FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
exr.c
Go to the documentation of this file.
1 /*
2  * OpenEXR (.exr) image decoder
3  * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
4  * Copyright (c) 2009 Jimmy Christensen
5  *
6  * B44/B44A, Tile, UINT32 added by Jokyo Images support by CNC - French National Center for Cinema
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 /**
26  * @file
27  * OpenEXR decoder
28  * @author Jimmy Christensen
29  *
30  * For more information on the OpenEXR format, visit:
31  * http://openexr.com/
32  *
33  * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger.
34  * exr_half2float() is credited to Aaftab Munshi, Dan Ginsburg, Dave Shreiner.
35  */
36 
37 #include <float.h>
38 #include <zlib.h>
39 
40 #include "libavutil/avassert.h"
41 #include "libavutil/common.h"
42 #include "libavutil/imgutils.h"
43 #include "libavutil/intfloat.h"
44 #include "libavutil/opt.h"
45 #include "libavutil/color_utils.h"
46 
47 #include "avcodec.h"
48 #include "bytestream.h"
49 
50 #if HAVE_BIGENDIAN
51 #include "bswapdsp.h"
52 #endif
53 
54 #include "get_bits.h"
55 #include "internal.h"
56 #include "mathops.h"
57 #include "thread.h"
58 
59 enum ExrCompr {
71 };
72 
78 };
79 
85 };
86 
91 };
92 
93 typedef struct EXRChannel {
94  int xsub, ysub;
96 } EXRChannel;
97 
98 typedef struct EXRTileAttribute {
104 
105 typedef struct EXRThreadData {
108 
110  int tmp_size;
111 
113  uint16_t *lut;
114 
115  int ysize, xsize;
116 
118 } EXRThreadData;
119 
120 typedef struct EXRContext {
121  AVClass *class;
124 
125 #if HAVE_BIGENDIAN
126  BswapDSPContext bbdsp;
127 #endif
128 
131  int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
133 
134  int w, h;
135  uint32_t xmax, xmin;
136  uint32_t ymax, ymin;
137  uint32_t xdelta, ydelta;
138 
140 
141  EXRTileAttribute tile_attr; /* header data attribute of tile */
142  int is_tile; /* 0 if scanline, 1 if tile */
143 
144  int is_luma;/* 1 if there is an Y plane */
145 
147  const uint8_t *buf;
148  int buf_size;
149 
153 
155 
156  const char *layer;
157 
159  float gamma;
160  uint16_t gamma_table[65536];
161 } EXRContext;
162 
163 /* -15 stored using a single precision bias of 127 */
164 #define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
165 
166 /* max exponent value in single precision that will be converted
167  * to Inf or Nan when stored as a half-float */
168 #define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
169 
170 /* 255 is the max exponent biased value */
171 #define FLOAT_MAX_BIASED_EXP (0xFF << 23)
172 
173 #define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
174 
175 /**
176  * Convert a half float as a uint16_t into a full float.
177  *
178  * @param hf half float as uint16_t
179  *
180  * @return float value
181  */
182 static union av_intfloat32 exr_half2float(uint16_t hf)
183 {
184  unsigned int sign = (unsigned int) (hf >> 15);
185  unsigned int mantissa = (unsigned int) (hf & ((1 << 10) - 1));
186  unsigned int exp = (unsigned int) (hf & HALF_FLOAT_MAX_BIASED_EXP);
187  union av_intfloat32 f;
188 
189  if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
190  // we have a half-float NaN or Inf
191  // half-float NaNs will be converted to a single precision NaN
192  // half-float Infs will be converted to a single precision Inf
194  if (mantissa)
195  mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
196  } else if (exp == 0x0) {
197  // convert half-float zero/denorm to single precision value
198  if (mantissa) {
199  mantissa <<= 1;
201  // check for leading 1 in denorm mantissa
202  while ((mantissa & (1 << 10))) {
203  // for every leading 0, decrement single precision exponent by 1
204  // and shift half-float mantissa value to the left
205  mantissa <<= 1;
206  exp -= (1 << 23);
207  }
208  // clamp the mantissa to 10 bits
209  mantissa &= ((1 << 10) - 1);
210  // shift left to generate single-precision mantissa of 23 bits
211  mantissa <<= 13;
212  }
213  } else {
214  // shift left to generate single-precision mantissa of 23 bits
215  mantissa <<= 13;
216  // generate single precision biased exponent value
218  }
219 
220  f.i = (sign << 31) | exp | mantissa;
221 
222  return f;
223 }
224 
225 
226 /**
227  * Convert from 32-bit float as uint32_t to uint16_t.
228  *
229  * @param v 32-bit float
230  *
231  * @return normalized 16-bit unsigned int
232  */
233 static inline uint16_t exr_flt2uint(int32_t v)
234 {
235  int32_t exp = v >> 23;
236  // "HACK": negative values result in exp< 0, so clipping them to 0
237  // is also handled by this condition, avoids explicit check for sign bit.
238  if (exp <= 127 + 7 - 24) // we would shift out all bits anyway
239  return 0;
240  if (exp >= 127)
241  return 0xffff;
242  v &= 0x007fffff;
243  return (v + (1 << 23)) >> (127 + 7 - exp);
244 }
245 
246 /**
247  * Convert from 16-bit float as uint16_t to uint16_t.
248  *
249  * @param v 16-bit float
250  *
251  * @return normalized 16-bit unsigned int
252  */
253 static inline uint16_t exr_halflt2uint(uint16_t v)
254 {
255  unsigned exp = 14 - (v >> 10);
256  if (exp >= 14) {
257  if (exp == 14)
258  return (v >> 9) & 1;
259  else
260  return (v & 0x8000) ? 0 : 0xffff;
261  }
262  v <<= 6;
263  return (v + (1 << 16)) >> (exp + 1);
264 }
265 
266 static void predictor(uint8_t *src, int size)
267 {
268  uint8_t *t = src + 1;
269  uint8_t *stop = src + size;
270 
271  while (t < stop) {
272  int d = (int) t[-1] + (int) t[0] - 128;
273  t[0] = d;
274  ++t;
275  }
276 }
277 
278 static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
279 {
280  const uint8_t *t1 = src;
281  int half_size = size / 2;
282  const uint8_t *t2 = src + half_size;
283  uint8_t *s = dst;
284  int i;
285 
286  av_assert1(size % 2 == 0);
287 
288  for (i = 0; i < half_size; i++) {
289  *(s++) = *(t1++);
290  *(s++) = *(t2++);
291  }
292 }
293 
294 static int zip_uncompress(const uint8_t *src, int compressed_size,
295  int uncompressed_size, EXRThreadData *td)
296 {
297  unsigned long dest_len = uncompressed_size;
298 
299  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
300  dest_len != uncompressed_size)
301  return AVERROR_INVALIDDATA;
302 
303  predictor(td->tmp, uncompressed_size);
304  reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
305 
306  return 0;
307 }
308 
309 static int rle_uncompress(const uint8_t *src, int compressed_size,
310  int uncompressed_size, EXRThreadData *td)
311 {
312  uint8_t *d = td->tmp;
313  const int8_t *s = src;
314  int ssize = compressed_size;
315  int dsize = uncompressed_size;
316  uint8_t *dend = d + dsize;
317  int count;
318 
319  while (ssize > 0) {
320  count = *s++;
321 
322  if (count < 0) {
323  count = -count;
324 
325  if ((dsize -= count) < 0 ||
326  (ssize -= count + 1) < 0)
327  return AVERROR_INVALIDDATA;
328 
329  while (count--)
330  *d++ = *s++;
331  } else {
332  count++;
333 
334  if ((dsize -= count) < 0 ||
335  (ssize -= 2) < 0)
336  return AVERROR_INVALIDDATA;
337 
338  while (count--)
339  *d++ = *s;
340 
341  s++;
342  }
343  }
344 
345  if (dend != d)
346  return AVERROR_INVALIDDATA;
347 
348  predictor(td->tmp, uncompressed_size);
349  reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
350 
351  return 0;
352 }
353 
354 #define USHORT_RANGE (1 << 16)
355 #define BITMAP_SIZE (1 << 13)
356 
357 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
358 {
359  int i, k = 0;
360 
361  for (i = 0; i < USHORT_RANGE; i++)
362  if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
363  lut[k++] = i;
364 
365  i = k - 1;
366 
367  memset(lut + k, 0, (USHORT_RANGE - k) * 2);
368 
369  return i;
370 }
371 
372 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
373 {
374  int i;
375 
376  for (i = 0; i < dsize; ++i)
377  dst[i] = lut[dst[i]];
378 }
379 
380 #define HUF_ENCBITS 16 // literal (value) bit length
381 #define HUF_DECBITS 14 // decoding bit size (>= 8)
382 
383 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
384 #define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
385 #define HUF_DECMASK (HUF_DECSIZE - 1)
