134 
135 /** Decoder context */
136 typedef struct APEContext {
137  AVClass *class; ///< class for AVOptions
141  int channels;
142  int samples; ///< samples left to decode in current frame
143  int bps;
144 
145  int fileversion; ///< codec version, very important in decoding process
146  int compression_level; ///< compression levels
147  int fset; ///< which filter set to use (calculated from compression level)
148  int flags; ///< global decoder flags
149 
150  uint32_t CRC; ///< frame CRC
151  int frameflags; ///< frame flags
152  APEPredictor predictor; ///< predictor used for final reconstruction
153 
156  int32_t *decoded[MAX_CHANNELS]; ///< decoded data for each channel
157  int blocks_per_loop; ///< maximum number of samples to decode for each call
158 
159  int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory
160 
161  APERangecoder rc; ///< rangecoder used to decode actual values
162  APERice riceX; ///< rice code parameters for the second channel
163  APERice riceY; ///< rice code parameters for the first channel
164  APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction
166 
167  uint8_t *data; ///< current frame data
168  uint8_t *data_end; ///< frame data end
169  int data_size; ///< frame data allocated size
170  const uint8_t *ptr; ///< current position in frame data
171 
172  int error;
173 
174  void (*entropy_decode_mono)(struct APEContext *ctx, int blockstodecode);
175  void (*entropy_decode_stereo)(struct APEContext *ctx, int blockstodecode);
178 } APEContext;
179 
180 static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
181  int32_t *decoded1, int count);
182 
183 static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode);
184 static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode);
185 static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode);
186 static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode);
187 static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode);
188 static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode);
189 static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode);
190 static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode);
191 static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode);
192 
199 
201 {
202  APEContext *s = avctx->priv_data;
203  int i;
204 
205  for (i = 0; i < APE_FILTER_LEVELS; i++)
206  av_freep(&s->filterbuf[i]);
207 
209  av_freep(&s->data);
210  s->decoded_size = s->data_size = 0;
211 
212  return 0;
213 }
214 
216 {
217  APEContext *s = avctx->priv_data;
218  int i;
219 
220  if (avctx->extradata_size != 6) {
221  av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
222  return AVERROR(EINVAL);
223  }
224  if (avctx->channels > 2) {
225  av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
226  return AVERROR(EINVAL);
227  }
228  s->bps = avctx->bits_per_coded_sample;
229  switch (s->bps) {
230  case 8:
231  avctx->sample_fmt = AV_SAMPLE_FMT_U8P;
232  break;
233  case 16:
235  break;
236  case 24:
238  break;
239  default:
240  avpriv_request_sample(avctx,
241  "%d bits per coded sample", s->bps);
242  return AVERROR_PATCHWELCOME;
243  }
244  s->avctx = avctx;
245  s->channels = avctx->channels;
246  s->fileversion = AV_RL16(avctx->extradata);
247  s->compression_level = AV_RL16(avctx->extradata + 2);
248  s->flags = AV_RL16(avctx->extradata + 4);
249 
250  av_log(avctx, AV_LOG_VERBOSE, "Compression Level: %d - Flags: %d\n",
251  s->compression_level, s->flags);
253  !s->compression_level ||
255  av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n",
256  s->compression_level);
257  return AVERROR_INVALIDDATA;
258  }
259  s->fset = s->compression_level / 1000 - 1;
260  for (i = 0; i < APE_FILTER_LEVELS; i++) {
261  if (!ape_filter_orders[s->fset][i])
262  break;
263  FF_ALLOC_OR_GOTO(avctx, s->filterbuf[i],
264  (ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4,
265  filter_alloc_fail);
266  }
267 
268  if (s->fileversion < 3860) {
271  } else if (s->fileversion < 3900) {
274  } else if (s->fileversion < 3930) {
277  } else if (s->fileversion < 3990) {
280  } else {
283  }
284 
285  if (s->fileversion < 3930) {
288  } else if (s->fileversion < 3950) {
291  } else {
294  }
295 
296  ff_bswapdsp_init(&s->bdsp);
297  ff_llauddsp_init(&s->adsp);
299 
300  return 0;
301 filter_alloc_fail:
302  ape_decode_close(avctx);
303  return AVERROR(ENOMEM);
304 }
305 
306 /**
307  * @name APE range decoding functions
308  * @{
309  */
310 
311 #define CODE_BITS 32
312 #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
313 #define SHIFT_BITS (CODE_BITS - 9)
314 #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
315 #define BOTTOM_VALUE (TOP_VALUE >> 8)
316 
317 /** Start the decoder */
318 static inline void range_start_decoding(APEContext *ctx)
319 {
320  ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
321  ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS);
322  ctx->rc.range = (uint32_t) 1 << EXTRA_BITS;
323 }
324 
325 /** Perform normalization */
326 static inline void range_dec_normalize(APEContext *ctx)
327 {
328  while (ctx->rc.range <= BOTTOM_VALUE) {
329  ctx->rc.buffer <<= 8;
330  if(ctx->ptr < ctx->data_end) {
331  ctx->rc.buffer += *ctx->ptr;
332  ctx->ptr++;
333  } else {
334  ctx->error = 1;
335  }
336  ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF);
337  ctx->rc.range <<= 8;
338  }
339 }
340 
341 /**
342  * Calculate cumulative frequency for next symbol. Does NO update!
343  * @param ctx decoder context
344  * @param tot_f is the total frequency or (code_value)1<<shift
345  * @return the cumulative frequency
346  */
347 static inline int range_decode_culfreq(APEContext *ctx, int tot_f)
348 {
349  range_dec_normalize(ctx);
350  ctx->rc.help = ctx->rc.range / tot_f;
351  return ctx->rc.low / ctx->rc.help;
352 }
353 
354 /**
355  * Decode value with given size in bits
356  * @param ctx decoder context
357  * @param shift number of bits to decode
358  */
359 static inline int range_decode_culshift(APEContext *ctx, int shift)
360 {
361  range_dec_normalize(ctx);
362  ctx->rc.help = ctx->rc.range >> shift;
363  return ctx->rc.low / ctx->rc.help;
364 }
365 
366 
367 /**
368  * Update decoding state
369  * @param ctx decoder context
370  * @param sy_f the interval length (frequency of the symbol)
371  * @param lt_f the lower end (frequency sum of < symbols)
372  */
373 static inline void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
374 {
375  ctx->rc.low -= ctx->rc.help * lt_f;
376  ctx->rc.range = ctx->rc.help * sy_f;
377 }
378 
379 /** Decode n bits (n <= 16) without modelling */
380 static inline int range_decode_bits(APEContext *ctx, int n)
381 {
382  int sym = range_decode_culshift(ctx, n);
383  range_decode_update(ctx, 1, sym);
384  return sym;
385 }
386 
387 
388 #define MODEL_ELEMENTS 64
389 
390 /**
391  * Fixed probabilities for symbols in Monkey Audio version 3.97
392  */
393 static const uint16_t counts_3970[22] = {
394  0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
395  62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
396  65450, 65469, 65480, 65487, 65491, 65493,
397 };
398 
