FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
error_resilience.c
Go to the documentation of this file.
1 /*
2  * Error resilience / concealment
3  *
4  * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * Error resilience / concealment.
26  */
27 
28 #include <limits.h>
29 
30 #include "libavutil/atomic.h"
31 #include "libavutil/internal.h"
32 #include "avcodec.h"
33 #include "error_resilience.h"
34 #include "me_cmp.h"
35 #include "mpegutils.h"
36 #include "mpegvideo.h"
37 #include "rectangle.h"
38 #include "thread.h"
39 #include "version.h"
40 
41 /**
42  * @param stride the number of MVs to get to the next row
43  * @param mv_step the number of MVs per row or column in a macroblock
44  */
45 static void set_mv_strides(ERContext *s, int *mv_step, int *stride)
46 {
47  if (s->avctx->codec_id == AV_CODEC_ID_H264) {
49  *mv_step = 4;
50  *stride = s->mb_width * 4;
51  } else {
52  *mv_step = 2;
53  *stride = s->b8_stride;
54  }
55 }
56 
57 /**
58  * Replace the current MB with a flat dc-only version.
59  */
60 static void put_dc(ERContext *s, uint8_t *dest_y, uint8_t *dest_cb,
61  uint8_t *dest_cr, int mb_x, int mb_y)
62 {
63  int *linesize = s->cur_pic.f->linesize;
64  int dc, dcu, dcv, y, i;
65  for (i = 0; i < 4; i++) {
66  dc = s->dc_val[0][mb_x * 2 + (i & 1) + (mb_y * 2 + (i >> 1)) * s->b8_stride];
67  if (dc < 0)
68  dc = 0;
69  else if (dc > 2040)
70  dc = 2040;
71  for (y = 0; y < 8; y++) {
72  int x;
73  for (x = 0; x < 8; x++)
74  dest_y[x + (i & 1) * 8 + (y + (i >> 1) * 8) * linesize[0]] = dc / 8;
75  }
76  }
77  dcu = s->dc_val[1][mb_x + mb_y * s->mb_stride];
78  dcv = s->dc_val[2][mb_x + mb_y * s->mb_stride];
79  if (dcu < 0)
80  dcu = 0;
81  else if (dcu > 2040)
82  dcu = 2040;
83  if (dcv < 0)
84  dcv = 0;
85  else if (dcv > 2040)
86  dcv = 2040;
87 
88  if (dest_cr)
89  for (y = 0; y < 8; y++) {
90  int x;
91  for (x = 0; x < 8; x++) {
92  dest_cb[x + y * linesize[1]] = dcu / 8;
93  dest_cr[x + y * linesize[2]] = dcv / 8;
94  }
95  }
96 }
97 
98 static void filter181(int16_t *data, int width, int height, int stride)
99 {
100  int x, y;
101 
102  /* horizontal filter */
103  for (y = 1; y < height - 1; y++) {
104  int prev_dc = data[0 + y * stride];
105 
106  for (x = 1; x < width - 1; x++) {
107  int dc;
108  dc = -prev_dc +
109  data[x + y * stride] * 8 -
110  data[x + 1 + y * stride];
111  dc = (dc * 10923 + 32768) >> 16;
112  prev_dc = data[x + y * stride];
113  data[x + y * stride] = dc;
114  }
115  }
116 
117  /* vertical filter */
118  for (x = 1; x < width - 1; x++) {
119  int prev_dc = data[x];
120 
121  for (y = 1; y < height - 1; y++) {
122  int dc;
123 
124  dc = -prev_dc +
125  data[x + y * stride] * 8 -
126  data[x + (y + 1) * stride];
127  dc = (dc * 10923 + 32768) >> 16;
128  prev_dc = data[x + y * stride];
129  data[x + y * stride] = dc;
130  }
131  }
132 }
133 
134 /**
135  * guess the dc of blocks which do not have an undamaged dc
136  * @param w width in 8 pixel blocks
137  * @param h height in 8 pixel blocks
138  */
139 static void guess_dc(ERContext *s, int16_t *dc, int w,
140  int h, int stride, int is_luma)
141 {
142  int b_x, b_y;
143  int16_t (*col )[4] = av_malloc_array(stride, h*sizeof( int16_t)*4);
144  uint32_t (*dist)[4] = av_malloc_array(stride, h*sizeof(uint32_t)*4);
145 
146  if(!col || !dist) {
147  av_log(s->avctx, AV_LOG_ERROR, "guess_dc() is out of memory\n");
148  goto fail;
149  }
150 
151  for(b_y=0; b_y<h; b_y++){
152  int color= 1024;
153  int distance= -1;
154  for(b_x=0; b_x<w; b_x++){
155  int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
156  int error_j= s->error_status_table[mb_index_j];
157  int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
158  if(intra_j==0 || !(error_j&ER_DC_ERROR)){
159  color= dc[b_x + b_y*stride];
160  distance= b_x;
161  }
162  col [b_x + b_y*stride][1]= color;
163  dist[b_x + b_y*stride][1]= distance >= 0 ? b_x-distance : 9999;
164  }
165  color= 1024;
166  distance= -1;
167  for(b_x=w-1; b_x>=0; b_x--){
168  int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
169  int error_j= s->error_status_table[mb_index_j];
170  int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
171  if(intra_j==0 || !(error_j&ER_DC_ERROR)){
172  color= dc[b_x + b_y*stride];
173  distance= b_x;
174  }
175  col [b_x + b_y*stride][0]= color;
176  dist[b_x + b_y*stride][0]= distance >= 0 ? distance-b_x : 9999;
177  }
178  }
179  for(b_x=0; b_x<w; b_x++){
180  int color= 1024;
181  int distance= -1;
182  for(b_y=0; b_y<h; b_y++){
183  int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
184  int error_j= s->error_status_table[mb_index_j];
185  int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
186  if(intra_j==0 || !(error_j&ER_DC_ERROR)){
187  color= dc[b_x + b_y*stride];
188  distance= b_y;
189  }
190  col [b_x + b_y*stride][3]= color;
191  dist[b_x + b_y*stride][3]= distance >= 0 ? b_y-distance : 9999;
192  }
193  color= 1024;
194  distance= -1;
195  for(b_y=h-1; b_y>=0; b_y--){
196  int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride;
197  int error_j= s->error_status_table[mb_index_j];
198  int intra_j = IS_INTRA(s->cur_pic.mb_type[mb_index_j]);
199  if(intra_j==0 || !(error_j&ER_DC_ERROR)){
200  color= dc[b_x + b_y*stride];
201  distance= b_y;
202  }
203  col [b_x + b_y*stride][2]= color;
204  dist[b_x + b_y*stride][2]= distance >= 0 ? distance-b_y : 9999;
205  }
206  }
207 
208  for (b_y = 0; b_y < h; b_y++) {
209  for (b_x = 0; b_x < w; b_x++) {
210  int mb_index, error, j;
211  int64_t guess, weight_sum;
212  mb_index = (b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride;
213  error = s->error_status_table[mb_index];
214 
215  if (IS_INTER(s->cur_pic.mb_type[mb_index]))
216  continue; // inter
217  if (!(error & ER_DC_ERROR))
218  continue; // dc-ok
219 
220  weight_sum = 0;
221  guess = 0;
222  for (j = 0; j < 4; j++) {
223  int64_t weight = 256 * 256 * 256 * 16 / FFMAX(dist[b_x + b_y*stride][j], 1);