386 
387 typedef struct HufDec {
388  int len;
389  int lit;
390  int *p;
391 } HufDec;
392 
393 static void huf_canonical_code_table(uint64_t *hcode)
394 {
395  uint64_t c, n[59] = { 0 };
396  int i;
397 
398  for (i = 0; i < HUF_ENCSIZE; ++i)
399  n[hcode[i]] += 1;
400 
401  c = 0;
402  for (i = 58; i > 0; --i) {
403  uint64_t nc = ((c + n[i]) >> 1);
404  n[i] = c;
405  c = nc;
406  }
407 
408  for (i = 0; i < HUF_ENCSIZE; ++i) {
409  int l = hcode[i];
410 
411  if (l > 0)
412  hcode[i] = l | (n[l]++ << 6);
413  }
414 }
415 
416 #define SHORT_ZEROCODE_RUN 59
417 #define LONG_ZEROCODE_RUN 63
418 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
419 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
420 
422  int32_t im, int32_t iM, uint64_t *hcode)
423 {
424  GetBitContext gbit;
425  int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
426  if (ret < 0)
427  return ret;
428 
429  for (; im <= iM; im++) {
430  uint64_t l = hcode[im] = get_bits(&gbit, 6);
431 
432  if (l == LONG_ZEROCODE_RUN) {
433  int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
434 
435  if (im + zerun > iM + 1)
436  return AVERROR_INVALIDDATA;
437 
438  while (zerun--)
439  hcode[im++] = 0;
440 
441  im--;
442  } else if (l >= SHORT_ZEROCODE_RUN) {
443  int zerun = l - SHORT_ZEROCODE_RUN + 2;
444 
445  if (im + zerun > iM + 1)
446  return AVERROR_INVALIDDATA;
447 
448  while (zerun--)
449  hcode[im++] = 0;
450 
451  im--;
452  }
453  }
454 
455  bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
457 
458  return 0;
459 }
460 
461 static int huf_build_dec_table(const uint64_t *hcode, int im,
462  int iM, HufDec *hdecod)
463 {
464  for (; im <= iM; im++) {
465  uint64_t c = hcode[im] >> 6;
466  int i, l = hcode[im] & 63;
467 
468  if (c >> l)
469  return AVERROR_INVALIDDATA;
470 
471  if (l > HUF_DECBITS) {
472  HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
473  if (pl->len)
474  return AVERROR_INVALIDDATA;
475 
476  pl->lit++;
477 
478  pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
479  if (!pl->p)
480  return AVERROR(ENOMEM);
481 
482  pl->p[pl->lit - 1] = im;
483  } else if (l) {
484  HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
485 
486  for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
487  if (pl->len || pl->p)
488  return AVERROR_INVALIDDATA;
489  pl->len = l;
490  pl->lit = im;
491  }
492  }
493  }
494 
495  return 0;
496 }
497 
498 #define get_char(c, lc, gb) \
499 { \
500  c = (c << 8) | bytestream2_get_byte(gb); \
501  lc += 8; \
502 }
503 
504 #define get_code(po, rlc, c, lc, gb, out, oe, outb) \
505 { \
506  if (po == rlc) { \
507  if (lc < 8) \
508  get_char(c, lc, gb); \
509  lc -= 8; \
510  \
511  cs = c >> lc; \
512  \
513  if (out + cs > oe || out == outb) \
514  return AVERROR_INVALIDDATA; \
515  \
516  s = out[-1]; \
517  \
518  while (cs-- > 0) \
519  *out++ = s; \
520  } else if (out < oe) { \
521  *out++ = po; \
522  } else { \
523  return AVERROR_INVALIDDATA; \
524  } \
525 }
526 
527 static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
528  GetByteContext *gb, int nbits,
529  int rlc, int no, uint16_t *out)
530 {
531  uint64_t c = 0;
532  uint16_t *outb = out;
533  uint16_t *oe = out + no;
534  const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
535  uint8_t cs;
536  uint16_t s;
537  int i, lc = 0;
538 
539  while (gb->buffer < ie) {
540  get_char(c, lc, gb);
541 
542  while (lc >= HUF_DECBITS) {
543  const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
544 
545  if (pl.len) {
546  lc -= pl.len;
547  get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
548  } else {
549  int j;
550 
551  if (!pl.p)
552  return AVERROR_INVALIDDATA;
553 
554  for (j = 0; j < pl.lit; j++) {
555  int l = hcode[pl.p[j]] & 63;
556 
557  while (lc < l && bytestream2_get_bytes_left(gb) > 0)
558  get_char(c, lc, gb);
559 
560  if (lc >= l) {
561  if ((hcode[pl.p[j]] >> 6) ==
562  ((c >> (lc - l)) & ((1LL << l) - 1))) {
563  lc -= l;
564  get_code(pl.p[j], rlc, c, lc, gb, out, oe, outb);
565  break;
566  }
567  }
568  }
569 
570  if (j == pl.lit)
571  return AVERROR_INVALIDDATA;
572  }
573  }
574  }
575 
576  i = (8 - nbits) & 7;
577  c >>= i;
578  lc -= i;
579 
580  while (lc > 0) {
581  const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
582 
583  if (pl.len) {
584  lc -= pl.len;
585  get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
586  } else {
587  return AVERROR_INVALIDDATA;
588  }
589  }
590 
591  if (out - outb != no)
592  return AVERROR_INVALIDDATA;
593  return 0;
594 }
595 
597  uint16_t *dst, int dst_size)
598 {
599  int32_t src_size, im, iM;
600  uint32_t nBits;
601  uint64_t *freq;
602  HufDec *hdec;
603  int ret, i;
604 
605  src_size = bytestream2_get_le32(gb);
606  im = bytestream2_get_le32(gb);
607  iM = bytestream2_get_le32(gb);
608  bytestream2_skip(gb, 4);
609  nBits = bytestream2_get_le32(gb);
610  if (im < 0 || im >= HUF_ENCSIZE ||
611  iM < 0 || iM >= HUF_ENCSIZE ||
612  src_size < 0)
613  return AVERROR_INVALIDDATA;
614 
615  bytestream2_skip(gb, 4);
616 
617  freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
618  hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
619  if (!freq || !hdec) {
620  ret = AVERROR(ENOMEM);
621  goto fail;
622  }
623 
624  if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
625  goto fail;
626 
627  if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
628  ret = AVERROR_INVALIDDATA;
629  goto fail;
630  }
631 
632  if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
633  goto fail;
634  ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
635 
636 fail:
637  for (i = 0; i < HUF_DECSIZE; i++)
638  if (hdec)
639  av_freep(&hdec[i].p);
640 
641  av_free(freq);
642  av_free(hdec);
643 
644  return ret;
645 }
646 
647 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
648 {
649  int16_t ls = l;
650  int16_t hs = h;
651  int hi = hs;
652  int ai = ls + (hi & 1) + (hi >> 1);
653  int16_t as = ai;
654  int16_t bs = ai - hi;
655 
656  *a = as;
657  *b = bs;
658 }
659 
660 #define NBITS 16
661 #define A_OFFSET (1 << (NBITS - 1))
662 #define MOD_MASK ((1 << NBITS) - 1)
663 
664 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
665 {
666  int m = l;
667  int d = h;
668  int bb = (m - (d >> 1)) & MOD_MASK;
669  int aa = (d + bb - A_OFFSET) & MOD_MASK;
670  *b = bb;
671  *a = aa;
672 }
673 
674 static void wav_decode(uint16_t *in, int nx, int ox,
675  int ny, int oy, uint16_t mx)
676 {
677  int w14 = (mx < (1 << 14));
678  int n = (nx > ny) ? ny : nx;
679  int p = 1;
680  int p2;
681 
682  while (p <= n)
683  p <<= 1;
684 
685  p >>= 1;
686  p2 = p;
687  p >>= 1;
688 
689  while (p >= 1) {
690  uint16_t *py = in;
691  uint16_t *ey = in + oy * (ny - p2);
692  uint16_t i00, i01, i10, i11;
693  int oy1 = oy * p;
694  int oy2 = oy * p2;
695  int ox1 = ox * p;
696  int ox2 = ox * p2;
697 
698  for (; py <= ey; py += oy2) {
699  uint16_t *px = py;
700  uint16_t *ex = py + ox * (nx - p2);
701 
702  for (; px <= ex; px += ox2) {
703  uint16_t *p01 = px + ox1;
704  uint16_t *p10 = px + oy1;
705  uint16_t *p11 = p10 + ox1;
706 
707  if (w14) {
708  wdec14(*px, *p10, &i00, &i10);
709  wdec14(*p01, *p11, &i01, &i11);
710  wdec14(i00, i01, px, p01);
711  wdec14(i10, i11, p10, p11);
712  } else {
713  wdec16(*px, *p10, &i00, &i10);
714  wdec16(*p01, *p11, &i01, &i11);
715  wdec16(i00, i01, px, p01);
716  wdec16(i10, i11, p10, p11);
717  }
718  }
719 
720  if (nx & p) {
721  uint16_t *p10 = px + oy1;
722 
723  if (w14)
724  wdec14(*px, *p10, &i00, p10);
725  else
726  wdec16(*px, *p10, &i00, p10);
727 
728  *px = i00;
729  }
730  }
731 
732  if (ny & p) {
733  uint16_t *px = py;
734  uint16_t *ex = py + ox * (nx - p2);
735 
736  for (; px <= ex; px += ox2) {
737  uint16_t *p01 = px + ox1;
738 
739  if (w14)
740  wdec14(*px, *p01, &i00, p01);
741  else
742  wdec16(*px, *p01, &i00, p01);
743 
744  *px = i00;
745  }
746  }
747 
748  p2 = p;
749  p >>= 1;
750  }
751 }
752 
753 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
754  int dsize, EXRThreadData *td)