399 /**
400  * Probability ranges for symbols in Monkey Audio version 3.97
401  */
402 static const uint16_t counts_diff_3970[21] = {
403  14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
404  1104, 677, 415, 248, 150, 89, 54, 31,
405  19, 11, 7, 4, 2,
406 };
407 
408 /**
409  * Fixed probabilities for symbols in Monkey Audio version 3.98
410  */
411 static const uint16_t counts_3980[22] = {
412  0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
413  64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
414  65485, 65488, 65490, 65491, 65492, 65493,
415 };
416 
417 /**
418  * Probability ranges for symbols in Monkey Audio version 3.98
419  */
420 static const uint16_t counts_diff_3980[21] = {
421  19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
422  261, 119, 65, 31, 19, 10, 6, 3,
423  3, 2, 1, 1, 1,
424 };
425 
426 /**
427  * Decode symbol
428  * @param ctx decoder context
429  * @param counts probability range start position
430  * @param counts_diff probability range widths
431  */
432 static inline int range_get_symbol(APEContext *ctx,
433  const uint16_t counts[],
434  const uint16_t counts_diff[])
435 {
436  int symbol, cf;
437 
438  cf = range_decode_culshift(ctx, 16);
439 
440  if(cf > 65492){
441  symbol= cf - 65535 + 63;
442  range_decode_update(ctx, 1, cf);
443  if(cf > 65535)
444  ctx->error=1;
445  return symbol;
446  }
447  /* figure out the symbol inefficiently; a binary search would be much better */
448  for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
449 
450  range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
451 
452  return symbol;
453 }
454 /** @} */ // group rangecoder
455 
456 static inline void update_rice(APERice *rice, unsigned int x)
457 {
458  int lim = rice->k ? (1 << (rice->k + 4)) : 0;
459  rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
460 
461  if (rice->ksum < lim)
462  rice->k--;
463  else if (rice->ksum >= (1 << (rice->k + 5)) && rice->k < 24)
464  rice->k++;
465 }
466 
467 static inline int get_rice_ook(GetBitContext *gb, int k)
468 {
469  unsigned int x;
470 
471  x = get_unary(gb, 1, get_bits_left(gb));
472 
473  if (k)
474  x = (x << k) | get_bits(gb, k);
475 
476  return x;
477 }
478 
480  APERice *rice)
481 {
482  unsigned int x, overflow;
483 
484  overflow = get_unary(gb, 1, get_bits_left(gb));
485 
486  if (ctx->fileversion > 3880) {
487  while (overflow >= 16) {
488  overflow -= 16;
489  rice->k += 4;
490  }
491  }
492 
493  if (!rice->k)
494  x = overflow;
495  else if(rice->k <= MIN_CACHE_BITS) {
496  x = (overflow << rice->k) + get_bits(gb, rice->k);
497  } else {
498  av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %"PRIu32"\n", rice->k);
499  return AVERROR_INVALIDDATA;
500  }
501  rice->ksum += x - (rice->ksum + 8 >> 4);
502  if (rice->ksum < (rice->k ? 1 << (rice->k + 4) : 0))
503  rice->k--;
504  else if (rice->ksum >= (1 << (rice->k + 5)) && rice->k < 24)
505  rice->k++;
506 
507  /* Convert to signed */
508  return ((x >> 1) ^ ((x & 1) - 1)) + 1;
509 }
510 
511 static inline int ape_decode_value_3900(APEContext *ctx, APERice *rice)
512 {
513  unsigned int x, overflow;
514  int tmpk;
515 
517 
518  if (overflow == (MODEL_ELEMENTS - 1)) {
519  tmpk = range_decode_bits(ctx, 5);
520  overflow = 0;
521  } else
522  tmpk = (rice->k < 1) ? 0 : rice->k - 1;
523 
524  if (tmpk <= 16 || ctx->fileversion < 3910) {
525  if (tmpk > 23) {
526  av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk);
527  return AVERROR_INVALIDDATA;
528  }
529  x = range_decode_bits(ctx, tmpk);
530  } else if (tmpk <= 31) {
531  x = range_decode_bits(ctx, 16);
532  x |= (range_decode_bits(ctx, tmpk - 16) << 16);
533  } else {
534  av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk);
535  return AVERROR_INVALIDDATA;
536  }
537  x += overflow << tmpk;
538 
539  update_rice(rice, x);
540 
541  /* Convert to signed */
542  return ((x >> 1) ^ ((x & 1) - 1)) + 1;
543 }
544 
545 static inline int ape_decode_value_3990(APEContext *ctx, APERice *rice)
546 {
547  unsigned int x, overflow;
548  int base, pivot;
549 
550  pivot = rice->ksum >> 5;
551  if (pivot == 0)
552  pivot = 1;
553 
555 
556  if (overflow == (MODEL_ELEMENTS - 1)) {
557  overflow = (unsigned)range_decode_bits(ctx, 16) << 16;
558  overflow |= range_decode_bits(ctx, 16);
559  }
560 
561  if (pivot < 0x10000) {
562  base = range_decode_culfreq(ctx, pivot);
563  range_decode_update(ctx, 1, base);
564  } else {
565  int base_hi = pivot, base_lo;
566  int bbits = 0;
567 
568  while (base_hi & ~0xFFFF) {
569  base_hi >>= 1;
570  bbits++;
571  }
572  base_hi = range_decode_culfreq(ctx, base_hi + 1);
573  range_decode_update(ctx, 1, base_hi);
574  base_lo = range_decode_culfreq(ctx, 1 << bbits);
575  range_decode_update(ctx, 1, base_lo);
576 
577  base = (base_hi << bbits) + base_lo;
578  }
579 
580  x = base + overflow * pivot;
581 
582  update_rice(rice, x);
583 
584  /* Convert to signed */
585  return ((x >> 1) ^ ((x & 1) - 1)) + 1;
586 }
587 
589  int32_t *out, APERice *rice, int blockstodecode)
590 {
591  int i;
592  unsigned ksummax, ksummin;
593 
594  rice->ksum = 0;
595  for (i = 0; i < FFMIN(blockstodecode, 5); i++) {
596  out[i] = get_rice_ook(&ctx->gb, 10);
597  rice->ksum += out[i];
598  }
599  rice->k = av_log2(rice->ksum / 10) + 1;
600  if (rice->k >= 24)
601  return;
602  for (; i < FFMIN(blockstodecode, 64); i++) {
603  out[i] = get_rice_ook(&ctx->gb, rice->k);
604  rice->ksum += out[i];
605  rice->k = av_log2(rice->ksum / ((i + 1) * 2)) + 1;
606  if (rice->k >= 24)
607  return;
608  }
609  ksummax = 1 << rice->k + 7;
610  ksummin = rice->k ? (1 << rice->k + 6) : 0;
611  for (; i < blockstodecode; i++) {
612  if (get_bits_left(&ctx->gb) < 1) {
613  ctx->error = 1;
614  return ;
615  }
616  out[i] = get_rice_ook(&ctx->gb, rice->k);
617  rice->ksum += out[i] - out[i - 64];
618  while (rice->ksum < ksummin) {
619  rice->k--;
620  ksummin = rice->k ? ksummin >> 1 : 0;
621  ksummax >>= 1;
622  }
623  while (rice->ksum >= ksummax) {
624  rice->k++;
625  if (rice->k > 24)
626  return;
627  ksummax <<= 1;
628  ksummin = ksummin ? ksummin << 1 : 128;
629  }
630  }
631 
632  for (i = 0; i < blockstodecode; i++)
633  out[i] = ((out[i] >> 1) ^ ((out[i] & 1) - 1)) + 1;
634 }
635 
636 static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode)
637 {
638  decode_array_0000(ctx, &ctx->gb, ctx->decoded[0], &ctx->riceY,
639  blockstodecode);
640 }
641 
642 static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode)
643 {
644  decode_array_0000(ctx, &ctx->gb, ctx->decoded[0], &ctx->riceY,
645  blockstodecode);
646  decode_array_0000(ctx, &ctx->gb, ctx->decoded[1], &ctx->riceX,
647  blockstodecode);
648 }
649 
650 static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode)
651 {
652  int32_t *decoded0 = ctx->decoded[0];
653 
654  while (blockstodecode--)
655  *decoded0++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceY);
656 }
657 
658 static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode)
659 {
660  int32_t *decoded0 = ctx->decoded[0];
661  int32_t *decoded1 = ctx->decoded[1];
662  int blocks = blockstodecode;
663 
664  while (blockstodecode--)