224  guess += weight*(int64_t)col[b_x + b_y*stride][j];
225  weight_sum += weight;
226  }
227  guess = (guess + weight_sum / 2) / weight_sum;
228  dc[b_x + b_y * stride] = guess;
229  }
230  }
231 
232 fail:
233  av_freep(&col);
234  av_freep(&dist);
235 }
236 
237 /**
238  * simple horizontal deblocking filter used for error resilience
239  * @param w width in 8 pixel blocks
240  * @param h height in 8 pixel blocks
241  */
242 static void h_block_filter(ERContext *s, uint8_t *dst, int w,
243  int h, int stride, int is_luma)
244 {
245  int b_x, b_y, mvx_stride, mvy_stride;
246  const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
247  set_mv_strides(s, &mvx_stride, &mvy_stride);
248  mvx_stride >>= is_luma;
249  mvy_stride *= mvx_stride;
250 
251  for (b_y = 0; b_y < h; b_y++) {
252  for (b_x = 0; b_x < w - 1; b_x++) {
253  int y;
254  int left_status = s->error_status_table[( b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride];
255  int right_status = s->error_status_table[((b_x + 1) >> is_luma) + (b_y >> is_luma) * s->mb_stride];
256  int left_intra = IS_INTRA(s->cur_pic.mb_type[( b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride]);
257  int right_intra = IS_INTRA(s->cur_pic.mb_type[((b_x + 1) >> is_luma) + (b_y >> is_luma) * s->mb_stride]);
258  int left_damage = left_status & ER_MB_ERROR;
259  int right_damage = right_status & ER_MB_ERROR;
260  int offset = b_x * 8 + b_y * stride * 8;
261  int16_t *left_mv = s->cur_pic.motion_val[0][mvy_stride * b_y + mvx_stride * b_x];
262  int16_t *right_mv = s->cur_pic.motion_val[0][mvy_stride * b_y + mvx_stride * (b_x + 1)];
263  if (!(left_damage || right_damage))
264  continue; // both undamaged
265  if ((!left_intra) && (!right_intra) &&
266  FFABS(left_mv[0] - right_mv[0]) +
267  FFABS(left_mv[1] + right_mv[1]) < 2)
268  continue;
269 
270  for (y = 0; y < 8; y++) {
271  int a, b, c, d;
272 
273  a = dst[offset + 7 + y * stride] - dst[offset + 6 + y * stride];
274  b = dst[offset + 8 + y * stride] - dst[offset + 7 + y * stride];
275  c = dst[offset + 9 + y * stride] - dst[offset + 8 + y * stride];
276 
277  d = FFABS(b) - ((FFABS(a) + FFABS(c) + 1) >> 1);
278  d = FFMAX(d, 0);
279  if (b < 0)
280  d = -d;
281 
282  if (d == 0)
283  continue;
284 
285  if (!(left_damage && right_damage))
286  d = d * 16 / 9;
287 
288  if (left_damage) {
289  dst[offset + 7 + y * stride] = cm[dst[offset + 7 + y * stride] + ((d * 7) >> 4)];
290  dst[offset + 6 + y * stride] = cm[dst[offset + 6 + y * stride] + ((d * 5) >> 4)];
291  dst[offset + 5 + y * stride] = cm[dst[offset + 5 + y * stride] + ((d * 3) >> 4)];
292  dst[offset + 4 + y * stride] = cm[dst[offset + 4 + y * stride] + ((d * 1) >> 4)];
293  }
294  if (right_damage) {
295  dst[offset + 8 + y * stride] = cm[dst[offset + 8 + y * stride] - ((d * 7) >> 4)];
296  dst[offset + 9 + y * stride] = cm[dst[offset + 9 + y * stride] - ((d * 5) >> 4)];
297  dst[offset + 10+ y * stride] = cm[dst[offset + 10 + y * stride] - ((d * 3) >> 4)];
298  dst[offset + 11+ y * stride] = cm[dst[offset + 11 + y * stride] - ((d * 1) >> 4)];
299  }
300  }
301  }
302  }
303 }
304 
305 /**
306  * simple vertical deblocking filter used for error resilience
307  * @param w width in 8 pixel blocks
308  * @param h height in 8 pixel blocks
309  */
310 static void v_block_filter(ERContext *s, uint8_t *dst, int w, int h,
311  int stride, int is_luma)
312 {
313  int b_x, b_y, mvx_stride, mvy_stride;
314  const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
315  set_mv_strides(s, &mvx_stride, &mvy_stride);
316  mvx_stride >>= is_luma;
317  mvy_stride *= mvx_stride;
318 
319  for (b_y = 0; b_y < h - 1; b_y++) {
320  for (b_x = 0; b_x < w; b_x++) {
321  int x;
322  int top_status = s->error_status_table[(b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride];
323  int bottom_status = s->error_status_table[(b_x >> is_luma) + ((b_y + 1) >> is_luma) * s->mb_stride];
324  int top_intra = IS_INTRA(s->cur_pic.mb_type[(b_x >> is_luma) + ( b_y >> is_luma) * s->mb_stride]);
325  int bottom_intra = IS_INTRA(s->cur_pic.mb_type[(b_x >> is_luma) + ((b_y + 1) >> is_luma) * s->mb_stride]);
326  int top_damage = top_status & ER_MB_ERROR;
327  int bottom_damage = bottom_status & ER_MB_ERROR;
328  int offset = b_x * 8 + b_y * stride * 8;
329 
330  int16_t *top_mv = s->cur_pic.motion_val[0][mvy_stride * b_y + mvx_stride * b_x];
331  int16_t *bottom_mv = s->cur_pic.motion_val[0][mvy_stride * (b_y + 1) + mvx_stride * b_x];
332 
333  if (!(top_damage || bottom_damage))
334  continue; // both undamaged
335 
336  if ((!top_intra) && (!bottom_intra) &&
337  FFABS(top_mv[0] - bottom_mv[0]) +
338  FFABS(top_mv[1] + bottom_mv[1]) < 2)
339  continue;
340 
341  for (x = 0; x < 8; x++) {
342  int a, b, c, d;
343 
344  a = dst[offset + x + 7 * stride] - dst[offset + x + 6 * stride];
345  b = dst[offset + x + 8 * stride] - dst[offset + x + 7 * stride];
346  c = dst[offset + x + 9 * stride] - dst[offset + x + 8 * stride];
347 
348  d = FFABS(b) - ((FFABS(a) + FFABS(c) + 1) >> 1);
349  d = FFMAX(d, 0);
350  if (b < 0)
351  d = -d;
352 
353  if (d == 0)
354  continue;
355 
356  if (!(top_damage && bottom_damage))
357  d = d * 16 / 9;
358 
359  if (top_damage) {
360  dst[offset + x + 7 * stride] = cm[dst[offset + x + 7 * stride] + ((d * 7) >> 4)];
361  dst[offset + x + 6 * stride] = cm[dst[offset + x + 6 * stride] + ((d * 5) >> 4)];
362  dst[offset + x + 5 * stride] = cm[dst[offset + x + 5 * stride] + ((d * 3) >> 4)];
363  dst[offset + x + 4 * stride] = cm[dst[offset + x + 4 * stride] + ((d * 1) >> 4)];
364  }
365  if (bottom_damage) {
366  dst[offset + x + 8 * stride] = cm[dst[offset + x + 8 * stride] - ((d * 7) >> 4)];
367  dst[offset + x + 9 * stride] = cm[dst[offset + x + 9 * stride] - ((d * 5) >> 4)];
368  dst[offset + x + 10 * stride] = cm[dst[offset + x + 10 * stride] - ((d * 3) >> 4)];
369  dst[offset + x + 11 * stride] = cm[dst[offset + x + 11 * stride] - ((d * 1) >> 4)];
370  }
371  }
372  }
373  }
374 }
375 