755 {
756  GetByteContext gb;
757  uint16_t maxval, min_non_zero, max_non_zero;
758  uint16_t *ptr;
759  uint16_t *tmp = (uint16_t *)td->tmp;
760  uint16_t *out;
761  uint16_t *in;
762  int ret, i, j;
763  int pixel_half_size;/* 1 for half, 2 for float and uint32 */
765  int tmp_offset;
766 
767  if (!td->bitmap)
769  if (!td->lut)
770  td->lut = av_malloc(1 << 17);
771  if (!td->bitmap || !td->lut) {
772  av_freep(&td->bitmap);
773  av_freep(&td->lut);
774  return AVERROR(ENOMEM);
775  }
776 
777  bytestream2_init(&gb, src, ssize);
778  min_non_zero = bytestream2_get_le16(&gb);
779  max_non_zero = bytestream2_get_le16(&gb);
780 
781  if (max_non_zero >= BITMAP_SIZE)
782  return AVERROR_INVALIDDATA;
783 
784  memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
785  if (min_non_zero <= max_non_zero)
786  bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
787  max_non_zero - min_non_zero + 1);
788  memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
789 
790  maxval = reverse_lut(td->bitmap, td->lut);
791 
792  ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
793  if (ret)
794  return ret;
795 
796  ptr = tmp;
797  for (i = 0; i < s->nb_channels; i++) {
798  channel = &s->channels[i];
799 
800  if (channel->pixel_type == EXR_HALF)
801  pixel_half_size = 1;
802  else
803  pixel_half_size = 2;
804 
805  for (j = 0; j < pixel_half_size; j++)
806  wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize,
807  td->xsize * pixel_half_size, maxval);
808  ptr += td->xsize * td->ysize * pixel_half_size;
809  }
810 
811  apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
812 
813  out = (uint16_t *)td->uncompressed_data;
814  for (i = 0; i < td->ysize; i++) {
815  tmp_offset = 0;
816  for (j = 0; j < s->nb_channels; j++) {
817  channel = &s->channels[j];
818  if (channel->pixel_type == EXR_HALF)
819  pixel_half_size = 1;
820  else
821  pixel_half_size = 2;
822 
823  in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size;
824  tmp_offset += pixel_half_size;
825 
826 #if HAVE_BIGENDIAN
827  s->bbdsp.bswap16_buf(out, in, td->xsize * pixel_half_size);
828 #else
829  memcpy(out, in, td->xsize * 2 * pixel_half_size);
830 #endif
831  out += td->xsize * pixel_half_size;
832  }
833  }
834 
835  return 0;
836 }
837 
839  int compressed_size, int uncompressed_size,
840  EXRThreadData *td)
841 {
842  unsigned long dest_len, expected_len = 0;
843  const uint8_t *in = td->tmp;
844  uint8_t *out;
845  int c, i, j;
846 
847  for (i = 0; i < s->nb_channels; i++) {
848  if (s->channels[i].pixel_type == EXR_FLOAT) {
849  expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
850  } else if (s->channels[i].pixel_type == EXR_HALF) {
851  expected_len += (td->xsize * td->ysize * 2);
852  } else {//UINT 32
853  expected_len += (td->xsize * td->ysize * 4);
854  }
855  }
856 
857  dest_len = expected_len;
858 
859  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
860  return AVERROR_INVALIDDATA;
861  } else if (dest_len != expected_len) {
862  return AVERROR_INVALIDDATA;
863  }
864 
865  out = td->uncompressed_data;
866  for (i = 0; i < td->ysize; i++)
867  for (c = 0; c < s->nb_channels; c++) {
868  EXRChannel *channel = &s->channels[c];
869  const uint8_t *ptr[4];
870  uint32_t pixel = 0;
871 
872  switch (channel->pixel_type) {
873  case EXR_FLOAT:
874  ptr[0] = in;
875  ptr[1] = ptr[0] + td->xsize;
876  ptr[2] = ptr[1] + td->xsize;
877  in = ptr[2] + td->xsize;
878 
879  for (j = 0; j < td->xsize; ++j) {
880  uint32_t diff = (*(ptr[0]++) << 24) |
881  (*(ptr[1]++) << 16) |
882  (*(ptr[2]++) << 8);
883  pixel += diff;
884  bytestream_put_le32(&out, pixel);
885  }
886  break;
887  case EXR_HALF:
888  ptr[0] = in;
889  ptr[1] = ptr[0] + td->xsize;
890  in = ptr[1] + td->xsize;
891  for (j = 0; j < td->xsize; j++) {
892  uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
893 
894  pixel += diff;
895  bytestream_put_le16(&out, pixel);
896  }
897  break;
898  case EXR_UINT:
899  ptr[0] = in;
900  ptr[1] = ptr[0] + s->xdelta;
901  ptr[2] = ptr[1] + s->xdelta;
902  ptr[3] = ptr[2] + s->xdelta;
903  in = ptr[3] + s->xdelta;
904 
905  for (j = 0; j < s->xdelta; ++j) {
906  uint32_t diff = (*(ptr[0]++) << 24) |
907  (*(ptr[1]++) << 16) |
908  (*(ptr[2]++) << 8 ) |
909  (*(ptr[3]++));
910  pixel += diff;
911  bytestream_put_le32(&out, pixel);
912  }
913  break;
914  default:
915  return AVERROR_INVALIDDATA;
916  }
917  }
918 
919  return 0;
920 }
921 
922 static void unpack_14(const uint8_t b[14], uint16_t s[16])
923 {
924  unsigned short shift = (b[ 2] >> 2);
925  unsigned short bias = (0x20 << shift);
926  int i;
927 
928  s[ 0] = (b[0] << 8) | b[1];
929 
930  s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
931  s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
932  s[12] = s[ 8] + ((b[ 4] & 0x3f) << shift) - bias;
933 
934  s[ 1] = s[ 0] + ((b[ 5] >> 2) << shift) - bias;
935  s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
936  s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
937  s[13] = s[12] + ((b[ 7] & 0x3f) << shift) - bias;
938 
939  s[ 2] = s[ 1] + ((b[ 8] >> 2) << shift) - bias;
940  s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
941  s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
942  s[14] = s[13] + ((b[10] & 0x3f) << shift) - bias;
943 
944  s[ 3] = s[ 2] + ((b[11] >> 2) << shift) - bias;
945  s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
946  s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
947  s[15] = s[14] + ((b[13] & 0x3f) << shift) - bias;
948 
949  for (i = 0; i < 16; ++i) {
950  if (s[i] & 0x8000)
951  s[i] &= 0x7fff;
952  else
953  s[i] = ~s[i];
954  }
955 }
956 
957 static void unpack_3(const uint8_t b[3], uint16_t s[16])
958 {
959  int i;
960 
961  s[0] = (b[0] << 8) | b[1];
962 
963  if (s[0] & 0x8000)
964  s[0] &= 0x7fff;
965  else
966  s[0] = ~s[0];
967 
968  for (i = 1; i < 16; i++)
969  s[i] = s[0];
970 }
971 
972 
973 static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
974  int uncompressed_size, EXRThreadData *td) {
975  const int8_t *sr = src;
976  int stay_to_uncompress = compressed_size;
977  int nb_b44_block_w, nb_b44_block_h;
978  int index_tl_x, index_tl_y, index_out, index_tmp;
979  uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */
980  int c, iY, iX, y, x;
981  int target_channel_offset = 0;
982 
983  /* calc B44 block count */
984  nb_b44_block_w = td->xsize / 4;
985  if ((td->xsize % 4) != 0)
986  nb_b44_block_w++;
987 
988  nb_b44_block_h = td->ysize / 4;
989  if ((td->ysize % 4) != 0)
990  nb_b44_block_h++;
991 
992  for (c = 0; c < s->nb_channels; c++) {
993  if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
994  for (iY = 0; iY < nb_b44_block_h; iY++) {
995  for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */
996  if (stay_to_uncompress < 3) {
997  av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress);
998  return AVERROR_INVALIDDATA;
999  }
1000 
1001  if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */
1002  unpack_3(sr, tmp_buffer);
1003  sr += 3;
1004  stay_to_uncompress -= 3;
1005  } else {/* B44 Block */
1006  if (stay_to_uncompress < 14) {
1007  av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress);
1008  return AVERROR_INVALIDDATA;
1009  }
1010  unpack_14(sr, tmp_buffer);
1011  sr += 14;
1012  stay_to_uncompress -= 14;
1013  }
1014 
1015  /* copy data to uncompress buffer (B44 block can exceed target resolution)*/
1016  index_tl_x = iX * 4;
1017  index_tl_y = iY * 4;
1018 
1019  for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) {
1020  for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) {
1021  index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
1022  index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
1023  td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
1024  td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
1025  }
1026  }
1027  }
1028  }
1029  target_channel_offset += 2;
1030  } else {/* Float or UINT 32 channel */
1031  if (stay_to_uncompress < td->ysize * td->xsize * 4) {