665  *decoded0++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceY);
666  while (blocks--)
667  *decoded1++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceX);
668 }
669 
670 static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode)
671 {
672  int32_t *decoded0 = ctx->decoded[0];
673 
674  while (blockstodecode--)
675  *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
676 }
677 
678 static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode)
679 {
680  int32_t *decoded0 = ctx->decoded[0];
681  int32_t *decoded1 = ctx->decoded[1];
682  int blocks = blockstodecode;
683 
684  while (blockstodecode--)
685  *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
686  range_dec_normalize(ctx);
687  // because of some implementation peculiarities we need to backpedal here
688  ctx->ptr -= 1;
690  while (blocks--)
691  *decoded1++ = ape_decode_value_3900(ctx, &ctx->riceX);
692 }
693 
694 static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode)
695 {
696  int32_t *decoded0 = ctx->decoded[0];
697  int32_t *decoded1 = ctx->decoded[1];
698 
699  while (blockstodecode--) {
700  *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
701  *decoded1++ = ape_decode_value_3900(ctx, &ctx->riceX);
702  }
703 }
704 
705 static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode)
706 {
707  int32_t *decoded0 = ctx->decoded[0];
708 
709  while (blockstodecode--)
710  *decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY);
711 }
712 
713 static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode)
714 {
715  int32_t *decoded0 = ctx->decoded[0];
716  int32_t *decoded1 = ctx->decoded[1];
717 
718  while (blockstodecode--) {
719  *decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY);
720  *decoded1++ = ape_decode_value_3990(ctx, &ctx->riceX);
721  }
722 }
723 
725 {
726  /* Read the CRC */
727  if (ctx->fileversion >= 3900) {
728  if (ctx->data_end - ctx->ptr < 6)
729  return AVERROR_INVALIDDATA;
730  ctx->CRC = bytestream_get_be32(&ctx->ptr);
731  } else {
732  ctx->CRC = get_bits_long(&ctx->gb, 32);
733  }
734 
735  /* Read the frame flags if they exist */
736  ctx->frameflags = 0;
737  if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
738  ctx->CRC &= ~0x80000000;
739 
740  if (ctx->data_end - ctx->ptr < 6)
741  return AVERROR_INVALIDDATA;
742  ctx->frameflags = bytestream_get_be32(&ctx->ptr);
743  }
744 
745  /* Initialize the rice structs */
746  ctx->riceX.k = 10;
747  ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
748  ctx->riceY.k = 10;
749  ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
750 
751  if (ctx->fileversion >= 3900) {
752  /* The first 8 bits of input are ignored. */
753  ctx->ptr++;
754 
756  }
757 
758  return 0;
759 }
760 
762  375,
763 };
764 
765 static const int32_t initial_coeffs_a_3800[3] = {
766  64, 115, 64,
767 };
768 
769 static const int32_t initial_coeffs_b_3800[2] = {
770  740, 0
771 };
772 
773 static const int32_t initial_coeffs_3930[4] = {
774  360, 317, -109, 98
775 };
776 
778 {
779  APEPredictor *p = &ctx->predictor;
780 
781  /* Zero the history buffers */
782  memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(*p->historybuffer));
783  p->buf = p->historybuffer;
784 
785  /* Initialize and zero the coefficients */
786  if (ctx->fileversion < 3930) {
788  memcpy(p->coeffsA[0], initial_coeffs_fast_3320,
789  sizeof(initial_coeffs_fast_3320));
790  memcpy(p->coeffsA[1], initial_coeffs_fast_3320,
791  sizeof(initial_coeffs_fast_3320));
792  } else {
793  memcpy(p->coeffsA[0], initial_coeffs_a_3800,
794  sizeof(initial_coeffs_a_3800));
795  memcpy(p->coeffsA[1], initial_coeffs_a_3800,
796  sizeof(initial_coeffs_a_3800));
797  }
798  } else {
799  memcpy(p->coeffsA[0], initial_coeffs_3930, sizeof(initial_coeffs_3930));
800  memcpy(p->coeffsA[1], initial_coeffs_3930, sizeof(initial_coeffs_3930));
801  }
802  memset(p->coeffsB, 0, sizeof(p->coeffsB));
803  if (ctx->fileversion < 3930) {
804  memcpy(p->coeffsB[0], initial_coeffs_b_3800,
805  sizeof(initial_coeffs_b_3800));
806  memcpy(p->coeffsB[1], initial_coeffs_b_3800,
807  sizeof(initial_coeffs_b_3800));
808  }
809 
810  p->filterA[0] = p->filterA[1] = 0;
811  p->filterB[0] = p->filterB[1] = 0;
812  p->lastA[0] = p->lastA[1] = 0;
813 
814  p->sample_pos = 0;
815 }
816 
817 /** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
818 static inline int APESIGN(int32_t x) {
819  return (x < 0) - (x > 0);
820 }
821 
823  const int decoded, const int filter,
824  const int delayA)
825 {
826  int32_t predictionA;
827 
828  p->buf[delayA] = p->lastA[filter];
829  if (p->sample_pos < 3) {
830  p->lastA[filter] = decoded;
831  p->filterA[filter] = decoded;
832  return decoded;
833  }
834 
835  predictionA = p->buf[delayA] * 2U - p->buf[delayA - 1];
836  p->lastA[filter] = decoded + ((int32_t)(predictionA * p->coeffsA[filter][0]) >> 9);
837 
838  if ((decoded ^ predictionA) > 0)
839  p->coeffsA[filter][0]++;
840  else
841  p->coeffsA[filter][0]--;
842 
843  p->filterA[filter] += (unsigned)p->lastA[filter];
844 
845  return p->filterA[filter];
846 }
847 
849  const unsigned decoded, const int filter,
850  const int delayA, const int delayB,
851  const int start, const int shift)
852 {
853  int32_t predictionA, predictionB, sign;
854  int32_t d0, d1, d2, d3, d4;
855 
856  p->buf[delayA] = p->lastA[filter];
857  p->buf[delayB] = p->filterB[filter];
858  if (p->sample_pos < start) {
859  predictionA = decoded + p->filterA[filter];
860  p->lastA[filter] = decoded;
861  p->filterB[filter] = decoded;
862  p->filterA[filter] = predictionA;
863  return predictionA;
864  }
865  d2 = p->buf[delayA];
866  d1 = (p->buf[delayA] - p->buf[delayA - 1]) * 2U;
867  d0 = p->buf[delayA] + ((p->buf[delayA - 2] - p->buf[delayA - 1]) * 8U);
868  d3 = p->buf[delayB] * 2U - p->buf[delayB - 1];
869  d4 = p->buf[delayB];
870 
871  predictionA = d0 * p->coeffsA[filter][0] +
872  d1 * p->coeffsA[filter][1] +
873  d2 * p->coeffsA[filter][2];
874 
875  sign = APESIGN(decoded);
876  p->coeffsA[filter][0] += (((d0 >> 30) & 2) - 1) * sign;
877  p->coeffsA[filter][1] += (((d1 >> 28) & 8) - 4) * sign;
878  p->coeffsA[filter][2] += (((d2 >> 28) & 8) - 4) * sign;
879 
880  predictionB = d3 * p->coeffsB[filter][0] -
881  d4 * p->coeffsB[filter][1];
882  p->lastA[filter] = decoded + (predictionA >> 11);
883  sign = APESIGN(p->lastA[filter]);
884  p->coeffsB[filter][0] += (((d3 >> 29) & 4) - 2) * sign;
885  p->coeffsB[filter][1] -= (((d4 >> 30) & 2) - 1) * sign;
886 
887  p->filterB[filter] = p->lastA[filter] + (predictionB >> shift);
888  p->filterA[filter] = p->filterB[filter] + ((int)(p->filterA[filter] * 31U) >> 5);
889 
890  return p->filterA[filter];
891 }
892 
893 static void long_filter_high_3800(int32_t *buffer, int order, int shift, int length)
894 {
895  int i, j;
896  int32_t dotprod, sign;
897  int32_t coeffs[256], delay[256];
898 
899  if (order >= length)
900  return;
901 
902  memset(coeffs, 0, order * sizeof(*coeffs));
903  for (i = 0; i < order; i++)
904  delay[i] = buffer[i];
905  for (i = order; i < length; i++) {
906  dotprod = 0;
907  sign = APESIGN(buffer[i]);
908  for (j = 0; j < order; j++) {