376 static void guess_mv(ERContext *s)
377 {
378  uint8_t *fixed = s->er_temp_buffer;
379 #define MV_FROZEN 4
380 #define MV_CHANGED 2
381 #define MV_UNCHANGED 1
382  const int mb_stride = s->mb_stride;
383  const int mb_width = s->mb_width;
384  int mb_height = s->mb_height;
385  int i, depth, num_avail;
386  int mb_x, mb_y, mot_step, mot_stride;
387 
388  if (s->last_pic.f && s->last_pic.f->data[0])
389  mb_height = FFMIN(mb_height, (s->last_pic.f->height+15)>>4);
390  if (s->next_pic.f && s->next_pic.f->data[0])
391  mb_height = FFMIN(mb_height, (s->next_pic.f->height+15)>>4);
392 
393  set_mv_strides(s, &mot_step, &mot_stride);
394 
395  num_avail = 0;
396  if (s->last_pic.motion_val[0])
397  ff_thread_await_progress(s->last_pic.tf, mb_height-1, 0);
398  for (i = 0; i < mb_width * mb_height; i++) {
399  const int mb_xy = s->mb_index2xy[i];
400  int f = 0;
401  int error = s->error_status_table[mb_xy];
402 
403  if (IS_INTRA(s->cur_pic.mb_type[mb_xy]))
404  f = MV_FROZEN; // intra // FIXME check
405  if (!(error & ER_MV_ERROR))
406  f = MV_FROZEN; // inter with undamaged MV
407 
408  fixed[mb_xy] = f;
409  if (f == MV_FROZEN)
410  num_avail++;
411  else if(s->last_pic.f->data[0] && s->last_pic.motion_val[0]){
412  const int mb_y= mb_xy / s->mb_stride;
413  const int mb_x= mb_xy % s->mb_stride;
414  const int mot_index= (mb_x + mb_y*mot_stride) * mot_step;
415  s->cur_pic.motion_val[0][mot_index][0]= s->last_pic.motion_val[0][mot_index][0];
416  s->cur_pic.motion_val[0][mot_index][1]= s->last_pic.motion_val[0][mot_index][1];
417  s->cur_pic.ref_index[0][4*mb_xy] = s->last_pic.ref_index[0][4*mb_xy];
418  }
419  }
420 
421  if ((!(s->avctx->error_concealment&FF_EC_GUESS_MVS)) ||
422  num_avail <= mb_width / 2) {
423  for (mb_y = 0; mb_y < mb_height; mb_y++) {
424  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
425  const int mb_xy = mb_x + mb_y * s->mb_stride;
426  int mv_dir = (s->last_pic.f && s->last_pic.f->data[0]) ? MV_DIR_FORWARD : MV_DIR_BACKWARD;
427 
428  if (IS_INTRA(s->cur_pic.mb_type[mb_xy]))
429  continue;
430  if (!(s->error_status_table[mb_xy] & ER_MV_ERROR))
431  continue;
432 
433  s->mv[0][0][0] = 0;
434  s->mv[0][0][1] = 0;
435  s->decode_mb(s->opaque, 0, mv_dir, MV_TYPE_16X16, &s->mv,
436  mb_x, mb_y, 0, 0);
437  }
438  }
439  return;
440  }
441 
442  for (depth = 0; ; depth++) {
443  int changed, pass, none_left;
444 
445  none_left = 1;
446  changed = 1;
447  for (pass = 0; (changed || pass < 2) && pass < 10; pass++) {
448  int mb_x, mb_y;
449  int score_sum = 0;
450 
451  changed = 0;
452  for (mb_y = 0; mb_y < mb_height; mb_y++) {
453  for (mb_x = (mb_y ^ pass) & 1; mb_x < s->mb_width; mb_x+=2) {
454  const int mb_xy = mb_x + mb_y * s->mb_stride;
455  int mv_predictor[8][2];
456  int ref[8];
457  int pred_count;
458  int j;
459  int best_score;
460  int best_pred;
461  int mot_index;
462  int prev_x, prev_y, prev_ref;
463 
464  if (fixed[mb_xy] == MV_FROZEN)
465  continue;
466  av_assert1(!IS_INTRA(s->cur_pic.mb_type[mb_xy]));
467  av_assert1(s->last_pic.f && s->last_pic.f->data[0]);
468 
469  j = 0;
470  if (mb_x > 0)
471  j |= fixed[mb_xy - 1];
472  if (mb_x + 1 < mb_width)
473  j |= fixed[mb_xy + 1];
474  if (mb_y > 0)
475  j |= fixed[mb_xy - mb_stride];
476  if (mb_y + 1 < mb_height)
477  j |= fixed[mb_xy + mb_stride];
478 
479  if (!(j & MV_FROZEN))
480  continue;
481 
482  if (!(j & MV_CHANGED) && pass > 1)
483  continue;
484 
485  none_left = 0;
486  pred_count = 0;
487  mot_index = (mb_x + mb_y * mot_stride) * mot_step;
488 
489  if (mb_x > 0 && fixed[mb_xy - 1]) {
490  mv_predictor[pred_count][0] =
491  s->cur_pic.motion_val[0][mot_index - mot_step][0];
492  mv_predictor[pred_count][1] =
493  s->cur_pic.motion_val[0][mot_index - mot_step][1];
494  ref[pred_count] =
495  s->cur_pic.ref_index[0][4 * (mb_xy - 1)];
496  pred_count++;
497  }
498  if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) {
499  mv_predictor[pred_count][0] =
500  s->cur_pic.motion_val[0][mot_index + mot_step][0];
501  mv_predictor[pred_count][1] =
502  s->cur_pic.motion_val[0][mot_index + mot_step][1];
503  ref[pred_count] =
504  s->cur_pic.ref_index[0][4 * (mb_xy + 1)];
505  pred_count++;
506  }
507  if (mb_y > 0 && fixed[mb_xy - mb_stride]) {
508  mv_predictor[pred_count][0] =
509  s->cur_pic.motion_val[0][mot_index - mot_stride * mot_step][0];
510  mv_predictor[pred_count][1] =
511  s->cur_pic.motion_val[0][mot_index - mot_stride * mot_step][1];
512  ref[pred_count] =
513  s->cur_pic.ref_index[0][4 * (mb_xy - s->mb_stride)];
514  pred_count++;
515  }
516  if (mb_y + 1<mb_height && fixed[mb_xy + mb_stride]) {
517  mv_predictor[pred_count][0] =
518  s->cur_pic.motion_val[0][mot_index + mot_stride * mot_step][0];
519  mv_predictor[pred_count][1] =
520  s->cur_pic.motion_val[0][mot_index + mot_stride * mot_step][1];
521  ref[pred_count] =
522  s->cur_pic.ref_index[0][4 * (mb_xy + s->mb_stride)];
523  pred_count++;
524  }
525  if (pred_count == 0)
526  continue;
527 
528  if (pred_count > 1) {
529  int sum_x = 0, sum_y = 0, sum_r = 0;
530  int max_x, max_y, min_x, min_y, max_r, min_r;
531 
532  for (j = 0; j < pred_count; j++) {
533  sum_x += mv_predictor[j][0];
534  sum_y += mv_predictor[j][1];
535  sum_r += ref[j];
536  if (j && ref[j] != ref[j - 1])
537  goto skip_mean_and_median;
538  }
539 
540  /* mean */
541  mv_predictor[pred_count][0] = sum_x / j;
542  mv_predictor[pred_count][1] = sum_y / j;
543  ref[pred_count] = sum_r / j;
544 
545  /* median */
546  if (pred_count >= 3) {
547  min_y = min_x = min_r = 99999;
548  max_y = max_x = max_r = -99999;
549  } else {
550  min_x = min_y = max_x = max_y = min_r = max_r = 0;
551  }
552  for (j = 0; j < pred_count; j++) {
553  max_x = FFMAX(max_x, mv_predictor[j][0]);
554  max_y = FFMAX(max_y, mv_predictor[j][1]);
555  max_r = FFMAX(max_r, ref[j]);
556  min_x = FFMIN(min_x, mv_predictor[j][0]);
557  min_y = FFMIN(min_y, mv_predictor[j][1]);
558  min_r = FFMIN(min_r, ref[j]);
559  }