1032  av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress);
1033  return AVERROR_INVALIDDATA;
1034  }
1035 
1036  for (y = 0; y < td->ysize; y++) {
1037  index_out = target_channel_offset * td->xsize + y * td->channel_line_size;
1038  memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4);
1039  sr += td->xsize * 4;
1040  }
1041  target_channel_offset += 4;
1042 
1043  stay_to_uncompress -= td->ysize * td->xsize * 4;
1044  }
1045  }
1046 
1047  return 0;
1048 }
1049 
1050 static int decode_block(AVCodecContext *avctx, void *tdata,
1051  int jobnr, int threadnr)
1052 {
1053  EXRContext *s = avctx->priv_data;
1054  AVFrame *const p = s->picture;
1055  EXRThreadData *td = &s->thread_data[threadnr];
1056  const uint8_t *channel_buffer[4] = { 0 };
1057  const uint8_t *buf = s->buf;
1058  uint64_t line_offset, uncompressed_size;
1059  uint16_t *ptr_x;
1060  uint8_t *ptr;
1061  uint32_t data_size;
1062  uint64_t line, col = 0;
1063  uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1064  const uint8_t *src;
1065  int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components; /* nb pixel to add at the right of the datawindow */
1066  int bxmin = s->xmin * 2 * s->desc->nb_components; /* nb pixel to add at the left of the datawindow */
1067  int i, x, buf_size = s->buf_size;
1068  int c, rgb_channel_count;
1069  float one_gamma = 1.0f / s->gamma;
1071  int ret;
1072 
1073  line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
1074 
1075  if (s->is_tile) {
1076  if (line_offset > buf_size - 20)
1077  return AVERROR_INVALIDDATA;
1078 
1079  src = buf + line_offset + 20;
1080 
1081  tile_x = AV_RL32(src - 20);
1082  tile_y = AV_RL32(src - 16);
1083  tile_level_x = AV_RL32(src - 12);
1084  tile_level_y = AV_RL32(src - 8);
1085 
1086  data_size = AV_RL32(src - 4);
1087  if (data_size <= 0 || data_size > buf_size)
1088  return AVERROR_INVALIDDATA;
1089 
1090  if (tile_level_x || tile_level_y) { /* tile level, is not the full res level */
1091  avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
1092  return AVERROR_PATCHWELCOME;
1093  }
1094 
1095  if (s->xmin || s->ymin) {
1096  avpriv_report_missing_feature(s->avctx, "Tiles with xmin/ymin");
1097  return AVERROR_PATCHWELCOME;
1098  }
1099 
1100  line = s->tile_attr.ySize * tile_y;
1101  col = s->tile_attr.xSize * tile_x;
1102 
1103  if (line < s->ymin || line > s->ymax ||
1104  col < s->xmin || col > s->xmax)
1105  return AVERROR_INVALIDDATA;
1106 
1107  td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tile_y * s->tile_attr.ySize);
1108  td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tile_x * s->tile_attr.xSize);
1109 
1110  if (col) { /* not the first tile of the line */
1111  bxmin = 0; /* doesn't add pixel at the left of the datawindow */
1112  }
1113 
1114  if ((col + td->xsize) != s->xdelta)/* not the last tile of the line */
1115  axmax = 0; /* doesn't add pixel at the right of the datawindow */
1116 
1117  td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1118  uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1119  } else {
1120  if (line_offset > buf_size - 8)
1121  return AVERROR_INVALIDDATA;
1122 
1123  src = buf + line_offset + 8;
1124  line = AV_RL32(src - 8);
1125 
1126  if (line < s->ymin || line > s->ymax)
1127  return AVERROR_INVALIDDATA;
1128 
1129  data_size = AV_RL32(src - 4);
1130  if (data_size <= 0 || data_size > buf_size)
1131  return AVERROR_INVALIDDATA;
1132 
1133  td->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
1134  td->xsize = s->xdelta;
1135 
1136  td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1137  uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1138 
1139  if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
1140  line_offset > buf_size - uncompressed_size)) ||
1141  (s->compression != EXR_RAW && (data_size > uncompressed_size ||
1142  line_offset > buf_size - data_size))) {
1143  return AVERROR_INVALIDDATA;
1144  }
1145  }
1146 
1147  if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
1148  av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
1149  if (!td->tmp)
1150  return AVERROR(ENOMEM);
1151  }
1152 
1153  if (data_size < uncompressed_size) {
1155  &td->uncompressed_size, uncompressed_size);
1156 
1157  if (!td->uncompressed_data)
1158  return AVERROR(ENOMEM);
1159 
1160  ret = AVERROR_INVALIDDATA;
1161  switch (s->compression) {
1162  case EXR_ZIP1:
1163  case EXR_ZIP16:
1164  ret = zip_uncompress(src, data_size, uncompressed_size, td);
1165  break;
1166  case EXR_PIZ:
1167  ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
1168  break;
1169  case EXR_PXR24:
1170  ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
1171  break;
1172  case EXR_RLE:
1173  ret = rle_uncompress(src, data_size, uncompressed_size, td);
1174  break;
1175  case EXR_B44:
1176  case EXR_B44A:
1177  ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
1178  break;
1179  }
1180  if (ret < 0) {
1181  av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
1182  return ret;
1183  }
1184  src = td->uncompressed_data;
1185  }
1186 
1187  if (!s->is_luma) {
1188  channel_buffer[0] = src + td->xsize * s->channel_offsets[0];
1189  channel_buffer[1] = src + td->xsize * s->channel_offsets[1];
1190  channel_buffer[2] = src + td->xsize * s->channel_offsets[2];
1191  rgb_channel_count = 3;
1192  } else { /* put y data in the first channel_buffer */
1193  channel_buffer[0] = src + td->xsize * s->channel_offsets[1];
1194  rgb_channel_count = 1;
1195  }
1196  if (s->channel_offsets[3] >= 0)
1197  channel_buffer[3] = src + td->xsize * s->channel_offsets[3];
1198 
1199  ptr = p->data[0] + line * p->linesize[0] + (col * s->desc->nb_components * 2);
1200 
1201  for (i = 0;
1202  i < td->ysize; i++, ptr += p->linesize[0]) {
1203 
1204  const uint8_t * a;
1205  const uint8_t *rgb[3];
1206 
1207  for (c = 0; c < rgb_channel_count; c++){
1208  rgb[c] = channel_buffer[c];
1209  }
1210 
1211  if (channel_buffer[3])
1212  a = channel_buffer[3];
1213 
1214  ptr_x = (uint16_t *) ptr;
1215 
1216  // Zero out the start if xmin is not 0
1217  memset(ptr_x, 0, bxmin);
1218  ptr_x += s->xmin * s->desc->nb_components;
1219 
1220  if (s->pixel_type == EXR_FLOAT) {
1221  // 32-bit
1222  if (trc_func) {
1223  for (x = 0; x < td->xsize; x++) {
1224  union av_intfloat32 t;
1225 
1226  for (c = 0; c < rgb_channel_count; c++) {
1227  t.i = bytestream_get_le32(&rgb[c]);
1228  t.f = trc_func(t.f);
1229  *ptr_x++ = exr_flt2uint(t.i);
1230  }
1231  if (channel_buffer[3])
1232  *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
1233  }
1234  } else {
1235  for (x = 0; x < td->xsize; x++) {
1236  union av_intfloat32 t;
1237  int c;
1238 
1239  for (c = 0; c < rgb_channel_count; c++) {
1240  t.i = bytestream_get_le32(&rgb[c]);
1241  if (t.f > 0.0f) /* avoid negative values */
1242  t.f = powf(t.f, one_gamma);
1243  *ptr_x++ = exr_flt2uint(t.i);
1244  }
1245 
1246  if (channel_buffer[3])
1247  *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
1248  }
1249  }
1250  } else if (s->pixel_type == EXR_HALF) {
1251  // 16-bit
1252  for (x = 0; x < td->xsize; x++) {
1253  int c;
1254  for (c = 0; c < rgb_channel_count; c++) {
1255  *ptr_x++ = s->gamma_table[bytestream_get_le16(&rgb[c])];
1256  }
1257 
1258  if (channel_buffer[3])
1259  *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
1260  }
1261  } else if (s->pixel_type == EXR_UINT) {
1262  for (x = 0; x < td->xsize; x++) {
1263  for (c = 0; c < rgb_channel_count; c++) {
1264  *ptr_x++ = bytestream_get_le32(&rgb[c]) >> 16;
1265  }
1266 
1267  if (channel_buffer[3])
1268  *ptr_x++ = bytestream_get_le32(&a) >> 16;
1269  }
1270  }
1271 
1272  // Zero out the end if xmax+1 is not w
1273  memset(ptr_x, 0, axmax);
1274 
1275  channel_buffer[0] += td->channel_line_size;
1276  channel_buffer[1] += td->channel_line_size;
1277  channel_buffer[2] += td->channel_line_size;
1278  if (channel_buffer[3])
1279  channel_buffer[3] += td->channel_line_size;
1280  }
1281 
1282  return 0;
1283 }
1284 
1285 /**
1286  * Check if the variable name corresponds to its data type.