909  dotprod += delay[j] * (unsigned)coeffs[j];
910  coeffs[j] += ((delay[j] >> 31) | 1) * sign;
911  }
912  buffer[i] -= dotprod >> shift;
913  for (j = 0; j < order - 1; j++)
914  delay[j] = delay[j + 1];
915  delay[order - 1] = buffer[i];
916  }
917 }
918 
920 {
921  int i, j;
922  int32_t dotprod, sign;
923  int32_t coeffs[8] = { 0 }, delay[8] = { 0 };
924 
925  for (i = 0; i < length; i++) {
926  dotprod = 0;
927  sign = APESIGN(buffer[i]);
928  for (j = 7; j >= 0; j--) {
929  dotprod += delay[j] * coeffs[j];
930  coeffs[j] += ((delay[j] >> 31) | 1) * sign;
931  }
932  for (j = 7; j > 0; j--)
933  delay[j] = delay[j - 1];
934  delay[0] = buffer[i];
935  buffer[i] -= dotprod >> 9;
936  }
937 }
938 
940 {
941  APEPredictor *p = &ctx->predictor;
942  int32_t *decoded0 = ctx->decoded[0];
943  int32_t *decoded1 = ctx->decoded[1];
944  int start = 4, shift = 10;
945 
947  start = 16;
948  long_filter_high_3800(decoded0, 16, 9, count);
949  long_filter_high_3800(decoded1, 16, 9, count);
950  } else if (ctx->compression_level == COMPRESSION_LEVEL_EXTRA_HIGH) {
951  int order = 128, shift2 = 11;
952 
953  if (ctx->fileversion >= 3830) {
954  order <<= 1;
955  shift++;
956  shift2++;
957  long_filter_ehigh_3830(decoded0 + order, count - order);
958  long_filter_ehigh_3830(decoded1 + order, count - order);
959  }
960  start = order;
961  long_filter_high_3800(decoded0, order, shift2, count);
962  long_filter_high_3800(decoded1, order, shift2, count);
963  }
964 
965  while (count--) {
966  int X = *decoded0, Y = *decoded1;
968  *decoded0 = filter_fast_3320(p, Y, 0, YDELAYA);
969  decoded0++;
970  *decoded1 = filter_fast_3320(p, X, 1, XDELAYA);
971  decoded1++;
972  } else {
973  *decoded0 = filter_3800(p, Y, 0, YDELAYA, YDELAYB,
974  start, shift);
975  decoded0++;
976  *decoded1 = filter_3800(p, X, 1, XDELAYA, XDELAYB,
977  start, shift);
978  decoded1++;
979  }
980 
981  /* Combined */
982  p->buf++;
983  p->sample_pos++;
984 
985  /* Have we filled the history buffer? */
986  if (p->buf == p->historybuffer + HISTORY_SIZE) {
987  memmove(p->historybuffer, p->buf,
988  PREDICTOR_SIZE * sizeof(*p->historybuffer));
989  p->buf = p->historybuffer;
990  }
991  }
992 }
993 
995 {
996  APEPredictor *p = &ctx->predictor;
997  int32_t *decoded0 = ctx->decoded[0];
998  int start = 4, shift = 10;
999 
1001  start = 16;
1002  long_filter_high_3800(decoded0, 16, 9, count);
1003  } else if (ctx->compression_level == COMPRESSION_LEVEL_EXTRA_HIGH) {
1004  int order = 128, shift2 = 11;
1005 
1006  if (ctx->fileversion >= 3830) {
1007  order <<= 1;
1008  shift++;
1009  shift2++;
1010  long_filter_ehigh_3830(decoded0 + order, count - order);
1011  }
1012  start = order;
1013  long_filter_high_3800(decoded0, order, shift2, count);
1014  }
1015 
1016  while (count--) {
1018  *decoded0 = filter_fast_3320(p, *decoded0, 0, YDELAYA);
1019  decoded0++;
1020  } else {
1021  *decoded0 = filter_3800(p, *decoded0, 0, YDELAYA, YDELAYB,
1022  start, shift);
1023  decoded0++;
1024  }
1025 
1026  /* Combined */
1027  p->buf++;
1028  p->sample_pos++;
1029 
1030  /* Have we filled the history buffer? */
1031  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1032  memmove(p->historybuffer, p->buf,
1033  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1034  p->buf = p->historybuffer;
1035  }
1036  }
1037 }
1038 
1040  const int decoded, const int filter,
1041  const int delayA)
1042 {
1043  int32_t predictionA, sign;
1044  int32_t d0, d1, d2, d3;
1045 
1046  p->buf[delayA] = p->lastA[filter];
1047  d0 = p->buf[delayA ];
1048  d1 = p->buf[delayA ] - p->buf[delayA - 1];
1049  d2 = p->buf[delayA - 1] - p->buf[delayA - 2];
1050  d3 = p->buf[delayA - 2] - p->buf[delayA - 3];
1051 
1052  predictionA = d0 * p->coeffsA[filter][0] +
1053  d1 * p->coeffsA[filter][1] +
1054  d2 * p->coeffsA[filter][2] +
1055  d3 * p->coeffsA[filter][3];
1056 
1057  p->lastA[filter] = decoded + (predictionA >> 9);
1058  p->filterA[filter] = p->lastA[filter] + ((int)(p->filterA[filter] * 31U) >> 5);
1059 
1060  sign = APESIGN(decoded);
1061  p->coeffsA[filter][0] += ((d0 < 0) * 2 - 1) * sign;
1062  p->coeffsA[filter][1] += ((d1 < 0) * 2 - 1) * sign;
1063  p->coeffsA[filter][2] += ((d2 < 0) * 2 - 1) * sign;
1064  p->coeffsA[filter][3] += ((d3 < 0) * 2 - 1) * sign;
1065 
1066  return p->filterA[filter];
1067 }
1068 
1070 {
1071  APEPredictor *p = &ctx->predictor;
1072  int32_t *decoded0 = ctx->decoded[0];
1073  int32_t *decoded1 = ctx->decoded[1];
1074 
1075  ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count);
1076 
1077  while (count--) {
1078  /* Predictor Y */
1079  int Y = *decoded1, X = *decoded0;
1080  *decoded0 = predictor_update_3930(p, Y, 0, YDELAYA);
1081  decoded0++;
1082  *decoded1 = predictor_update_3930(p, X, 1, XDELAYA);
1083  decoded1++;
1084 
1085  /* Combined */
1086  p->buf++;
1087 
1088  /* Have we filled the history buffer? */
1089  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1090  memmove(p->historybuffer, p->buf,
1091  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1092  p->buf = p->historybuffer;
1093  }
1094  }
1095 }
1096 
1098 {
1099  APEPredictor *p = &ctx->predictor;
1100  int32_t *decoded0 = ctx->decoded[0];
1101 
1102  ape_apply_filters(ctx, ctx->decoded[0], NULL, count);
1103 
1104  while (count--) {
1105  *decoded0 = predictor_update_3930(p, *decoded0, 0, YDELAYA);
1106  decoded0++;
1107 
1108  p->buf++;
1109 
1110  /* Have we filled the history buffer? */
1111  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1112  memmove(p->historybuffer, p->buf,
1113  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1114  p->buf = p->historybuffer;
1115  }
1116  }
1117 }
1118 
1120  const int decoded, const int filter,
1121  const int delayA, const int delayB,
1122  const int adaptA, const int adaptB)
1123 {
1124  int32_t predictionA, predictionB, sign;
1125 
1126  p->buf[delayA] = p->lastA[filter];
1127  p->buf[adaptA] = APESIGN(p->buf[delayA]);
1128  p->buf[delayA - 1] = p->buf[delayA] - (unsigned)p->buf[delayA - 1];
1129  p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
1130 
1131  predictionA = p->buf[delayA ] * p->coeffsA[filter][0] +
1132  p->buf[delayA - 1] * p->coeffsA[filter][1] +
1133  p->buf[delayA - 2] * p->coeffsA[filter][2] +
1134  p->buf[delayA - 3] * p->coeffsA[filter][3];
1135 
1136  /* Apply a scaled first-order filter compression */
1137  p->buf[delayB] = p->filterA[filter ^ 1] - ((int)(p->filterB[filter] * 31U) >> 5);
1138  p->buf[adaptB] = APESIGN(p->buf[delayB]);
1139  p->buf[delayB - 1] = p->buf[delayB] - (unsigned)p->buf[delayB - 1];
1140  p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
1141  p->filterB[filter] = p->filterA[filter ^ 1];
1142 
1143  predictionB = p->buf[delayB ] * p->coeffsB[filter][0] +
1144  p->buf[delayB - 1] * p->coeffsB[filter][1] +
1145  p->buf[delayB - 2] * p->coeffsB[filter][2] +
1146  p->buf[delayB - 3] * p->coeffsB[filter][3] +
1147  p->buf[delayB - 4] * p->coeffsB[filter][4];
1148 
1149  p->lastA[filter] = decoded + ((int)((unsigned)predictionA + (predictionB >> 1)) >> 10);
1150  p->filterA[filter] = p->lastA[filter] + ((int)(p->filterA[filter] * 31U) >> 5);