560  mv_predictor[pred_count + 1][0] = sum_x - max_x - min_x;
561  mv_predictor[pred_count + 1][1] = sum_y - max_y - min_y;
562  ref[pred_count + 1] = sum_r - max_r - min_r;
563 
564  if (pred_count == 4) {
565  mv_predictor[pred_count + 1][0] /= 2;
566  mv_predictor[pred_count + 1][1] /= 2;
567  ref[pred_count + 1] /= 2;
568  }
569  pred_count += 2;
570  }
571 
572 skip_mean_and_median:
573  /* zero MV */
574  mv_predictor[pred_count][0] =
575  mv_predictor[pred_count][1] =
576  ref[pred_count] = 0;
577  pred_count++;
578 
579  prev_x = s->cur_pic.motion_val[0][mot_index][0];
580  prev_y = s->cur_pic.motion_val[0][mot_index][1];
581  prev_ref = s->cur_pic.ref_index[0][4 * mb_xy];
582 
583  /* last MV */
584  mv_predictor[pred_count][0] = prev_x;
585  mv_predictor[pred_count][1] = prev_y;
586  ref[pred_count] = prev_ref;
587  pred_count++;
588 
589  best_pred = 0;
590  best_score = 256 * 256 * 256 * 64;
591  for (j = 0; j < pred_count; j++) {
592  int *linesize = s->cur_pic.f->linesize;
593  int score = 0;
594  uint8_t *src = s->cur_pic.f->data[0] +
595  mb_x * 16 + mb_y * 16 * linesize[0];
596 
597  s->cur_pic.motion_val[0][mot_index][0] =
598  s->mv[0][0][0] = mv_predictor[j][0];
599  s->cur_pic.motion_val[0][mot_index][1] =
600  s->mv[0][0][1] = mv_predictor[j][1];
601 
602  // predictor intra or otherwise not available
603  if (ref[j] < 0)
604  continue;
605 
606  s->decode_mb(s->opaque, ref[j], MV_DIR_FORWARD,
607  MV_TYPE_16X16, &s->mv, mb_x, mb_y, 0, 0);
608 
609  if (mb_x > 0 && fixed[mb_xy - 1]) {
610  int k;
611  for (k = 0; k < 16; k++)
612  score += FFABS(src[k * linesize[0] - 1] -
613  src[k * linesize[0]]);
614  }
615  if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) {
616  int k;
617  for (k = 0; k < 16; k++)
618  score += FFABS(src[k * linesize[0] + 15] -
619  src[k * linesize[0] + 16]);
620  }
621  if (mb_y > 0 && fixed[mb_xy - mb_stride]) {
622  int k;
623  for (k = 0; k < 16; k++)
624  score += FFABS(src[k - linesize[0]] - src[k]);
625  }
626  if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride]) {
627  int k;
628  for (k = 0; k < 16; k++)
629  score += FFABS(src[k + linesize[0] * 15] -
630  src[k + linesize[0] * 16]);
631  }
632 
633  if (score <= best_score) { // <= will favor the last MV
634  best_score = score;
635  best_pred = j;
636  }
637  }
638  score_sum += best_score;
639  s->mv[0][0][0] = mv_predictor[best_pred][0];
640  s->mv[0][0][1] = mv_predictor[best_pred][1];
641 
642  for (i = 0; i < mot_step; i++)
643  for (j = 0; j < mot_step; j++) {
644  s->cur_pic.motion_val[0][mot_index + i + j * mot_stride][0] = s->mv[0][0][0];
645  s->cur_pic.motion_val[0][mot_index + i + j * mot_stride][1] = s->mv[0][0][1];
646  }
647 
648  s->decode_mb(s->opaque, ref[best_pred], MV_DIR_FORWARD,
649  MV_TYPE_16X16, &s->mv, mb_x, mb_y, 0, 0);
650 
651 
652  if (s->mv[0][0][0] != prev_x || s->mv[0][0][1] != prev_y) {
653  fixed[mb_xy] = MV_CHANGED;
654  changed++;
655  } else
656  fixed[mb_xy] = MV_UNCHANGED;
657  }
658  }
659  }
660 
661  if (none_left)
662  return;
663 
664  for (i = 0; i < mb_width * mb_height; i++) {
665  int mb_xy = s->mb_index2xy[i];
666  if (fixed[mb_xy])
667  fixed[mb_xy] = MV_FROZEN;
668  }
669  }
670 }
671 
673 {
674  int is_intra_likely, i, j, undamaged_count, skip_amount, mb_x, mb_y;
675 
676  if (!s->last_pic.f || !s->last_pic.f->data[0])
677  return 1; // no previous frame available -> use spatial prediction
678 
680  return 0;
681 
682  undamaged_count = 0;
683  for (i = 0; i < s->mb_num; i++) {
684  const int mb_xy = s->mb_index2xy[i];
685  const int error = s->error_status_table[mb_xy];
686  if (!((error & ER_DC_ERROR) && (error & ER_MV_ERROR)))
687  undamaged_count++;
688  }
689 
690  if (undamaged_count < 5)
691  return 0; // almost all MBs damaged -> use temporal prediction
692 
693  // prevent dsp.sad() check, that requires access to the image
694  if (CONFIG_XVMC &&
695  s->avctx->hwaccel && s->avctx->hwaccel->decode_mb &&
697  return 1;
698 
699  skip_amount = FFMAX(undamaged_count / 50, 1); // check only up to 50 MBs
700  is_intra_likely = 0;
701 
702  j = 0;
703  for (mb_y = 0; mb_y < s->mb_height - 1; mb_y++) {
704  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
705  int error;
706  const int mb_xy = mb_x + mb_y * s->mb_stride;
707 
708  error = s->error_status_table[mb_xy];
709  if ((error & ER_DC_ERROR) && (error & ER_MV_ERROR))
710  continue; // skip damaged
711 
712  j++;
713  // skip a few to speed things up
714  if ((j % skip_amount) != 0)
715  continue;
716 
717  if (s->cur_pic.f->pict_type == AV_PICTURE_TYPE_I) {
718  int *linesize = s->cur_pic.f->linesize;
719  uint8_t *mb_ptr = s->cur_pic.f->data[0] +
720  mb_x * 16 + mb_y * 16 * linesize[0];
721  uint8_t *last_mb_ptr = s->last_pic.f->data[0] +
722  mb_x * 16 + mb_y * 16 * linesize[0];
723 
724  if (s->avctx->codec_id == AV_CODEC_ID_H264) {
725  // FIXME
726  } else {
727  ff_thread_await_progress(s->last_pic.tf, mb_y, 0);
728  }
729  is_intra_likely += s->mecc.sad[0](NULL, last_mb_ptr, mb_ptr,
730  linesize[0], 16);
731  // FIXME need await_progress() here
732  is_intra_likely -= s->mecc.sad[0](NULL, last_mb_ptr,
733  last_mb_ptr + linesize[0] * 16,
734  linesize[0], 16);
735  } else {
736  if (IS_INTRA(s->cur_pic.mb_type[mb_xy]))
737  is_intra_likely++;
738  else
739  is_intra_likely--;
740  }
741  }
742  }
743 // av_log(NULL, AV_LOG_ERROR, "is_intra_likely: %d type:%d\n", is_intra_likely, s->pict_type);
744  return is_intra_likely > 0;
745 }
746 
748 {
749  if (!s->avctx->error_concealment)
750  return;
751 
752  if (!s->mecc_inited) {
753  ff_me_cmp_init(&s->mecc, s->avctx);
754  s->mecc_inited = 1;
755  }
756 
758  s->mb_stride * s->mb_height * sizeof(uint8_t));
759  s->error_count = 3 * s->mb_num;
760  s->error_occurred = 0;
761 }
762 
764 {
765  if(s->avctx->hwaccel && s->avctx->hwaccel->decode_slice ||
768 #endif
769  !s->cur_pic.f ||
771  )
772  return 0;
773  return 1;
774 }
775 
776 /**
777  * Add a slice.