1287  *
1288  * @param s the EXRContext
1289  * @param value_name name of the variable to check
1290  * @param value_type type of the variable to check
1291  * @param minimum_length minimum length of the variable data
1292  *
1293  * @return bytes to read containing variable data
1294  * -1 if variable is not found
1295  * 0 if buffer ended prematurely
1296  */
1298  const char *value_name,
1299  const char *value_type,
1300  unsigned int minimum_length)
1301 {
1302  int var_size = -1;
1303 
1304  if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
1305  !strcmp(s->gb.buffer, value_name)) {
1306  // found value_name, jump to value_type (null terminated strings)
1307  s->gb.buffer += strlen(value_name) + 1;
1308  if (!strcmp(s->gb.buffer, value_type)) {
1309  s->gb.buffer += strlen(value_type) + 1;
1310  var_size = bytestream2_get_le32(&s->gb);
1311  // don't go read past boundaries
1312  if (var_size > bytestream2_get_bytes_left(&s->gb))
1313  var_size = 0;
1314  } else {
1315  // value_type not found, reset the buffer
1316  s->gb.buffer -= strlen(value_name) + 1;
1318  "Unknown data type %s for header variable %s.\n",
1319  value_type, value_name);
1320  }
1321  }
1322 
1323  return var_size;
1324 }
1325 
1327 {
1328  AVDictionary *metadata = NULL;
1329  int magic_number, version, i, flags, sar = 0;
1330  int layer_match = 0;
1331 
1332  s->current_channel_offset = 0;
1333  s->xmin = ~0;
1334  s->xmax = ~0;
1335  s->ymin = ~0;
1336  s->ymax = ~0;
1337  s->xdelta = ~0;
1338  s->ydelta = ~0;
1339  s->channel_offsets[0] = -1;
1340  s->channel_offsets[1] = -1;
1341  s->channel_offsets[2] = -1;
1342  s->channel_offsets[3] = -1;
1343  s->pixel_type = EXR_UNKNOWN;
1344  s->compression = EXR_UNKN;
1345  s->nb_channels = 0;
1346  s->w = 0;
1347  s->h = 0;
1348  s->tile_attr.xSize = -1;
1349  s->tile_attr.ySize = -1;
1350  s->is_tile = 0;
1351  s->is_luma = 0;
1352 
1353  if (bytestream2_get_bytes_left(&s->gb) < 10) {
1354  av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1355  return AVERROR_INVALIDDATA;
1356  }
1357 
1358  magic_number = bytestream2_get_le32(&s->gb);
1359  if (magic_number != 20000630) {
1360  /* As per documentation of OpenEXR, it is supposed to be
1361  * int 20000630 little-endian */
1362  av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1363  return AVERROR_INVALIDDATA;
1364  }
1365 
1366  version = bytestream2_get_byte(&s->gb);
1367  if (version != 2) {
1368  avpriv_report_missing_feature(s->avctx, "Version %d", version);
1369  return AVERROR_PATCHWELCOME;
1370  }
1371 
1372  flags = bytestream2_get_le24(&s->gb);
1373 
1374  if (flags == 0x00)
1375  s->is_tile = 0;
1376  else if (flags & 0x02)
1377  s->is_tile = 1;
1378  else{
1379  avpriv_report_missing_feature(s->avctx, "flags %d", flags);
1380  return AVERROR_PATCHWELCOME;
1381  }
1382 
1383  // Parse the header
1384  while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
1385  int var_size;
1386  if ((var_size = check_header_variable(s, "channels",
1387  "chlist", 38)) >= 0) {
1388  GetByteContext ch_gb;
1389  if (!var_size)
1390  return AVERROR_INVALIDDATA;
1391 
1392  bytestream2_init(&ch_gb, s->gb.buffer, var_size);
1393 
1394  while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1396  enum ExrPixelType current_pixel_type;
1397  int channel_index = -1;
1398  int xsub, ysub;
1399 
1400  if (strcmp(s->layer, "") != 0) {
1401  if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1402  layer_match = 1;
1403  av_log(s->avctx, AV_LOG_INFO,
1404  "Channel match layer : %s.\n", ch_gb.buffer);
1405  ch_gb.buffer += strlen(s->layer);
1406  if (*ch_gb.buffer == '.')
1407  ch_gb.buffer++; /* skip dot if not given */
1408  } else {
1409  av_log(s->avctx, AV_LOG_INFO,
1410  "Channel doesn't match layer : %s.\n", ch_gb.buffer);
1411  }
1412  } else {
1413  layer_match = 1;
1414  }
1415 
1416  if (layer_match) { /* only search channel if the layer match is valid */
1417  if (!strcmp(ch_gb.buffer, "R") ||
1418  !strcmp(ch_gb.buffer, "X") ||
1419  !strcmp(ch_gb.buffer, "U")) {
1420  channel_index = 0;
1421  s->is_luma = 0;
1422  } else if (!strcmp(ch_gb.buffer, "G") ||
1423  !strcmp(ch_gb.buffer, "V")) {
1424  channel_index = 1;
1425  s->is_luma = 0;
1426  } else if (!strcmp(ch_gb.buffer, "Y")) {
1427  channel_index = 1;
1428  s->is_luma = 1;
1429  } else if (!strcmp(ch_gb.buffer, "B") ||
1430  !strcmp(ch_gb.buffer, "Z") ||
1431  !strcmp(ch_gb.buffer, "W")){
1432  channel_index = 2;
1433  s->is_luma = 0;
1434  } else if (!strcmp(ch_gb.buffer, "A")) {
1435  channel_index = 3;
1436  } else {
1438  "Unsupported channel %.256s.\n", ch_gb.buffer);
1439  }
1440  }
1441 
1442  /* skip until you get a 0 */
1443  while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1444  bytestream2_get_byte(&ch_gb))
1445  continue;
1446 
1447  if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1448  av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1449  return AVERROR_INVALIDDATA;
1450  }
1451 
1452  current_pixel_type = bytestream2_get_le32(&ch_gb);
1453  if (current_pixel_type >= EXR_UNKNOWN) {
1454  avpriv_report_missing_feature(s->avctx, "Pixel type %d",
1455  current_pixel_type);
1456  return AVERROR_PATCHWELCOME;
1457  }
1458 
1459  bytestream2_skip(&ch_gb, 4);
1460  xsub = bytestream2_get_le32(&ch_gb);
1461  ysub = bytestream2_get_le32(&ch_gb);
1462 
1463  if (xsub != 1 || ysub != 1) {
1465  "Subsampling %dx%d",
1466  xsub, ysub);
1467  return AVERROR_PATCHWELCOME;
1468  }
1469 
1470  if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */
1471  if (s->pixel_type != EXR_UNKNOWN &&
1472  s->pixel_type != current_pixel_type) {
1474  "RGB channels not of the same depth.\n");
1475  return AVERROR_INVALIDDATA;
1476  }
1477  s->pixel_type = current_pixel_type;
1478  s->channel_offsets[channel_index] = s->current_channel_offset;
1479  }
1480 
1481  s->channels = av_realloc(s->channels,
1482  ++s->nb_channels * sizeof(EXRChannel));
1483  if (!s->channels)
1484  return AVERROR(ENOMEM);
1485  channel = &s->channels[s->nb_channels - 1];
1486  channel->pixel_type = current_pixel_type;
1487  channel->xsub = xsub;
1488  channel->ysub = ysub;
1489 
1490  if (current_pixel_type == EXR_HALF) {
1491  s->current_channel_offset += 2;
1492  } else {/* Float or UINT32 */
1493  s->current_channel_offset += 4;
1494  }
1495  }
1496 
1497  /* Check if all channels are set with an offset or if the channels
1498  * are causing an overflow */
1499  if (!s->is_luma){/* if we expected to have at least 3 channels */
1500  if (FFMIN3(s->channel_offsets[0],
1501  s->channel_offsets[1],
1502  s->channel_offsets[2]) < 0) {
1503  if (s->channel_offsets[0] < 0)
1504  av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1505  if (s->channel_offsets[1] < 0)
1506  av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1507  if (s->channel_offsets[2] < 0)
1508  av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1509  return AVERROR_INVALIDDATA;
1510  }
1511  }
1512 
1513  // skip one last byte and update main gb
1514  s->gb.buffer = ch_gb.buffer + 1;
1515  continue;
1516  } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1517  31)) >= 0) {
1518  if (!var_size)
1519  return AVERROR_INVALIDDATA;
1520 
1521  s->xmin = bytestream2_get_le32(&s->gb);
1522  s->ymin = bytestream2_get_le32(&s->gb);
1523  s->xmax = bytestream2_get_le32(&s->gb);
1524  s->ymax = bytestream2_get_le32(&s->gb);
1525  s->xdelta = (s->xmax - s->xmin) + 1;
1526  s->ydelta = (s->ymax - s->ymin) + 1;
1527 
1528  continue;
1529  } else if ((var_size = check_header_variable(s, "displayWindow",
1530  "box2i", 34)) >= 0) {
1531  if (!var_size)
1532  return AVERROR_INVALIDDATA;
1533 
1534  bytestream2_skip(&s->gb, 8);
1535  s->w = bytestream2_get_le32(&s->gb) + 1;
1536  s->h = bytestream2_get_le32(&s->gb) + 1;
1537 
1538  continue;
1539  } else if ((var_size = check_header_variable(s, "lineOrder",
1540  "lineOrder", 25)) >= 0) {
1541  int line_order;
1542  if (!var_size)
1543  return AVERROR_INVALIDDATA;
1544 
1545  line_order = bytestream2_get_byte(&s->gb);
1546  av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1547  if (line_order > 2) {