1151 
1152  sign = APESIGN(decoded);
1153  p->coeffsA[filter][0] += p->buf[adaptA ] * sign;
1154  p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign;
1155  p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign;
1156  p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign;
1157  p->coeffsB[filter][0] += p->buf[adaptB ] * sign;
1158  p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign;
1159  p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign;
1160  p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign;
1161  p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign;
1162 
1163  return p->filterA[filter];
1164 }
1165 
1167 {
1168  APEPredictor *p = &ctx->predictor;
1169  int32_t *decoded0 = ctx->decoded[0];
1170  int32_t *decoded1 = ctx->decoded[1];
1171 
1172  ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count);
1173 
1174  while (count--) {
1175  /* Predictor Y */
1176  *decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB,
1178  decoded0++;
1179  *decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB,
1181  decoded1++;
1182 
1183  /* Combined */
1184  p->buf++;
1185 
1186  /* Have we filled the history buffer? */
1187  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1188  memmove(p->historybuffer, p->buf,
1189  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1190  p->buf = p->historybuffer;
1191  }
1192  }
1193 }
1194 
1196 {
1197  APEPredictor *p = &ctx->predictor;
1198  int32_t *decoded0 = ctx->decoded[0];
1199  int32_t predictionA, currentA, A, sign;
1200 
1201  ape_apply_filters(ctx, ctx->decoded[0], NULL, count);
1202 
1203  currentA = p->lastA[0];
1204 
1205  while (count--) {
1206  A = *decoded0;
1207 
1208  p->buf[YDELAYA] = currentA;
1209  p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
1210 
1211  predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] +
1212  p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
1213  p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
1214  p->buf[YDELAYA - 3] * p->coeffsA[0][3];
1215 
1216  currentA = A + (predictionA >> 10);
1217 
1218  p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]);
1219  p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
1220 
1221  sign = APESIGN(A);
1222  p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ] * sign;
1223  p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign;
1224  p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign;
1225  p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign;
1226 
1227  p->buf++;
1228 
1229  /* Have we filled the history buffer? */
1230  if (p->buf == p->historybuffer + HISTORY_SIZE) {
1231  memmove(p->historybuffer, p->buf,
1232  PREDICTOR_SIZE * sizeof(*p->historybuffer));
1233  p->buf = p->historybuffer;
1234  }
1235 
1236  p->filterA[0] = currentA + ((int)(p->filterA[0] * 31U) >> 5);
1237  *(decoded0++) = p->filterA[0];
1238  }
1239 
1240  p->lastA[0] = currentA;
1241 }
1242 
1243 static void do_init_filter(APEFilter *f, int16_t *buf, int order)
1244 {
1245  f->coeffs = buf;
1246  f->historybuffer = buf + order;
1247  f->delay = f->historybuffer + order * 2;
1248  f->adaptcoeffs = f->historybuffer + order;
1249 
1250  memset(f->historybuffer, 0, (order * 2) * sizeof(*f->historybuffer));
1251  memset(f->coeffs, 0, order * sizeof(*f->coeffs));
1252  f->avg = 0;
1253 }
1254 
1255 static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
1256 {
1257  do_init_filter(&f[0], buf, order);
1258  do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
1259 }
1260 
1262  int32_t *data, int count, int order, int fracbits)
1263 {
1264  int res;
1265  int absres;
1266 
1267  while (count--) {
1268  /* round fixedpoint scalar product */
1270  f->delay - order,
1271  f->adaptcoeffs - order,
1272  order, APESIGN(*data));
1273  res = (int)(res + (1U << (fracbits - 1))) >> fracbits;
1274  res += *data;
1275  *data++ = res;
1276 
1277  /* Update the output history */
1278  *f->delay++ = av_clip_int16(res);
1279 
1280  if (version < 3980) {
1281  /* Version ??? to < 3.98 files (untested) */
1282  f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
1283  f->adaptcoeffs[-4] >>= 1;
1284  f->adaptcoeffs[-8] >>= 1;
1285  } else {
1286  /* Version 3.98 and later files */
1287 
1288  /* Update the adaption coefficients */
1289  absres = res < 0 ? -(unsigned)res : res;
1290  if (absres)
1291  *f->adaptcoeffs = APESIGN(res) *
1292  (8 << ((absres > f->avg * 3) + (absres > f->avg * 4 / 3)));
1293  /* equivalent to the following code
1294  if (absres <= f->avg * 4 / 3)
1295  *f->adaptcoeffs = APESIGN(res) * 8;
1296  else if (absres <= f->avg * 3)
1297  *f->adaptcoeffs = APESIGN(res) * 16;
1298  else
1299  *f->adaptcoeffs = APESIGN(res) * 32;
1300  */
1301  else
1302  *f->adaptcoeffs = 0;
1303 
1304  f->avg += (absres - f->avg) / 16;
1305 
1306  f->adaptcoeffs[-1] >>= 1;
1307  f->adaptcoeffs[-2] >>= 1;
1308  f->adaptcoeffs[-8] >>= 1;
1309  }
1310 
1311  f->adaptcoeffs++;
1312 
1313  /* Have we filled the history buffer? */
1314  if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
1315  memmove(f->historybuffer, f->delay - (order * 2),
1316  (order * 2) * sizeof(*f->historybuffer));
1317  f->delay = f->historybuffer + order * 2;
1318  f->adaptcoeffs = f->historybuffer + order;
1319  }
1320  }
1321 }
1322 
1324  int32_t *data0, int32_t *data1,
1325  int count, int order, int fracbits)
1326 {
1327  do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
1328  if (data1)
1329  do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
1330 }
1331 
1332 static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
1333  int32_t *decoded1, int count)
1334 {
1335  int i;
1336 
1337  for (i = 0; i < APE_FILTER_LEVELS; i++) {
1338  if (!ape_filter_orders[ctx->fset][i])
1339  break;
1340  apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count,
1341  ape_filter_orders[ctx->fset][i],
1342  ape_filter_fracbits[ctx->fset][i]);
1343  }
1344 }
1345 
1347 {
1348  int i, ret;
1349  if ((ret = init_entropy_decoder(ctx)) < 0)
1350  return ret;
1352 
1353  for (i = 0; i < APE_FILTER_LEVELS; i++) {
1354  if (!ape_filter_orders[ctx->fset][i])
1355  break;
1356  init_filter(ctx, ctx->filters[i], ctx->filterbuf[i],
1357  ape_filter_orders[ctx->fset][i]);
1358  }
1359  return 0;
1360 }
1361 
1363 {
1365  /* We are pure silence, so we're done. */
1366  av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
1367  return;
1368  }
1369 
1370  ctx->entropy_decode_mono(ctx, count);
1371  if (ctx->error)
1372  return;
1373 
1374  /* Now apply the predictor decoding */
1375  ctx->predictor_decode_mono(ctx, count);
1376 
1377  /* Pseudo-stereo - just copy left channel to right channel */
1378  if (ctx->channels == 2) {
1379  memcpy(ctx->decoded[1], ctx->decoded[0], count * sizeof(*ctx->decoded[1]));
1380  }
1381 }
1382 
1384 {
1385  unsigned left, right;
1386  int32_t *decoded0 = ctx->decoded[0];
1387  int32_t *decoded1 = ctx->decoded[1];
1388 
1390  /* We are pure silence, so we're done. */
1391  av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
1392  return;
1393  }
1394 
1395  ctx->entropy_decode_stereo(ctx, count);