778  * @param endx x component of the last macroblock, can be -1
779  * for the last of the previous line
780  * @param status the status at the end (ER_MV_END, ER_AC_ERROR, ...), it is
781  * assumed that no earlier end or error of the same type occurred
782  */
783 void ff_er_add_slice(ERContext *s, int startx, int starty,
784  int endx, int endy, int status)
785 {
786  const int start_i = av_clip(startx + starty * s->mb_width, 0, s->mb_num - 1);
787  const int end_i = av_clip(endx + endy * s->mb_width, 0, s->mb_num);
788  const int start_xy = s->mb_index2xy[start_i];
789  const int end_xy = s->mb_index2xy[end_i];
790  int mask = -1;
791 
792  if (s->avctx->hwaccel && s->avctx->hwaccel->decode_slice)
793  return;
794 
795  if (start_i > end_i || start_xy > end_xy) {
797  "internal error, slice end before start\n");
798  return;
799  }
800 
801  if (!s->avctx->error_concealment)
802  return;
803 
804  mask &= ~VP_START;
805  if (status & (ER_AC_ERROR | ER_AC_END)) {
806  mask &= ~(ER_AC_ERROR | ER_AC_END);
807  avpriv_atomic_int_add_and_fetch(&s->error_count, start_i - end_i - 1);
808  }
809  if (status & (ER_DC_ERROR | ER_DC_END)) {
810  mask &= ~(ER_DC_ERROR | ER_DC_END);
811  avpriv_atomic_int_add_and_fetch(&s->error_count, start_i - end_i - 1);
812  }
813  if (status & (ER_MV_ERROR | ER_MV_END)) {
814  mask &= ~(ER_MV_ERROR | ER_MV_END);
815  avpriv_atomic_int_add_and_fetch(&s->error_count, start_i - end_i - 1);
816  }
817 
818  if (status & ER_MB_ERROR) {
819  s->error_occurred = 1;
820  avpriv_atomic_int_set(&s->error_count, INT_MAX);
821  }
822 
823  if (mask == ~0x7F) {
824  memset(&s->error_status_table[start_xy], 0,
825  (end_xy - start_xy) * sizeof(uint8_t));
826  } else {
827  int i;
828  for (i = start_xy; i < end_xy; i++)
829  s->error_status_table[i] &= mask;
830  }
831 
832  if (end_i == s->mb_num)
833  avpriv_atomic_int_set(&s->error_count, INT_MAX);
834  else {
835  s->error_status_table[end_xy] &= mask;
836  s->error_status_table[end_xy] |= status;
837  }
838 
839  s->error_status_table[start_xy] |= VP_START;
840 
841  if (start_xy > 0 && !(s->avctx->active_thread_type & FF_THREAD_SLICE) &&
842  er_supported(s) && s->avctx->skip_top * s->mb_width < start_i) {
843  int prev_status = s->error_status_table[s->mb_index2xy[start_i - 1]];
844 
845  prev_status &= ~ VP_START;
846  if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END)) {
847  s->error_occurred = 1;
848  avpriv_atomic_int_set(&s->error_count, INT_MAX);
849  }
850  }
851 }
852 
854 {
855  int *linesize = NULL;
856  int i, mb_x, mb_y, error, error_type, dc_error, mv_error, ac_error;
857  int distance;
858  int threshold_part[4] = { 100, 100, 100 };
859  int threshold = 50;
860  int is_intra_likely;
861  int size = s->b8_stride * 2 * s->mb_height;
862 
863  /* We do not support ER of field pictures yet,
864  * though it should not crash if enabled. */
865  if (!s->avctx->error_concealment || s->error_count == 0 ||
866  s->avctx->lowres ||
867  !er_supported(s) ||
868  s->error_count == 3 * s->mb_width *
869  (s->avctx->skip_top + s->avctx->skip_bottom)) {
870  return;
871  }
872  linesize = s->cur_pic.f->linesize;
873  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
874  int status = s->error_status_table[mb_x + (s->mb_height - 1) * s->mb_stride];
875  if (status != 0x7F)
876  break;
877  }
878 
879  if ( mb_x == s->mb_width
881  && (FFALIGN(s->avctx->height, 16)&16)
882  && s->error_count == 3 * s->mb_width * (s->avctx->skip_top + s->avctx->skip_bottom + 1)
883  ) {
884  av_log(s->avctx, AV_LOG_DEBUG, "ignoring last missing slice\n");
885  return;
886  }
887 
888  if (s->last_pic.f) {
889  if (s->last_pic.f->width != s->cur_pic.f->width ||
890  s->last_pic.f->height != s->cur_pic.f->height ||
891  s->last_pic.f->format != s->cur_pic.f->format) {
892  av_log(s->avctx, AV_LOG_WARNING, "Cannot use previous picture in error concealment\n");
893  memset(&s->last_pic, 0, sizeof(s->last_pic));
894  }
895  }
896  if (s->next_pic.f) {
897  if (s->next_pic.f->width != s->cur_pic.f->width ||
898  s->next_pic.f->height != s->cur_pic.f->height ||
899  s->next_pic.f->format != s->cur_pic.f->format) {
900  av_log(s->avctx, AV_LOG_WARNING, "Cannot use next picture in error concealment\n");
901  memset(&s->next_pic, 0, sizeof(s->next_pic));
902  }
903  }
904 
905  if (!s->cur_pic.motion_val[0] || !s->cur_pic.ref_index[0]) {
906  av_log(s->avctx, AV_LOG_ERROR, "Warning MVs not available\n");
907 
908  for (i = 0; i < 2; i++) {
909  s->ref_index_buf[i] = av_buffer_allocz(s->mb_stride * s->mb_height * 4 * sizeof(uint8_t));
910  s->motion_val_buf[i] = av_buffer_allocz((size + 4) * 2 * sizeof(uint16_t));
911  if (!s->ref_index_buf[i] || !s->motion_val_buf[i])
912  break;
913  s->cur_pic.ref_index[i] = s->ref_index_buf[i]->data;
914  s->cur_pic.motion_val[i] = (int16_t (*)[2])s->motion_val_buf[i]->data + 4;
915  }
916  if (i < 2) {
917  for (i = 0; i < 2; i++) {
920  s->cur_pic.ref_index[i] = NULL;
921  s->cur_pic.motion_val[i] = NULL;
922  }
923  return;
924  }
925  }
926 
927  if (s->avctx->debug & FF_DEBUG_ER) {
928  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
929  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
930  int status = s->error_status_table[mb_x + mb_y * s->mb_stride];
931 
932  av_log(s->avctx, AV_LOG_DEBUG, "%2X ", status);
933  }
934  av_log(s->avctx, AV_LOG_DEBUG, "\n");
935  }
936  }
937 
938 #if 1
939  /* handle overlapping slices */
940  for (error_type = 1; error_type <= 3; error_type++) {
941  int end_ok = 0;
942 
943  for (i = s->mb_num - 1; i >= 0; i--) {
944  const int mb_xy = s->mb_index2xy[i];
945  int error = s->error_status_table[mb_xy];
946 
947  if (error & (1 << error_type))
948  end_ok = 1;
949  if (error & (8 << error_type))
950  end_ok = 1;
951 
952  if (!end_ok)
953  s->error_status_table[mb_xy] |= 1 << error_type;
954 
955  if (error & VP_START)
956  end_ok = 0;
957  }
958  }
959 #endif
960 #if 1
961  /* handle slices with partitions of different length */
962  if (s->partitioned_frame) {