1548  av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1549  return AVERROR_INVALIDDATA;
1550  }
1551 
1552  continue;
1553  } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1554  "float", 31)) >= 0) {
1555  if (!var_size)
1556  return AVERROR_INVALIDDATA;
1557 
1558  sar = bytestream2_get_le32(&s->gb);
1559 
1560  continue;
1561  } else if ((var_size = check_header_variable(s, "compression",
1562  "compression", 29)) >= 0) {
1563  if (!var_size)
1564  return AVERROR_INVALIDDATA;
1565 
1566  if (s->compression == EXR_UNKN)
1567  s->compression = bytestream2_get_byte(&s->gb);
1568  else
1570  "Found more than one compression attribute.\n");
1571 
1572  continue;
1573  } else if ((var_size = check_header_variable(s, "tiles",
1574  "tiledesc", 22)) >= 0) {
1575  char tileLevel;
1576 
1577  if (!s->is_tile)
1579  "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1580 
1581  s->tile_attr.xSize = bytestream2_get_le32(&s->gb);
1582  s->tile_attr.ySize = bytestream2_get_le32(&s->gb);
1583 
1584  tileLevel = bytestream2_get_byte(&s->gb);
1585  s->tile_attr.level_mode = tileLevel & 0x0f;
1586  s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1587 
1589  avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
1590  s->tile_attr.level_mode);
1591  return AVERROR_PATCHWELCOME;
1592  }
1593 
1595  avpriv_report_missing_feature(s->avctx, "Tile level round %d",
1596  s->tile_attr.level_round);
1597  return AVERROR_PATCHWELCOME;
1598  }
1599 
1600  continue;
1601  } else if ((var_size = check_header_variable(s, "writer",
1602  "string", 1)) >= 0) {
1603  uint8_t key[256] = { 0 };
1604 
1605  bytestream2_get_buffer(&s->gb, key, FFMIN(sizeof(key) - 1, var_size));
1606  av_dict_set(&metadata, "writer", key, 0);
1607 
1608  continue;
1609  }
1610 
1611  // Check if there are enough bytes for a header
1612  if (bytestream2_get_bytes_left(&s->gb) <= 9) {
1613  av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1614  return AVERROR_INVALIDDATA;
1615  }
1616 
1617  // Process unknown variables
1618  for (i = 0; i < 2; i++) // value_name and value_type
1619  while (bytestream2_get_byte(&s->gb) != 0);
1620 
1621  // Skip variable length
1622  bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
1623  }
1624 
1625  ff_set_sar(s->avctx, av_d2q(av_int2float(sar), 255));
1626 
1627  if (s->compression == EXR_UNKN) {
1628  av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1629  return AVERROR_INVALIDDATA;
1630  }
1631 
1632  if (s->is_tile) {
1633  if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
1634  av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
1635  return AVERROR_INVALIDDATA;
1636  }
1637  }
1638 
1639  if (bytestream2_get_bytes_left(&s->gb) <= 0) {
1640  av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1641  return AVERROR_INVALIDDATA;
1642  }
1643 
1644  frame->metadata = metadata;
1645 
1646  // aaand we are done
1647  bytestream2_skip(&s->gb, 1);
1648  return 0;
1649 }
1650 
1651 static int decode_frame(AVCodecContext *avctx, void *data,
1652  int *got_frame, AVPacket *avpkt)
1653 {
1654  EXRContext *s = avctx->priv_data;
1655  ThreadFrame frame = { .f = data };
1656  AVFrame *picture = data;
1657  uint8_t *ptr;
1658 
1659  int y, ret;
1660  int out_line_size;
1661  int nb_blocks; /* nb scanline or nb tile */
1662  uint64_t start_offset_table;
1663  uint64_t start_next_scanline;
1664  PutByteContext offset_table_writer;
1665 
1666  bytestream2_init(&s->gb, avpkt->data, avpkt->size);
1667 
1668  if ((ret = decode_header(s, picture)) < 0)
1669  return ret;
1670 
1671  switch (s->pixel_type) {
1672  case EXR_FLOAT:
1673  case EXR_HALF:
1674  case EXR_UINT:
1675  if (s->channel_offsets[3] >= 0) {
1676  if (!s->is_luma) {
1677  avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1678  } else {
1679  avctx->pix_fmt = AV_PIX_FMT_YA16;
1680  }
1681  } else {
1682  if (!s->is_luma) {
1683  avctx->pix_fmt = AV_PIX_FMT_RGB48;
1684  } else {
1685  avctx->pix_fmt = AV_PIX_FMT_GRAY16;
1686  }
1687  }
1688  break;
1689  default:
1690  av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
1691  return AVERROR_INVALIDDATA;
1692  }
1693 
1695  avctx->color_trc = s->apply_trc_type;
1696 
1697  switch (s->compression) {
1698  case EXR_RAW:
1699  case EXR_RLE:
1700  case EXR_ZIP1:
1701  s->scan_lines_per_block = 1;
1702  break;
1703  case EXR_PXR24:
1704  case EXR_ZIP16:
1705  s->scan_lines_per_block = 16;
1706  break;
1707  case EXR_PIZ:
1708  case EXR_B44:
1709  case EXR_B44A:
1710  s->scan_lines_per_block = 32;
1711  break;
1712  default:
1713  avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
1714  return AVERROR_PATCHWELCOME;
1715  }
1716 
1717  /* Verify the xmin, xmax, ymin, ymax and xdelta before setting
1718  * the actual image size. */
1719  if (s->xmin > s->xmax ||
1720  s->ymin > s->ymax ||
1721  s->xdelta != s->xmax - s->xmin + 1 ||
1722  s->xmax >= s->w ||
1723  s->ymax >= s->h) {
1724  av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
1725  return AVERROR_INVALIDDATA;
1726  }
1727 
1728  if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
1729  return ret;
1730 
1731  s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
1732  if (!s->desc)
1733  return AVERROR_INVALIDDATA;
1734  out_line_size = avctx->width * 2 * s->desc->nb_components;
1735 
1736  if (s->is_tile) {
1737  nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
1738  ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
1739  } else { /* scanline */
1740  nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
1742  }
1743 
1744  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1745  return ret;
1746 
1747  if (bytestream2_get_bytes_left(&s->gb) < nb_blocks * 8)
1748  return AVERROR_INVALIDDATA;
1749 
1750  // check offset table and recreate it if need
1751  if (!s->is_tile && bytestream2_peek_le64(&s->gb) == 0) {
1752  av_log(s->avctx, AV_LOG_DEBUG, "recreating invalid scanline offset table\n");
1753 
1754  start_offset_table = bytestream2_tell(&s->gb);
1755  start_next_scanline = start_offset_table + nb_blocks * 8;
1756  bytestream2_init_writer(&offset_table_writer, &avpkt->data[start_offset_table], nb_blocks * 8);
1757 
1758  for (y = 0; y < nb_blocks; y++) {
1759  /* write offset of prev scanline in offset table */
1760  bytestream2_put_le64(&offset_table_writer, start_next_scanline);
1761 
1762  /* get len of next scanline */
1763  bytestream2_seek(&s->gb, start_next_scanline + 4, SEEK_SET);/* skip line number */
1764  start_next_scanline += (bytestream2_get_le32(&s->gb) + 8);
1765  }
1766  bytestream2_seek(&s->gb, start_offset_table, SEEK_SET);
1767  }
1768 
1769  // save pointer we are going to use in decode_block
1770  s->buf = avpkt->data;
1771  s->buf_size = avpkt->size;
1772  ptr = picture->data[0];
1773 
1774  // Zero out the start if ymin is not 0
1775  for (y = 0; y < s->ymin; y++) {
1776  memset(ptr, 0, out_line_size);
1777  ptr += picture->linesize[0];
1778  }
1779 
1780  s->picture = picture;
1781 
1782  avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
1783 
1784  // Zero out the end if ymax+1 is not h
1785  ptr = picture->data[0] + ((s->ymax+1) * picture->linesize[0]);
1786  for (y = s->ymax + 1; y < avctx->height; y++) {
1787  memset(ptr, 0, out_line_size);
1788  ptr += picture->linesize[0];
1789  }
1790 
1791  picture->pict_type = AV_PICTURE_TYPE_I;
1792  *got_frame = 1;
1793 
1794  return avpkt->size;
1795 }
1796 
1798 {
1799  EXRContext *s = avctx->priv_data;
1800  uint32_t i;
1801  union av_intfloat32 t;
1802  float one_gamma = 1.0f / s->gamma;
1803  avpriv_trc_function trc_func = NULL;
1804 
1805  s->avctx = avctx;
1806 
1807 #if HAVE_BIGENDIAN
1808  ff_bswapdsp_init(&s->bbdsp);
1809 #endif
1810 
1812  if (trc_func) {
1813  for (i = 0; i < 65536; ++i) {
1814  t = exr_half2float(i);
1815  t.f = trc_func(t.f);
1816  s->gamma_table[i] = exr_flt2uint(t.i);
1817  }
1818  } else {
1819  if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
1820  for (i = 0; i < 65536; ++i)
1821  s->gamma_table[i] = exr_halflt2uint(i);
1822  } else {
1823  for (i = 0; i < 65536; ++i) {
1824  t = exr_half2float(i);
1825  /* If negative value we reuse half value */
1826  if (t.f <= 0.0f) {