1396  if (ctx->error)
1397  return;
1398 
1399  /* Now apply the predictor decoding */
1400  ctx->predictor_decode_stereo(ctx, count);
1401 
1402  /* Decorrelate and scale to output depth */
1403  while (count--) {
1404  left = *decoded1 - (unsigned)(*decoded0 / 2);
1405  right = left + *decoded0;
1406 
1407  *(decoded0++) = left;
1408  *(decoded1++) = right;
1409  }
1410 }
1411 
1413  int *got_frame_ptr, AVPacket *avpkt)
1414 {
1415  AVFrame *frame = data;
1416  const uint8_t *buf = avpkt->data;
1417  APEContext *s = avctx->priv_data;
1418  uint8_t *sample8;
1419  int16_t *sample16;
1420  int32_t *sample24;
1421  int i, ch, ret;
1422  int blockstodecode;
1423  uint64_t decoded_buffer_size;
1424 
1425  /* this should never be negative, but bad things will happen if it is, so
1426  check it just to make sure. */
1427  av_assert0(s->samples >= 0);
1428 
1429  if(!s->samples){
1430  uint32_t nblocks, offset;
1431  int buf_size;
1432 
1433  if (!avpkt->size) {
1434  *got_frame_ptr = 0;
1435  return 0;
1436  }
1437  if (avpkt->size < 8) {
1438  av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1439  return AVERROR_INVALIDDATA;
1440  }
1441  buf_size = avpkt->size & ~3;
1442  if (buf_size != avpkt->size) {
1443  av_log(avctx, AV_LOG_WARNING, "packet size is not a multiple of 4. "
1444  "extra bytes at the end will be skipped.\n");
1445  }
1446  if (s->fileversion < 3950) // previous versions overread two bytes
1447  buf_size += 2;
1448  av_fast_padded_malloc(&s->data, &s->data_size, buf_size);
1449  if (!s->data)
1450  return AVERROR(ENOMEM);
1451  s->bdsp.bswap_buf((uint32_t *) s->data, (const uint32_t *) buf,
1452  buf_size >> 2);
1453  memset(s->data + (buf_size & ~3), 0, buf_size & 3);
1454  s->ptr = s->data;
1455  s->data_end = s->data + buf_size;
1456 
1457  nblocks = bytestream_get_be32(&s->ptr);
1458  offset = bytestream_get_be32(&s->ptr);
1459  if (s->fileversion >= 3900) {
1460  if (offset > 3) {
1461  av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
1462  av_freep(&s->data);
1463  s->data_size = 0;
1464  return AVERROR_INVALIDDATA;
1465  }
1466  if (s->data_end - s->ptr < offset) {
1467  av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1468  return AVERROR_INVALIDDATA;
1469  }
1470  s->ptr += offset;
1471  } else {
1472  if ((ret = init_get_bits8(&s->gb, s->ptr, s->data_end - s->ptr)) < 0)
1473  return ret;
1474  if (s->fileversion > 3800)
1475  skip_bits_long(&s->gb, offset * 8);
1476  else
1477  skip_bits_long(&s->gb, offset);
1478  }
1479 
1480  if (!nblocks || nblocks > INT_MAX / 2 / sizeof(*s->decoded_buffer) - 8) {
1481  av_log(avctx, AV_LOG_ERROR, "Invalid sample count: %"PRIu32".\n",
1482  nblocks);
1483  return AVERROR_INVALIDDATA;
1484  }
1485 
1486  /* Initialize the frame decoder */
1487  if (init_frame_decoder(s) < 0) {
1488  av_log(avctx, AV_LOG_ERROR, "Error reading frame header\n");
1489  return AVERROR_INVALIDDATA;
1490  }
1491  s->samples = nblocks;
1492  }
1493 
1494  if (!s->data) {
1495  *got_frame_ptr = 0;
1496  return avpkt->size;
1497  }
1498 
1499  blockstodecode = FFMIN(s->blocks_per_loop, s->samples);
1500  // for old files coefficients were not interleaved,
1501  // so we need to decode all of them at once
1502  if (s->fileversion < 3930)
1503  blockstodecode = s->samples;
1504 
1505  /* reallocate decoded sample buffer if needed */
1506  decoded_buffer_size = 2LL * FFALIGN(blockstodecode, 8) * sizeof(*s->decoded_buffer);
1507  av_assert0(decoded_buffer_size <= INT_MAX);
1508 
1509  /* get output buffer */
1510  frame->nb_samples = blockstodecode;
1511  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
1512  s->samples=0;
1513  return ret;
1514  }
1515 
1516  av_fast_malloc(&s->decoded_buffer, &s->decoded_size, decoded_buffer_size);
1517  if (!s->decoded_buffer)
1518  return AVERROR(ENOMEM);
1519  memset(s->decoded_buffer, 0, s->decoded_size);
1520  s->decoded[0] = s->decoded_buffer;
1521  s->decoded[1] = s->decoded_buffer + FFALIGN(blockstodecode, 8);
1522 
1523  s->error=0;
1524 
1525  if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
1526  ape_unpack_mono(s, blockstodecode);
1527  else
1528  ape_unpack_stereo(s, blockstodecode);
1529  emms_c();
1530 
1531  if (s->error) {
1532  s->samples=0;
1533  av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
1534  return AVERROR_INVALIDDATA;
1535  }
1536 
1537  switch (s->bps) {
1538  case 8:
1539  for (ch = 0; ch < s->channels; ch++) {
1540  sample8 = (uint8_t *)frame->data[ch];
1541  for (i = 0; i < blockstodecode; i++)
1542  *sample8++ = (s->decoded[ch][i] + 0x80) & 0xff;
1543  }
1544  break;
1545  case 16:
1546  for (ch = 0; ch < s->channels; ch++) {
1547  sample16 = (int16_t *)frame->data[ch];
1548  for (i = 0; i < blockstodecode; i++)
1549  *sample16++ = s->decoded[ch][i];
1550  }
1551  break;
1552  case 24:
1553  for (ch = 0; ch < s->channels; ch++) {
1554  sample24 = (int32_t *)frame->data[ch];
1555  for (i = 0; i < blockstodecode; i++)
1556  *sample24++ = s->decoded[ch][i] << 8;
1557  }
1558  break;
1559  }
1560 
1561  s->samples -= blockstodecode;
1562 
1563  *got_frame_ptr = 1;
1564 
1565  return !s->samples ? avpkt->size : 0;
1566 }
1567 
1569 {
1570  APEContext *s = avctx->priv_data;
1571  s->samples= 0;
1572 }
1573 
1574 #define OFFSET(x) offsetof(APEContext, x)
1575 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
1576 static const AVOption options[] = {
1577  { "max_samples", "maximum number of samples decoded per call", OFFSET(blocks_per_loop), AV_OPT_TYPE_INT, { .i64 = 4608 }, 1, INT_MAX, PAR, "max_samples" },
1578  { "all", "no maximum. decode all samples for each packet at once", 0, AV_OPT_TYPE_CONST, { .i64 = INT_MAX }, INT_MIN, INT_MAX, PAR, "max_samples" },
1579  { NULL},
1580 };
1581 
1582 static const AVClass ape_decoder_class = {
1583  .class_name = "APE decoder",
1584  .item_name = av_default_item_name,
1585  .option = options,
1586  .version = LIBAVUTIL_VERSION_INT,
1587 };
1588 
1590  .name = "ape",
1591  .long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
1592  .type = AVMEDIA_TYPE_AUDIO,
1593  .id = AV_CODEC_ID_APE,
1594  .priv_data_size = sizeof(APEContext),
1595  .init = ape_decode_init,
1596  .close = ape_decode_close,
1598  .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DELAY |
1600  .flush = ape_flush,
1601  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P,
1605  .priv_class = &ape_decoder_class,
1606 };
static int init_frame_decoder(APEContext *ctx)
Definition: apedec.c:1346
static const int32_t initial_coeffs_3930[4]
Definition: apedec.c:773
static void decode_array_0000(APEContext *ctx, GetBitContext *gb, int32_t *out, APERice *rice, int blockstodecode)
Definition: apedec.c:588
int compression_level
compression levels
Definition: apedec.c:146
AVCodec ff_ape_decoder
Definition: apedec.c:1589
#define MODEL_ELEMENTS
Definition: apedec.c:388
#define NULL
Definition: coverity.c:32
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int decoded_size
Definition: apedec.c:155
#define YADAPTCOEFFSB
Definition: apedec.c:60
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:295
static void range_start_decoding(APEContext *ctx)
Start the decoder.