963  int end_ok = 0;
964 
965  for (i = s->mb_num - 1; i >= 0; i--) {
966  const int mb_xy = s->mb_index2xy[i];
967  int error = s->error_status_table[mb_xy];
968 
969  if (error & ER_AC_END)
970  end_ok = 0;
971  if ((error & ER_MV_END) ||
972  (error & ER_DC_END) ||
973  (error & ER_AC_ERROR))
974  end_ok = 1;
975 
976  if (!end_ok)
977  s->error_status_table[mb_xy]|= ER_AC_ERROR;
978 
979  if (error & VP_START)
980  end_ok = 0;
981  }
982  }
983 #endif
984  /* handle missing slices */
985  if (s->avctx->err_recognition & AV_EF_EXPLODE) {
986  int end_ok = 1;
987 
988  // FIXME + 100 hack
989  for (i = s->mb_num - 2; i >= s->mb_width + 100; i--) {
990  const int mb_xy = s->mb_index2xy[i];
991  int error1 = s->error_status_table[mb_xy];
992  int error2 = s->error_status_table[s->mb_index2xy[i + 1]];
993 
994  if (error1 & VP_START)
995  end_ok = 1;
996 
997  if (error2 == (VP_START | ER_MB_ERROR | ER_MB_END) &&
998  error1 != (VP_START | ER_MB_ERROR | ER_MB_END) &&
999  ((error1 & ER_AC_END) || (error1 & ER_DC_END) ||
1000  (error1 & ER_MV_END))) {
1001  // end & uninit
1002  end_ok = 0;
1003  }
1004 
1005  if (!end_ok)
1006  s->error_status_table[mb_xy] |= ER_MB_ERROR;
1007  }
1008  }
1009 
1010 #if 1
1011  /* backward mark errors */
1012  distance = 9999999;
1013  for (error_type = 1; error_type <= 3; error_type++) {
1014  for (i = s->mb_num - 1; i >= 0; i--) {
1015  const int mb_xy = s->mb_index2xy[i];
1016  int error = s->error_status_table[mb_xy];
1017 
1018  if (!s->mbskip_table || !s->mbskip_table[mb_xy]) // FIXME partition specific
1019  distance++;
1020  if (error & (1 << error_type))
1021  distance = 0;
1022 
1023  if (s->partitioned_frame) {
1024  if (distance < threshold_part[error_type - 1])
1025  s->error_status_table[mb_xy] |= 1 << error_type;
1026  } else {
1027  if (distance < threshold)
1028  s->error_status_table[mb_xy] |= 1 << error_type;
1029  }
1030 
1031  if (error & VP_START)
1032  distance = 9999999;
1033  }
1034  }
1035 #endif
1036 
1037  /* forward mark errors */
1038  error = 0;
1039  for (i = 0; i < s->mb_num; i++) {
1040  const int mb_xy = s->mb_index2xy[i];
1041  int old_error = s->error_status_table[mb_xy];
1042 
1043  if (old_error & VP_START) {
1044  error = old_error & ER_MB_ERROR;
1045  } else {
1046  error |= old_error & ER_MB_ERROR;
1047  s->error_status_table[mb_xy] |= error;
1048  }
1049  }
1050 #if 1
1051  /* handle not partitioned case */
1052  if (!s->partitioned_frame) {
1053  for (i = 0; i < s->mb_num; i++) {
1054  const int mb_xy = s->mb_index2xy[i];
1055  int error = s->error_status_table[mb_xy];
1056  if (error & ER_MB_ERROR)
1057  error |= ER_MB_ERROR;
1058  s->error_status_table[mb_xy] = error;
1059  }
1060  }
1061 #endif
1062 
1063  dc_error = ac_error = mv_error = 0;
1064  for (i = 0; i < s->mb_num; i++) {
1065  const int mb_xy = s->mb_index2xy[i];
1066  int error = s->error_status_table[mb_xy];
1067  if (error & ER_DC_ERROR)
1068  dc_error++;
1069  if (error & ER_AC_ERROR)
1070  ac_error++;
1071  if (error & ER_MV_ERROR)
1072  mv_error++;
1073  }
1074  av_log(s->avctx, AV_LOG_INFO, "concealing %d DC, %d AC, %d MV errors in %c frame\n",
1075  dc_error, ac_error, mv_error, av_get_picture_type_char(s->cur_pic.f->pict_type));
1076 
1077  is_intra_likely = is_intra_more_likely(s);
1078 
1079  /* set unknown mb-type to most likely */
1080  for (i = 0; i < s->mb_num; i++) {
1081  const int mb_xy = s->mb_index2xy[i];
1082  int error = s->error_status_table[mb_xy];
1083  if (!((error & ER_DC_ERROR) && (error & ER_MV_ERROR)))
1084  continue;
1085 
1086  if (is_intra_likely)
1087  s->cur_pic.mb_type[mb_xy] = MB_TYPE_INTRA4x4;
1088  else
1089  s->cur_pic.mb_type[mb_xy] = MB_TYPE_16x16 | MB_TYPE_L0;
1090  }
1091 
1092  // change inter to intra blocks if no reference frames are available
1093  if (!(s->last_pic.f && s->last_pic.f->data[0]) &&
1094  !(s->next_pic.f && s->next_pic.f->data[0]))
1095  for (i = 0; i < s->mb_num; i++) {
1096  const int mb_xy = s->mb_index2xy[i];
1097  if (!IS_INTRA(s->cur_pic.mb_type[mb_xy]))
1098  s->cur_pic.mb_type[mb_xy] = MB_TYPE_INTRA4x4;
1099  }
1100 
1101  /* handle inter blocks with damaged AC */
1102  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1103  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1104  const int mb_xy = mb_x + mb_y * s->mb_stride;
1105  const int mb_type = s->cur_pic.mb_type[mb_xy];
1106  const int dir = !(s->last_pic.f && s->last_pic.f->data[0]);
1107  const int mv_dir = dir ? MV_DIR_BACKWARD : MV_DIR_FORWARD;
1108  int mv_type;
1109 
1110  int error = s->error_status_table[mb_xy];
1111 
1112  if (IS_INTRA(mb_type))
1113  continue; // intra
1114  if (error & ER_MV_ERROR)
1115  continue; // inter with damaged MV
1116  if (!(error & ER_AC_ERROR))
1117  continue; // undamaged inter
1118 
1119  if (IS_8X8(mb_type)) {
1120  int mb_index = mb_x * 2 + mb_y * 2 * s->b8_stride;
1121  int j;
1122  mv_type = MV_TYPE_8X8;
1123  for (j = 0; j < 4; j++) {
1124  s->mv[0][j][0] = s->cur_pic.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][0];
1125  s->mv[0][j][1] = s->cur_pic.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][1];
1126  }
1127  } else {
1128  mv_type = MV_TYPE_16X16;
1129  s->mv[0][0][0] = s->cur_pic.motion_val[dir][mb_x * 2 + mb_y * 2 * s->b8_stride][0];
1130  s->mv[0][0][1] = s->cur_pic.motion_val[dir][mb_x * 2 + mb_y * 2 * s->b8_stride][1];
1131  }
1132 
1133  s->decode_mb(s->opaque, 0 /* FIXME H.264 partitioned slices need this set */,
1134  mv_dir, mv_type, &s->mv, mb_x, mb_y, 0, 0);
1135  }
1136  }
1137 
1138  /* guess MVs */
1139  if (s->cur_pic.f->pict_type == AV_PICTURE_TYPE_B) {
1140  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1141  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1142  int xy = mb_x * 2 + mb_y * 2 * s->b8_stride;
1143  const int mb_xy = mb_x + mb_y * s->mb_stride;
1144  const int mb_type = s->cur_pic.mb_type[mb_xy];
1145  int mv_dir = MV_DIR_FORWARD | MV_DIR_BACKWARD;
1146 
1147  int error = s->error_status_table[mb_xy];
1148 