1827  s->gamma_table[i] = exr_halflt2uint(i);
1828  } else {
1829  t.f = powf(t.f, one_gamma);
1830  s->gamma_table[i] = exr_flt2uint(t.i);
1831  }
1832  }
1833  }
1834  }
1835 
1836  // allocate thread data, used for non EXR_RAW compression types
1838  if (!s->thread_data)
1839  return AVERROR_INVALIDDATA;
1840 
1841  return 0;
1842 }
1843 
1844 #if HAVE_THREADS
1845 static int decode_init_thread_copy(AVCodecContext *avctx)
1846 { EXRContext *s = avctx->priv_data;
1847 
1848  // allocate thread data, used for non EXR_RAW compression types
1850  if (!s->thread_data)
1851  return AVERROR_INVALIDDATA;
1852 
1853  return 0;
1854 }
1855 #endif
1856 
1858 {
1859  EXRContext *s = avctx->priv_data;
1860  int i;
1861  for (i = 0; i < avctx->thread_count; i++) {
1862  EXRThreadData *td = &s->thread_data[i];
1864  av_freep(&td->tmp);
1865  av_freep(&td->bitmap);
1866  av_freep(&td->lut);
1867  }
1868 
1869  av_freep(&s->thread_data);
1870  av_freep(&s->channels);
1871 
1872  return 0;
1873 }
1874 
1875 #define OFFSET(x) offsetof(EXRContext, x)
1876 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1877 static const AVOption options[] = {
1878  { "layer", "Set the decoding layer", OFFSET(layer),
1879  AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
1880  { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
1881  AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
1882 
1883  // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
1884  { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
1885  AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
1886  { "bt709", "BT.709", 0,
1887  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1888  { "gamma", "gamma", 0,
1889  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1890  { "gamma22", "BT.470 M", 0,
1891  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1892  { "gamma28", "BT.470 BG", 0,
1893  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1894  { "smpte170m", "SMPTE 170 M", 0,
1895  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1896  { "smpte240m", "SMPTE 240 M", 0,
1897  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1898  { "linear", "Linear", 0,
1899  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1900  { "log", "Log", 0,
1901  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1902  { "log_sqrt", "Log square root", 0,
1903  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1904  { "iec61966_2_4", "IEC 61966-2-4", 0,
1905  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1906  { "bt1361", "BT.1361", 0,
1907  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1908  { "iec61966_2_1", "IEC 61966-2-1", 0,
1909  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1910  { "bt2020_10bit", "BT.2020 - 10 bit", 0,
1911  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1912  { "bt2020_12bit", "BT.2020 - 12 bit", 0,
1913  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1914  { "smpte2084", "SMPTE ST 2084", 0,
1915  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1916  { "smpte428_1", "SMPTE ST 428-1", 0,
1917  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1918 
1919  { NULL },
1920 };
1921 
1922 static const AVClass exr_class = {
1923  .class_name = "EXR",
1924  .item_name = av_default_item_name,
1925  .option = options,
1926  .version = LIBAVUTIL_VERSION_INT,
1927 };
1928 
1930  .name = "exr",
1931  .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1932  .type = AVMEDIA_TYPE_VIDEO,
1933  .id = AV_CODEC_ID_EXR,
1934  .priv_data_size = sizeof(EXRContext),
1935  .init = decode_init,
1936  .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
1937  .close = decode_end,
1938  .decode = decode_frame,
1939  .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
1941  .priv_class = &exr_class,
1942 };
ITU-R BT2020 for 12-bit system.
Definition: pixfmt.h:441
#define NULL
Definition: coverity.c:32
const char * s
Definition: avisynth_c.h:768
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
IEC 61966-2-4.
Definition: pixfmt.h:437
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2333
This structure describes decoded (raw) audio or video data.
Definition: frame.h:194
static int decode_header(EXRContext *s, AVFrame *frame)
Definition: exr.c:1326
AVOption.
Definition: opt.h:246
void * av_realloc(void *ptr, size_t size)
Allocate, reallocate, or free a block of memory.
Definition: mem.c:135
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
"Linear transfer characteristics"
Definition: pixfmt.h:434
Definition: exr.c:65
static uint16_t exr_flt2uint(int32_t v)
Convert from 32-bit float as uint32_t to uint16_t.
Definition: exr.c:233
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
Definition: exr.c:357
double(* avpriv_trc_function)(double)
Definition: color_utils.h:40
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:261
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static int init_thread_copy(AVCodecContext *avctx)
Definition: tta.c:392
#define LIBAVUTIL_VERSION_INT
Definition: version.h:86
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:211
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
Definition: exr.c:60
static av_always_inline float av_int2float(uint32_t i)
Reinterpret a 32-bit integer as a float.
Definition: intfloat.h:40
int channel_offsets[4]
Definition: exr.c:131
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:341
int buf_size
Definition: exr.c:148
int * p
Definition: exr.c:390
uint32_t ymax
Definition: exr.c:136
static int pxr24_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
Definition: exr.c:838
const char * layer
Definition: exr.c:156
int size
Definition: avcodec.h:1671
const char * b
Definition: vf_curves.c:113
static av_always_inline void bytestream2_init_writer(PutByteContext *p, uint8_t *buf, int buf_size)
Definition: bytestream.h:143
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1973
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
Definition: bytestream.h:133
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
Definition: utils.c:121
enum ExrPixelType pixel_type
Definition: exr.c:130
int version
Definition: avisynth_c.h:766
uint64_t_TMPL AV_RL64
Definition: bytestream.h:87
static int decode_block(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
Definition: exr.c:1050
#define HALF_FLOAT_MAX_BIASED_EXP
Definition: exr.c:173
#define src
Definition: vp8dsp.c:254
uint8_t * bitmap
Definition: exr.c:112
AVCodec.
Definition: avcodec.h:3721
uint8_t * tmp
Definition: exr.c:109
int w
Definition: exr.c:134
AVColorTransferCharacteristic
Color Transfer Characteristic.
Definition: pixfmt.h:425
int lit
Definition: exr.c:389
#define VD
Definition: exr.c:1876
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
const uint8_t * buf
Definition: exr.c:147
Definition: exr.c:387
float gamma
Definition: exr.c:159
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
static void wav_decode(uint16_t *in, int nx, int ox, int ny, int oy, uint16_t mx)
Definition: exr.c:674
AVOptions.
#define HUF_ENCSIZE
Definition: exr.c:383
#define get_code(po, rlc, c, lc, gb, out, oe, outb)
Definition: exr.c:504
Definition: exr.c:75
Multithreading support functions.
#define OFFSET(x)
Definition: exr.c:1875
also ITU-R BT470M / ITU-R BT1700 625 PAL & SECAM
Definition: pixfmt.h:430
static int huf_uncompress(GetByteContext *gb, uint16_t *dst, int dst_size)
Definition: exr.c:596
uint32_t xdelta
Definition: exr.c:137
static int huf_build_dec_table(const uint64_t *hcode, int im, int iM, HufDec *hdecod)
Definition: exr.c:461
static AVFrame * frame
#define get_char(c, lc, gb)
Definition: exr.c:498
Definition: exr.c:93
#define height
Definition: exr.c:62
uint8_t * data
Definition: avcodec.h:1670
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:199
const uint8_t * buffer
Definition: bytestream.h:34
static int flags
Definition: log.c:57
#define FFMIN3(a, b, c)
Definition: common.h:97
static const AVOption options[]
Definition: exr.c:1877
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:226
AVFrame * picture
Definition: exr.c:122
bitstream reader API header.
uint32_t ymin
Definition: exr.c:136
AVDictionary * metadata
metadata.
