FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
diracdec.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
3  * Copyright (C) 2009 David Conrad
4  * Copyright (C) 2011 Jordi Ortiz
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * Dirac Decoder
26  * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
27  */
28 
29 #include "avcodec.h"
30 #include "get_bits.h"
31 #include "bytestream.h"
32 #include "internal.h"
33 #include "golomb.h"
34 #include "dirac_arith.h"
35 #include "dirac_vlc.h"
36 #include "mpeg12data.h"
37 #include "libavcodec/mpegvideo.h"
38 #include "mpegvideoencdsp.h"
39 #include "dirac_dwt.h"
40 #include "dirac.h"
41 #include "diractab.h"
42 #include "diracdsp.h"
43 #include "videodsp.h"
44 
45 /**
46  * The spec limits this to 3 for frame coding, but in practice can be as high as 6
47  */
48 #define MAX_REFERENCE_FRAMES 8
49 #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
50 #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
51 #define MAX_QUANT 255 /* max quant for VC-2 */
52 #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
53 
54 /**
55  * DiracBlock->ref flags, if set then the block does MC from the given ref
56  */
57 #define DIRAC_REF_MASK_REF1 1
58 #define DIRAC_REF_MASK_REF2 2
59 #define DIRAC_REF_MASK_GLOBAL 4
60 
61 /**
62  * Value of Picture.reference when Picture is not a reference picture, but
63  * is held for delayed output.
64  */
65 #define DELAYED_PIC_REF 4
66 
67 #define CALC_PADDING(size, depth) \
68  (((size + (1 << depth) - 1) >> depth) << depth)
69 
70 #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
71 
72 typedef struct {
74  int interpolated[3]; /* 1 if hpel[] is valid */
75  uint8_t *hpel[3][4];
76  uint8_t *hpel_base[3][4];
77  int reference;
78 } DiracFrame;
79 
80 typedef struct {
81  union {
82  int16_t mv[2][2];
83  int16_t dc[3];
84  } u; /* anonymous unions aren't in C99 :( */
86 } DiracBlock;
87 
88 typedef struct SubBand {
89  int level;
90  int orientation;
91  int stride; /* in bytes */
92  int width;
93  int height;
94  int pshift;
95  int quant;
96  uint8_t *ibuf;
97  struct SubBand *parent;
98 
99  /* for low delay */
100  unsigned length;
102 } SubBand;
103 
104 typedef struct Plane {
106 
107  int width;
108  int height;
109  ptrdiff_t stride;
110 
111  /* block length */
114  /* block separation (block n+1 starts after this many pixels in block n) */
117  /* amount of overspill on each edge (half of the overlap between blocks) */
120 
122 } Plane;
123 
124 /* Used by Low Delay and High Quality profiles */
125 typedef struct DiracSlice {
127  int slice_x;
128  int slice_y;
129  int bytes;
130 } DiracSlice;
131 
132 typedef struct DiracContext {
142  int frame_number; /* number of the next frame to display */
146 
147  int bit_depth; /* bit depth */
148  int pshift; /* pixel shift = bit_depth > 8 */
149 
150  int zero_res; /* zero residue flag */
151  int is_arith; /* whether coeffs use arith or golomb coding */
152  int core_syntax; /* use core syntax only */
153  int low_delay; /* use the low delay syntax */
154  int hq_picture; /* high quality picture, enables low_delay */
155  int ld_picture; /* use low delay picture, turns on low_delay */
156  int dc_prediction; /* has dc prediction */
157  int globalmc_flag; /* use global motion compensation */
158  int num_refs; /* number of reference pictures */
159 
160  /* wavelet decoding */
161  unsigned wavelet_depth; /* depth of the IDWT */
162  unsigned wavelet_idx;
163 
164  /**
165  * schroedinger older than 1.0.8 doesn't store
166  * quant delta if only one codebook exists in a band
167  */
168  unsigned old_delta_quant;
169  unsigned codeblock_mode;
170 
171  unsigned num_x; /* number of horizontal slices */
172  unsigned num_y; /* number of vertical slices */
173 
174  uint8_t *thread_buf; /* Per-thread buffer for coefficient storage */
175  int threads_num_buf; /* Current # of buffers allocated */
176  int thread_buf_size; /* Each thread has a buffer this size */
177 
180 
181  struct {
182  unsigned width;
183  unsigned height;
185 
186  struct {
187  AVRational bytes; /* average bytes per slice */
188  uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
189  } lowdelay;
190 
191  struct {
192  unsigned prefix_bytes;
193  uint64_t size_scaler;
194  } highquality;
195 
196  struct {
197  int pan_tilt[2]; /* pan/tilt vector */
198  int zrs[2][2]; /* zoom/rotate/shear matrix */
199  int perspective[2]; /* perspective vector */
200  unsigned zrs_exp;
201  unsigned perspective_exp;
202  } globalmc[2];
203 
204  /* motion compensation */