1149  if (IS_INTRA(mb_type))
1150  continue;
1151  if (!(error & ER_MV_ERROR))
1152  continue; // inter with undamaged MV
1153  if (!(error & ER_AC_ERROR))
1154  continue; // undamaged inter
1155 
1156  if (!(s->last_pic.f && s->last_pic.f->data[0]))
1157  mv_dir &= ~MV_DIR_FORWARD;
1158  if (!(s->next_pic.f && s->next_pic.f->data[0]))
1159  mv_dir &= ~MV_DIR_BACKWARD;
1160 
1161  if (s->pp_time) {
1162  int time_pp = s->pp_time;
1163  int time_pb = s->pb_time;
1164 
1166  ff_thread_await_progress(s->next_pic.tf, mb_y, 0);
1167 
1168  s->mv[0][0][0] = s->next_pic.motion_val[0][xy][0] * time_pb / time_pp;
1169  s->mv[0][0][1] = s->next_pic.motion_val[0][xy][1] * time_pb / time_pp;
1170  s->mv[1][0][0] = s->next_pic.motion_val[0][xy][0] * (time_pb - time_pp) / time_pp;
1171  s->mv[1][0][1] = s->next_pic.motion_val[0][xy][1] * (time_pb - time_pp) / time_pp;
1172  } else {
1173  s->mv[0][0][0] = 0;
1174  s->mv[0][0][1] = 0;
1175  s->mv[1][0][0] = 0;
1176  s->mv[1][0][1] = 0;
1177  }
1178 
1179  s->decode_mb(s->opaque, 0, mv_dir, MV_TYPE_16X16, &s->mv,
1180  mb_x, mb_y, 0, 0);
1181  }
1182  }
1183  } else
1184  guess_mv(s);
1185 
1186  /* the filters below manipulate raw image, skip them */
1187  if (CONFIG_XVMC && s->avctx->hwaccel && s->avctx->hwaccel->decode_mb)
1188  goto ec_clean;
1189  /* fill DC for inter blocks */
1190  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1191  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1192  int dc, dcu, dcv, y, n;
1193  int16_t *dc_ptr;
1194  uint8_t *dest_y, *dest_cb, *dest_cr;
1195  const int mb_xy = mb_x + mb_y * s->mb_stride;
1196  const int mb_type = s->cur_pic.mb_type[mb_xy];
1197 
1198  // error = s->error_status_table[mb_xy];
1199 
1200  if (IS_INTRA(mb_type) && s->partitioned_frame)
1201  continue;
1202  // if (error & ER_MV_ERROR)
1203  // continue; // inter data damaged FIXME is this good?
1204 
1205  dest_y = s->cur_pic.f->data[0] + mb_x * 16 + mb_y * 16 * linesize[0];
1206  dest_cb = s->cur_pic.f->data[1] + mb_x * 8 + mb_y * 8 * linesize[1];
1207  dest_cr = s->cur_pic.f->data[2] + mb_x * 8 + mb_y * 8 * linesize[2];
1208 
1209  dc_ptr = &s->dc_val[0][mb_x * 2 + mb_y * 2 * s->b8_stride];
1210  for (n = 0; n < 4; n++) {
1211  dc = 0;
1212  for (y = 0; y < 8; y++) {
1213  int x;
1214  for (x = 0; x < 8; x++)
1215  dc += dest_y[x + (n & 1) * 8 +
1216  (y + (n >> 1) * 8) * linesize[0]];
1217  }
1218  dc_ptr[(n & 1) + (n >> 1) * s->b8_stride] = (dc + 4) >> 3;
1219  }
1220 
1221  if (!s->cur_pic.f->data[2])
1222  continue;
1223 
1224  dcu = dcv = 0;
1225  for (y = 0; y < 8; y++) {
1226  int x;
1227  for (x = 0; x < 8; x++) {
1228  dcu += dest_cb[x + y * linesize[1]];
1229  dcv += dest_cr[x + y * linesize[2]];
1230  }
1231  }
1232  s->dc_val[1][mb_x + mb_y * s->mb_stride] = (dcu + 4) >> 3;
1233  s->dc_val[2][mb_x + mb_y * s->mb_stride] = (dcv + 4) >> 3;
1234  }
1235  }
1236 #if 1
1237  /* guess DC for damaged blocks */
1238  guess_dc(s, s->dc_val[0], s->mb_width*2, s->mb_height*2, s->b8_stride, 1);
1239  guess_dc(s, s->dc_val[1], s->mb_width , s->mb_height , s->mb_stride, 0);
1240  guess_dc(s, s->dc_val[2], s->mb_width , s->mb_height , s->mb_stride, 0);
1241 #endif
1242 
1243  /* filter luma DC */
1244  filter181(s->dc_val[0], s->mb_width * 2, s->mb_height * 2, s->b8_stride);
1245 
1246 #if 1
1247  /* render DC only intra */
1248  for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1249  for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1250  uint8_t *dest_y, *dest_cb, *dest_cr;
1251  const int mb_xy = mb_x + mb_y * s->mb_stride;
1252  const int mb_type = s->cur_pic.mb_type[mb_xy];
1253 
1254  int error = s->error_status_table[mb_xy];
1255 
1256  if (IS_INTER(mb_type))
1257  continue;
1258  if (!(error & ER_AC_ERROR))
1259  continue; // undamaged
1260 
1261  dest_y = s->cur_pic.f->data[0] + mb_x * 16 + mb_y * 16 * linesize[0];
1262  dest_cb = s->cur_pic.f->data[1] + mb_x * 8 + mb_y * 8 * linesize[1];
1263  dest_cr = s->cur_pic.f->data[2] + mb_x * 8 + mb_y * 8 * linesize[2];
1264  if (!s->cur_pic.f->data[2])
1265  dest_cb = dest_cr = NULL;
1266 
1267  put_dc(s, dest_y, dest_cb, dest_cr, mb_x, mb_y);
1268  }
1269  }
1270 #endif
1271 
1273  /* filter horizontal block boundaries */
1274  h_block_filter(s, s->cur_pic.f->data[0], s->mb_width * 2,
1275  s->mb_height * 2, linesize[0], 1);
1276 
1277  /* filter vertical block boundaries */
1278  v_block_filter(s, s->cur_pic.f->data[0], s->mb_width * 2,
1279  s->mb_height * 2, linesize[0], 1);
1280 
1281  if (s->cur_pic.f->data[2]) {
1282  h_block_filter(s, s->cur_pic.f->data[1], s->mb_width,
1283  s->mb_height, linesize[1], 0);
1284  h_block_filter(s, s->cur_pic.f->data[2], s->mb_width,
1285  s->mb_height, linesize[2], 0);
1286  v_block_filter(s, s->cur_pic.f->data[1], s->mb_width,
1287  s->mb_height, linesize[1], 0);
1288  v_block_filter(s, s->cur_pic.f->data[2], s->mb_width,
1289  s->mb_height, linesize[2], 0);
1290  }
1291  }
1292 
1293 ec_clean:
1294  /* clean a few tables */
1295  for (i = 0; i < s->mb_num; i++) {
1296  const int mb_xy = s->mb_index2xy[i];
1297  int error = s->error_status_table[mb_xy];
1298 
1299  if (s->mbskip_table && s->cur_pic.f->pict_type != AV_PICTURE_TYPE_B &&
1300  (error & (ER_DC_ERROR | ER_MV_ERROR | ER_AC_ERROR))) {
1301  s->mbskip_table[mb_xy] = 0;
1302  }
1303  if (s->mbintra_table)
1304  s->mbintra_table[mb_xy] = 1;
1305  }
1306 
1307  for (i = 0; i < 2; i++) {
1310  s->cur_pic.ref_index[i] = NULL;
1311  s->cur_pic.motion_val[i] = NULL;
1312  }
1313 
1314  memset(&s->cur_pic, 0, sizeof(ERPicture));
1315  memset(&s->last_pic, 0, sizeof(ERPicture));
1316  memset(&s->next_pic, 0, sizeof(ERPicture));
1317 }
av_cold void ff_me_cmp_init(MECmpContext *c, AVCodecContext *avctx)
Definition: me_cmp.c:1009
#define NULL
Definition: coverity.c:32
const struct AVCodec * codec
Definition: avcodec.h:1696
#define avpriv_atomic_int_add_and_fetch
Definition: atomic_gcc.h:50
const char * s
Definition: avisynth_c.h:768
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it...