Definition: apedec.c:318
AVOption.
Definition: opt.h:246
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:100
static void flush(AVCodecContext *avctx)
#define XDELAYA
Definition: apedec.c:55
static void apply_filter(APEContext *ctx, APEFilter *f, int32_t *data0, int32_t *data1, int count, int order, int fracbits)
Definition: apedec.c:1323
int fileversion
codec version, very important in decoding process
Definition: apedec.c:145
static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode)
Definition: apedec.c:642
int32_t filterA[2]
Definition: apedec.c:125
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:291
void(* entropy_decode_mono)(struct APEContext *ctx, int blockstodecode)
Definition: apedec.c:174
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
#define avpriv_request_sample(...)
void(* entropy_decode_stereo)(struct APEContext *ctx, int blockstodecode)
Definition: apedec.c:175
static int APESIGN(int32_t x)
Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero)
Definition: apedec.c:818
static void update_rice(APERice *rice, unsigned int x)
Definition: apedec.c:456
int size
Definition: avcodec.h:1481
static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode)
Definition: apedec.c:678
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:191
static av_cold int ape_decode_init(AVCodecContext *avctx)
Definition: apedec.c:215
unsigned int buffer
buffer for input/output
Definition: apedec.c:116
int av_log2(unsigned v)
Definition: intmath.c:26
static void long_filter_high_3800(int32_t *buffer, int order, int shift, int length)
Definition: apedec.c:893
static int init_entropy_decoder(APEContext *ctx)
Definition: apedec.c:724
static void ape_flush(AVCodecContext *avctx)
Definition: apedec.c:1568
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
Definition: utils.c:70
static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode)
Definition: apedec.c:694
int version
Definition: avisynth_c.h:858
static av_always_inline int predictor_update_3930(APEPredictor *p, const int decoded, const int filter, const int delayA)
Definition: apedec.c:1039
#define AV_CH_LAYOUT_STEREO
#define OFFSET(x)
Definition: apedec.c:1574
#define XADAPTCOEFFSA
Definition: apedec.c:59
AVCodec.
Definition: avcodec.h:3492
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
Definition: bytestream.h:87
Undefined Behavior In the C some operations are like signed integer overflow
Definition: undefined.txt:3
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
int16_t * filterbuf[APE_FILTER_LEVELS]
filter memory
Definition: apedec.c:159
static void predictor_decode_mono_3800(APEContext *ctx, int count)
Definition: apedec.c:994
uint8_t base
Definition: vp3data.h:202
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: avcodec.h:1009
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static int ape_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: apedec.c:1412
Filter histories.
Definition: apedec.c:120
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2236
uint8_t
#define av_cold
Definition: attributes.h:82
int16_t * delay
filtered values
Definition: apedec.c:102
AVOptions.
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
static void do_init_filter(APEFilter *f, int16_t *buf, int order)
Definition: apedec.c:1243
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
#define f(width, name)
Definition: cbs_vp9.c:255
static const int32_t initial_coeffs_a_3800[3]
Definition: apedec.c:765
static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode)
Definition: apedec.c:658
static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode)
Definition: apedec.c:705
static void ape_unpack_mono(APEContext *ctx, int count)
Definition: apedec.c:1362
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1669
APERangecoder rc
rangecoder used to decode actual values
Definition: apedec.c:161
Definition: vf_addroi.c:26
#define YDELAYB
Definition: apedec.c:54
static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS]
Filter fraction bits depending on compression level.
Definition: apedec.c:88
uint8_t * data
Definition: avcodec.h:1480
static void ape_apply_filters(APEContext *ctx, int32_t *decoded0, int32_t *decoded1, int count)
Definition: apedec.c:1332
bitstream reader API header.
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
Definition: avcodec.h:2792
Decoder context.
Definition: apedec.c:136
#define A(x)
Definition: vp56_arith.h:28
#define FFALIGN(x, a)
Definition: macros.h:48
#define av_log(a,...)
static const uint16_t counts_3970[22]
Fixed probabilities for symbols in Monkey Audio version 3.97.
Definition: apedec.c:393
static void range_dec_normalize(APEContext *ctx)
Perform normalization.
Definition: apedec.c:326
#define U(x)
Definition: vp56_arith.h:37
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
static const uint16_t counts_diff_3980[21]
Probability ranges for symbols in Monkey Audio version 3.98.
Definition: apedec.c:420
int bps
Definition: apedec.c:143
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:259
void(* predictor_decode_mono)(struct APEContext *ctx, int count)
Definition: apedec.c:176
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define YDELAYA
Definition: apedec.c:53
int32_t lastA[2]
Definition: apedec.c:123
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
static av_cold int ape_decode_close(AVCodecContext *avctx)
Definition: apedec.c:200
static int ape_decode_value_3900(APEContext *ctx, APERice *rice)
Definition: apedec.c:511
int32_t historybuffer[HISTORY_SIZE+PREDICTOR_SIZE]
Definition: apedec.c:130
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
#define XDELAYB
Definition: apedec.c:56
int32_t * decoded_buffer
Definition: apedec.c:154
simple assert() macros that are a bit more flexible than ISO C assert().
GLsizei GLsizei * length
Definition: opengl_enc.c:114
int avg
Definition: apedec.c:104
const char * name
Name of the codec implementation.
Definition: avcodec.h:3499
static int range_decode_culshift(APEContext *ctx, int shift)
Decode value with given size in bits.
Definition: apedec.c:359
#define APE_FILTER_LEVELS
Definition: apedec.c:76
GLsizei count
Definition: opengl_enc.c:108
int error
Definition: apedec.c:172
uint64_t channel_layout
Audio channel layout.
Definition: avcodec.h:2279
static int range_decode_bits(APEContext *ctx, int n)
Decode n bits (n <= 16) without modelling.
Definition: apedec.c:380
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:500
audio channel layout utility functions
#define Y
Definition: boxblur.h:38
static void predictor_decode_mono_3930(APEContext *ctx, int count)
Definition: apedec.c:1097
uint8_t * data
current frame data
Definition: apedec.c:167
static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS]
Filter orders depending on compression level.
Definition: apedec.c:79
#define FFMIN(a, b)
Definition: common.h:96
signed 32 bits, planar
Definition: samplefmt.h:68
static int get_rice_ook(GetBitContext *gb, int k)
Definition: apedec.c:467
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
static av_always_inline int filter_fast_3320(APEPredictor *p, const int decoded, const int filter, const int delayA)
Definition: apedec.c:822
AVCodecContext * avctx
Definition: apedec.c:138
static void ape_unpack_stereo(APEContext *ctx, int count)
Definition: apedec.c:1383
const uint8_t * ptr
current position in frame data
Definition: apedec.c:170
int32_t
static int range_decode_culfreq(APEContext *ctx, int tot_f)
Calculate cumulative frequency for next symbol.
Definition: apedec.c:347
AVFormatContext * ctx
Definition: movenc.c:48
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define s(width, name)
Definition: cbs_vp9.c:257
int n
Definition: avisynth_c.h:760
int32_t(* scalarproduct_and_madd_int16)(int16_t *v1, const int16_t *v2, const int16_t *v3, int len, int mul)
Calculate scalar product of v1 and v2, and v1[i] += v3[i] * mul.
unsigned 8 bits, planar
Definition: samplefmt.h:66
static void predictor_decode_stereo_3930(APEContext *ctx, int count)
Definition: apedec.c:1069
uint32_t ksum
Definition: apedec.c:109
av_cold void ff_llauddsp_init(LLAudDSPContext *c)
uint32_t help
bytes_to_follow resp. intermediate value
Definition: apedec.c:115
uint32_t coeffsA[2][4]
adaption coefficients
Definition: apedec.c:128
static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode)
Definition: apedec.c:713
#define APE_FRAMECODE_PSEUDO_STEREO
Definition: apedec.c:46
uint32_t range
length of interval
Definition: apedec.c:114
if(ret)
int samples
samples left to decode in current frame
Definition: apedec.c:142
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int fset
which filter set to use (calculated from compression level)
Definition: apedec.c:147
static int ape_decode_value_3860(APEContext *ctx, GetBitContext *gb, APERice *rice)
Definition: apedec.c:479
APERice riceX
rice code parameters for the second channel
Definition: apedec.c:162
Libavcodec external API header.