Definition: frame.h:481
GetByteContext gb
Definition: exr.c:146
uint32_t ydelta
Definition: exr.c:137
ptrdiff_t size
Definition: opengl_enc.c:101
#define av_log(a,...)
uint8_t * uncompressed_data
Definition: exr.c:106
Definition: exr.c:67
#define A_OFFSET
Definition: exr.c:661
static int huf_decode(const uint64_t *hcode, const HufDec *hdecod, GetByteContext *gb, int nbits, int rlc, int no, uint16_t *out)
Definition: exr.c:527
Definition: exr.c:69
static void predictor(uint8_t *src, int size)
Definition: exr.c:266
#define FLOAT_MAX_BIASED_EXP
Definition: exr.c:171
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define td
Definition: regdef.h:70
ITU-R BT1361 Extended Colour Gamut.
Definition: pixfmt.h:438
int h
Definition: exr.c:134
av_default_item_name
#define AVERROR(e)
Definition: error.h:43
static av_cold int decode_init(AVCodecContext *avctx)
Definition: exr.c:1797
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
Definition: bytestream.h:164
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:179
static av_always_inline unsigned int bytestream2_get_buffer(GetByteContext *g, uint8_t *dst, unsigned int size)
Definition: bytestream.h:263
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
AVCodecContext * avctx
Definition: exr.c:123
uint16_t gamma_table[65536]
Definition: exr.c:160
#define t1
Definition: regdef.h:29
static av_always_inline unsigned int bytestream2_get_bytes_left(GetByteContext *g)
Definition: bytestream.h:154
#define AV_PIX_FMT_YA16
Definition: pixfmt.h:336
static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
Definition: exr.c:278
Definition: graph2dot.c:48
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:337
enum AVColorTransferCharacteristic apply_trc_type
Definition: exr.c:158
simple assert() macros that are a bit more flexible than ISO C assert().
enum ExrPixelType pixel_type
Definition: exr.c:95
int nb_channels
Definition: exr.c:151
const char * name
Name of the codec implementation.
Definition: avcodec.h:3728
#define LONG_ZEROCODE_RUN
Definition: exr.c:417
GLsizei count
Definition: opengl_enc.c:109
static void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.h:229
#define fail()
Definition: checkasm.h:95
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: avcodec.h:1063
int8_t exp
Definition: eval.c:65
AVCodec ff_exr_decoder
Definition: exr.c:1929
int current_channel_offset
Definition: exr.c:152
#define powf(x, y)
Definition: libm.h:50
#define ONLY_IF_THREADS_ENABLED(x)
Define a function with only the non-default version specified.
Definition: internal.h:218
EXRThreadData * thread_data
Definition: exr.c:154
Definition: exr.c:66
static void unpack_3(const uint8_t b[3], uint16_t s[16])
Definition: exr.c:957
int is_luma
Definition: exr.c:144
uint8_t nb_components
The number of components each pixel has, (1-4)
Definition: pixdesc.h:83
Definition: exr.c:68
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:277
#define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP
Definition: exr.c:164
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:335
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
Definition: exr.c:64
int xsub
Definition: exr.c:94
#define FFMIN(a, b)
Definition: common.h:96
int len
Definition: exr.c:388
int32_t xSize
Definition: exr.c:99
uint32_t xmin
Definition: exr.c:135
#define HUF_DECSIZE
Definition: exr.c:384
int width
picture width / height.
Definition: avcodec.h:1932
enum ExrCompr compression
Definition: exr.c:129
static uint16_t exr_halflt2uint(uint16_t v)
Convert from 16-bit float as uint16_t to uint16_t.
Definition: exr.c:253
EXRTileAttribute tile_attr
Definition: exr.c:141
int tmp_size
Definition: exr.c:110
int32_t
static void unpack_14(const uint8_t b[14], uint16_t s[16])
Definition: exr.c:922
uint16_t * lut
Definition: exr.c:113
uint32_t i
Definition: intfloat.h:28
avpriv_trc_function avpriv_get_trc_function_from_trc(enum AVColorTransferCharacteristic trc)
Determine the function needed to apply the given AVColorTransferCharacteristic to linear input...
Definition: color_utils.c:170
Definition: exr.c:76
int n
Definition: avisynth_c.h:684
EXRChannel * channels
Definition: exr.c:150
int uncompressed_size
Definition: exr.c:107
#define HUF_DECBITS
Definition: exr.c:381
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:3174
enum ExrTileLevelMode level_mode
Definition: exr.c:101
#define SHORTEST_LONG_RUN
Definition: exr.c:418
static int check_header_variable(EXRContext *s, const char *value_name, const char *value_type, unsigned int minimum_length)
Check if the variable name corresponds to its data type.
Definition: exr.c:1297
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: avcodec.h:1067
int ysub
Definition: exr.c:94
static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
Definition: exr.c:973
static av_always_inline int bytestream2_tell(GetByteContext *g)
Definition: bytestream.h:188
#define HUF_DECMASK
Definition: exr.c:385
int ysize
Definition: exr.c:115
also ITU-R BT1361
Definition: pixfmt.h:427
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
also ITU-R BT601-6 525 or 625 / ITU-R BT1358 525 or 625 / ITU-R BT1700 NTSC
Definition: pixfmt.h:432
Libavcodec external API header.
ExrCompr
Definition: exr.c:59
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:225
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:456
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
main external API structure.
Definition: avcodec.h:1745
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
void * buf
Definition: avisynth_c.h:690
#define BITMAP_SIZE
Definition: exr.c:355
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
Definition: dict.c:70
static int zip_uncompress(const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
Definition: exr.c:294
Describe the class of an AVClass context structure.
Definition: log.h:67
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2468
Definition: exr.c:63
int is_tile
Definition: exr.c:142
float im
Definition: fft.c:82
Not part of ABI.
Definition: pixfmt.h:447
"Logarithmic transfer characteristic (100 * Sqrt(10) : 1 range)"
Definition: pixfmt.h:436
ExrPixelType
Definition: exr.c:73
Definition: exr.c:61
static av_cold int decode_end(AVCodecContext *avctx)
Definition: exr.c:1857
uint8_t pixel
Definition: tiny_ssim.c:42
static int rle_uncompress(const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
Definition: exr.c:309
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:208
AVRational av_d2q(double d, int max)
Convert a double precision floating point number to a rational.
Definition: rational.c:106
#define SHORT_ZEROCODE_RUN
Definition: exr.c:416
int scan_lines_per_block
Definition: exr.c:139
static union av_intfloat32 exr_half2float(uint16_t hf)
Convert a half float as a uint16_t into a full float.
Definition: exr.c:182
int
uint32_t xmax
Definition: exr.c:135
IEC 61966-2-1 (sRGB or sYCC)
Definition: pixfmt.h:439
common internal api header.
common internal and external API header
if(ret< 0)
Definition: vf_mcdeint.c:282
int channel_line_size
Definition: exr.c:117
static double c[64]
channel
Use these values when setting the channel map with ebur128_set_channel().
Definition: ebur128.h:39
also ITU-R BT470BG
Definition: pixfmt.h:431
Definition: exr.c:74
#define MOD_MASK
Definition: exr.c:662
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1787
static av_always_inline int diff(const uint32_t a, const uint32_t b)
#define av_free(p)
ExrTileLevelRound
Definition: exr.c:87
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:3234
static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td)
Definition: exr.c:753
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
Definition: bytestream.h:208
static void huf_canonical_code_table(uint64_t *hcode)
Definition: exr.c:393
ITU-R BT2020 for 10-bit system.
Definition: pixfmt.h:440
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
Definition: exr.c:372
FILE * out
Definition: movenc.c:54
#define av_freep(p)
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: exr.c:1651
static void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
Definition: exr.c:647
int xsize
Definition: exr.c:115
static void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
Definition: exr.c:664
static int huf_unpack_enc_table(GetByteContext *gb, int32_t im, int32_t iM, uint64_t *hcode)
Definition: exr.c:421
const AVPixFmtDescriptor * desc
Definition: exr.c:132
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_RL32
Definition: bytestream.h:87
This structure stores compressed data.
Definition: avcodec.h:1647
ExrTileLevelMode
Definition: exr.c:80
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:1000
for(j=16;j >0;--j)
Definition: exr.c:70
static const AVClass exr_class
Definition: exr.c:1922
#define t2
Definition: regdef.h:30
#define USHORT_RANGE
Definition: exr.c:354
enum ExrTileLevelRound level_round
Definition: exr.c:102
"Logarithmic transfer characteristic (100:1 range)"
Definition: pixfmt.h:435
int32_t ySize
Definition: exr.c:100
static uint8_t tmp[11]
Definition: aes_ctr.c:26