Definition: buffer.c:124
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
#define MV_CHANGED
AVBufferRef * motion_val_buf[2]
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define ER_MB_END
static void put_dc(ERContext *s, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int mb_x, int mb_y)
Replace the current MB with a flat dc-only version.
void ff_er_frame_end(ERContext *s)
static void v_block_filter(ERContext *s, uint8_t *dst, int w, int h, int stride, int is_luma)
simple vertical deblocking filter used for error resilience
static void filter181(int16_t *data, int width, int height, int stride)
#define MB_TYPE_INTRA4x4
Definition: avcodec.h:1258
const char * b
Definition: vf_curves.c:113
#define VP_START
< current MB is the first after a resync marker
#define MAX_NEG_CROP
Definition: mathops.h:31
static void guess_mv(ERContext *s)
uint32_t * mb_type
ERPicture last_pic
mpegvideo header.
#define ER_MV_ERROR
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
#define src
Definition: vp8dsp.c:254
#define MV_FROZEN
uint16_t pp_time
struct AVHWAccel * hwaccel
Hardware accelerator in use.
Definition: avcodec.h:3008
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
uint8_t
AVBufferRef * ref_index_buf[2]
static const uint32_t color[16+AV_CLASS_CATEGORY_NB]
Definition: log.c:94
Multithreading support functions.
#define ER_MB_ERROR
#define FF_API_CAP_VDPAU
Definition: version.h:73
#define avpriv_atomic_int_set
Definition: atomic_gcc.h:39
ERPicture cur_pic
#define height
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:91
#define AV_CODEC_CAP_HWACCEL_VDPAU
Codec can export data for HW decoding (VDPAU).
Definition: avcodec.h:1000
#define ER_MV_END
void(* decode_mb)(struct MpegEncContext *s)
Called for every Macroblock in a slice.
Definition: avcodec.h:3848
static void guess_dc(ERContext *s, int16_t *dc, int w, int h, int stride, int is_luma)
guess the dc of blocks which do not have an undamaged dc
#define FF_DEBUG_ER
Definition: avcodec.h:2946
int lowres
low resolution decoding, 1-> 1/2 size, 2->1/4 size
Definition: avcodec.h:3099
#define FF_EC_GUESS_MVS
Definition: avcodec.h:2919
ptrdiff_t size
Definition: opengl_enc.c:101
#define FFALIGN(x, a)
Definition: macros.h:48
#define av_log(a,...)
#define cm
Definition: dvbsubdec.c:36
Libavcodec version macros.
int width
width and height of the video frame
Definition: frame.h:242
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
static const uint16_t mask[17]
Definition: lzw.c:38
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:3138
int error_concealment
error concealment flags
Definition: avcodec.h:2918
int capabilities
Codec capabilities.
Definition: avcodec.h:3639
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
void(* decode_mb)(void *opaque, int ref, int mv_dir, int mv_type, int(*mv)[2][4][2], int mb_x, int mb_y, int mb_intra, int mb_skipped)
ThreadFrame * tf
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
static void error(const char *err)
#define fail()
Definition: checkasm.h:84
uint8_t * mbintra_table
int * mb_index2xy
int depth
Definition: v4l.c:62
#define pass
Definition: fft_template.c:532
static float distance(float x, float y, int band)
uint8_t * error_status_table
common internal API header
#define ER_AC_ERROR
useful rectangle filling function
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:264
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2976
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
uint8_t * er_temp_buffer
#define FFMIN(a, b)
Definition: common.h:96
#define FF_EC_DEBLOCK
Definition: avcodec.h:2920
#define width
#define ER_DC_END
uint16_t pb_time
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:3131
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:2987
int n
Definition: avisynth_c.h:684
int skip_top
Number of macroblock rows at the top which are skipped.
Definition: avcodec.h:2305
preferred ID for MPEG-1/2 video decoding
Definition: avcodec.h:196
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
Definition: frame.h:254
#define MV_TYPE_16X16
1 vector for the whole mb
Definition: mpegvideo.h:266
#define MV_DIR_BACKWARD
Definition: mpegvideo.h:263
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
Libavcodec external API header.
enum AVCodecID codec_id
Definition: avcodec.h:1704
ERPicture next_pic
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:221
int debug
debug
Definition: avcodec.h:2928
uint8_t * data
The data buffer.
Definition: buffer.h:89
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:82
#define MB_TYPE_16x16
Definition: avcodec.h:1261
MECmpContext mecc
#define IS_INTER(a)
Definition: mpegutils.h:81
#define ER_DC_ERROR
AVCodecContext * avctx
static int weight(int i, int blen, int offset)
Definition: diracdec.c:1507
#define MV_DIR_FORWARD
Definition: mpegvideo.h:262
int8_t * ref_index[2]
int skip_bottom
Number of macroblock rows at the bottom which are skipped.
Definition: avcodec.h:2312
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:204
me_cmp_func sad[6]
Definition: me_cmp.h:56
#define FF_EC_FAVOR_INTER
Definition: avcodec.h:2921
volatile int error_count
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
int partitioned_frame
if(ret< 0)
Definition: vf_mcdeint.c:282
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
#define MV_UNCHANGED
int16_t * dc_val[3]
Bi-dir predicted.
Definition: avutil.h:276
AVFrame * f
#define ff_crop_tab
#define IS_INTRA(x, y)
static int is_intra_more_likely(ERContext *s)
int mv[2][4][2]
int16_t(*[2] motion_val)[2]
#define IS_8X8(a)
Definition: mpegutils.h:91
static AVCodec * c
static int er_supported(ERContext *s)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> dc
void ff_er_frame_start(ERContext *s)
int height
Definition: frame.h:242
static void h_block_filter(ERContext *s, uint8_t *dst, int w, int h, int stride, int is_luma)
simple horizontal deblocking filter used for error resilience
#define av_freep(p)
#define ER_AC_END
#define av_malloc_array(a, b)
#define stride
int(* decode_slice)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Callback for each slice.
Definition: avcodec.h:3817
#define MV_TYPE_8X8
4 vectors (H.263, MPEG-4 4MV)
Definition: mpegvideo.h:267
uint8_t * mbskip_table
static void set_mv_strides(ERContext *s, int *mv_step, int *stride)
#define MB_TYPE_L0
Definition: avcodec.h:1274