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
static void predictor_decode_stereo_3950(APEContext *ctx, int count)
Definition: apedec.c:1166
static void predictor_decode_stereo_3800(APEContext *ctx, int count)
Definition: apedec.c:939
LLAudDSPContext adsp
Definition: apedec.c:140
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
#define APE_FRAMECODE_STEREO_SILENCE
Definition: apedec.c:45
static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
Definition: apedec.c:1255
int frameflags
frame flags
Definition: apedec.c:151
main external API structure.
Definition: avcodec.h:1568
static av_always_inline int filter_3800(APEPredictor *p, const unsigned decoded, const int filter, const int delayA, const int delayB, const int start, const int shift)
Definition: apedec.c:848
static int ape_decode_value_3990(APEContext *ctx, APERice *rice)
Definition: apedec.c:545
uint32_t CRC
frame CRC
Definition: apedec.c:150
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1968
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2]...the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so...,+,-,+,-,+,+,-,+,-,+,...hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32-hcoeff[1]-hcoeff[2]-...a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2}an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||.........intra?||||:Block01:yes no||||:Block02:.................||||:Block03::y DC::ref index:||||:Block04::cb DC::motion x:||||.........:cr DC::motion y:||||.................|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------------------------------|||Y subbands||Cb subbands||Cr subbands||||------||------||------|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||------||------||------||||------||------||------|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||------||------||------||||------||------||------|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||------||------||------||||------||------||------|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------------------------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction------------|\Dequantization-------------------\||Reference frames|\IDWT|--------------|Motion\|||Frame 0||Frame 1||Compensation.OBMC v-------|--------------|--------------.\------> Frame n output Frame Frame<----------------------------------/|...|-------------------Range Coder:============Binary Range Coder:-------------------The implemented range coder is an adapted version based upon"Range encoding: an algorithm for removing redundancy from a digitised message."by G.N.N.Martin.The symbols encoded by the Snow range coder are bits(0|1).The associated probabilities are not fix but change depending on the symbol mix seen so far.bit seen|new state---------+-----------------------------------------------0|256-state_transition_table[256-old_state];1|state_transition_table[old_state];state_transition_table={0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:-------------------------FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1.the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
Definition: snow.txt:206
void * buf
Definition: avisynth_c.h:766
BswapDSPContext bdsp
Definition: apedec.c:139
unsigned int sample_pos
Definition: apedec.c:132
int extradata_size
Definition: avcodec.h:1670
static const uint16_t counts_3980[22]
Fixed probabilities for symbols in Monkey Audio version 3.98.
Definition: apedec.c:411
static int range_get_symbol(APEContext *ctx, const uint16_t counts[], const uint16_t counts_diff[])
Decode symbol.
Definition: apedec.c:432
Describe the class of an AVClass context structure.
Definition: log.h:67
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time...
Definition: avcodec.h:1027
uint32_t low
low end of interval
Definition: apedec.c:113
int flags
global decoder flags
Definition: apedec.c:148
APECompressionLevel
Possible compression levels.
Definition: apedec.c:67
void(* predictor_decode_stereo)(struct APEContext *ctx, int count)
Definition: apedec.c:177
#define EXTRA_BITS
Definition: apedec.c:314
static void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
Update decoding state.
Definition: apedec.c:373
static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode)
Definition: apedec.c:670
uint32_t k
Definition: apedec.c:108
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:546
#define MAX_CHANNELS
Definition: apedec.c:41
static const int32_t initial_coeffs_fast_3320[1]
Definition: apedec.c:761
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi-0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16,*(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16,*(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32,*(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32,*(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64,*(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64,*(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63)))#define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64),};static void cpy1(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, len);}static void cpy2(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 2 *len);}static void cpy4(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 4 *len);}static void cpy8(uint8_t **dst, const uint8_t **src, int len){memcpy(*dst,*src, 8 *len);}AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags){AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);}ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map){switch(av_get_bytes_per_sample(in_fmt)){case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;}}if(HAVE_X86ASM &&1) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;}void swri_audio_convert_free(AudioConvert **ctx){av_freep(ctx);}int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len){int ch;int off=0;const int os=(out->planar?1:out->ch_count)*out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask){int planes=in->planar?in->ch_count:1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;}if(ctx->out_simd_align_mask){int planes=out->planar?out->ch_count:1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;}if(ctx->simd_f &&!ctx->ch_map &&!misaligned){off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){if(out->planar==in->planar){int planes=out->planar?out->ch_count:1;for(ch=0;ch< planes;ch++){ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
#define MIN_CACHE_BITS
Definition: get_bits.h:128
static void do_apply_filter(APEContext *ctx, int version, APEFilter *f, int32_t *data, int count, int order, int fracbits)
Definition: apedec.c:1261
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:309
#define PREDICTOR_SIZE
Total size of all predictor histories.
Definition: apedec.c:51
static const uint16_t counts_diff_3970[21]
Probability ranges for symbols in Monkey Audio version 3.97.
Definition: apedec.c:402
int blocks_per_loop
maximum number of samples to decode for each call
Definition: apedec.c:157
int
uint8_t * data_end
frame data end
Definition: apedec.c:168
common internal api header.
APERice riceY
rice code parameters for the first channel
Definition: apedec.c:163
static const int shift2[6]
Definition: dxa.c:51
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:46
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:140
APEFilter filters[APE_FILTER_LEVELS][2]
filters used for reconstruction
Definition: apedec.c:164
static av_always_inline int predictor_update_filter(APEPredictor *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB)
Definition: apedec.c:1119
int16_t * coeffs
actual coefficients used in filtering
Definition: apedec.c:99
int32_t filterB[2]
Definition: apedec.c:126
#define YADAPTCOEFFSA
Definition: apedec.c:58
#define PAR
Definition: apedec.c:1575
static void init_predictor_decoder(APEContext *ctx)
Definition: apedec.c:777
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1595
static const int32_t initial_coeffs_b_3800[2]
Definition: apedec.c:769
APEPredictor predictor
predictor used for final reconstruction
Definition: apedec.c:152
static const AVClass ape_decoder_class
Definition: apedec.c:1582
int channels
number of audio channels
Definition: avcodec.h:2229
static void long_filter_ehigh_3830(int32_t *buffer, int length)
Definition: apedec.c:919
static void predictor_decode_mono_3950(APEContext *ctx, int count)
Definition: apedec.c:1195
GetBitContext gb
Definition: apedec.c:165
Filters applied to the decoded data.
Definition: apedec.c:98
static const struct PPFilter filters[]
Definition: postprocess.c:134
uint32_t coeffsB[2][5]
adaption coefficients
Definition: apedec.c:129
#define XADAPTCOEFFSB
Definition: apedec.c:61
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a it should return
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:701
int32_t * decoded[MAX_CHANNELS]
decoded data for each channel
Definition: apedec.c:156
int32_t * buf
Definition: apedec.c:121
FILE * out
Definition: movenc.c:54
#define av_freep(p)
void INT64 start
Definition: avisynth_c.h:766
signed 16 bits, planar
Definition: samplefmt.h:67
#define HISTORY_SIZE
Definition: apedec.c:48
#define av_always_inline
Definition: attributes.h:39
int data_size
frame data allocated size
Definition: apedec.c:169
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
static const AVOption options[]
Definition: apedec.c:1576
#define AV_CH_LAYOUT_MONO
int16_t * adaptcoeffs
adaptive filter coefficients used for correcting of actual filter coefficients
Definition: apedec.c:100
int channels
Definition: apedec.c:141
#define BOTTOM_VALUE
Definition: apedec.c:315
This structure stores compressed data.
Definition: avcodec.h:1457
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:361
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:984
for(j=16;j >0;--j)
static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode)
Definition: apedec.c:636
GLuint buffer
Definition: opengl_enc.c:101
int16_t * historybuffer
filter memory
Definition: apedec.c:101
static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode)
Definition: apedec.c:650