205  uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
206  int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
207  unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
208 
209  int blwidth; /* number of blocks (horizontally) */
210  int blheight; /* number of blocks (vertically) */
211  int sbwidth; /* number of superblocks (horizontally) */
212  int sbheight; /* number of superblocks (vertically) */
213 
216 
219 
220  uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
223 
225 
226  void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
227  void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
228  void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
231 
234 
238 } DiracContext;
239 
246 };
247 
248 /* magic number division by 3 from schroedinger */
249 static inline int divide3(int x)
250 {
251  return ((x+1)*21845 + 10922) >> 16;
252 }
253 
254 static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
255 {
256  DiracFrame *remove_pic = NULL;
257  int i, remove_idx = -1;
258 
259  for (i = 0; framelist[i]; i++)
260  if (framelist[i]->avframe->display_picture_number == picnum) {
261  remove_pic = framelist[i];
262  remove_idx = i;
263  }
264 
265  if (remove_pic)
266  for (i = remove_idx; framelist[i]; i++)
267  framelist[i] = framelist[i+1];
268 
269  return remove_pic;
270 }
271 
272 static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
273 {
274  int i;
275  for (i = 0; i < maxframes; i++)
276  if (!framelist[i]) {
277  framelist[i] = frame;
278  return 0;
279  }
280  return -1;
281 }
282 
284 {
285  int sbwidth = DIVRNDUP(s->seq.width, 4);
286  int sbheight = DIVRNDUP(s->seq.height, 4);
287  int i, w, h, top_padding;
288 
289  /* todo: think more about this / use or set Plane here */
290  for (i = 0; i < 3; i++) {
291  int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
292  int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
293  w = s->seq.width >> (i ? s->chroma_x_shift : 0);
294  h = s->seq.height >> (i ? s->chroma_y_shift : 0);
295 
296  /* we allocate the max we support here since num decompositions can
297  * change from frame to frame. Stride is aligned to 16 for SIMD, and
298  * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
299  * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
300  * on each side */
301  top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
302  w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
303  h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
304 
305  s->plane[i].idwt.buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
306  s->plane[i].idwt.tmp = av_malloc_array((w+16), 2 << s->pshift);
307  s->plane[i].idwt.buf = s->plane[i].idwt.buf_base + (top_padding*w)*(2 << s->pshift);
308  if (!s->plane[i].idwt.buf_base || !s->plane[i].idwt.tmp)
309  return AVERROR(ENOMEM);
310  }
311 
312  /* fixme: allocate using real stride here */
313  s->sbsplit = av_malloc_array(sbwidth, sbheight);
314  s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
315 
316  if (!s->sbsplit || !s->blmotion)
317  return AVERROR(ENOMEM);
318  return 0;
319 }
320 
322 {
323  int w = s->seq.width;
324  int h = s->seq.height;
325 
326  av_assert0(stride >= w);
327  stride += 64;
328 
329  if (s->buffer_stride >= stride)
330  return 0;
331  s->buffer_stride = 0;
332 
334  memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
335  av_freep(&s->mctmp);
336  av_freep(&s->mcscratch);
337 
339 
340  s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
342 
343  if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
344  return AVERROR(ENOMEM);
345 
346  s->buffer_stride = stride;
347  return 0;
348 }
349 
351 {
352  int i, j, k;
353 
354  for (i = 0; i < MAX_FRAMES; i++) {
355  if (s->all_frames[i].avframe->data[0]) {
357  memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
358  }
359 
360  for (j = 0; j < 3; j++)
361  for (k = 1; k < 4; k++)
362  av_freep(&s->all_frames[i].hpel_base[j][k]);
363  }
364 
365  memset(s->ref_frames, 0, sizeof(s->ref_frames));
366  memset(s->delay_frames, 0, sizeof(s->delay_frames));
367 
368  for (i = 0; i < 3; i++) {
369  av_freep(&s->plane[i].idwt.buf_base);
370  av_freep(&s->plane[i].idwt.tmp);
371  }
372 
373  s->buffer_stride = 0;
374  av_freep(&s->sbsplit);
375  av_freep(&s->blmotion);
377 
378  av_freep(&s->mctmp);
379  av_freep(&s->mcscratch);
380 }
381 
383 {
384  DiracContext *s = avctx->priv_data;
385  int i;
386 
387  s->avctx = avctx;
388  s->frame_number = -1;
389 
390  s->thread_buf = NULL;
391  s->threads_num_buf = -1;
392  s->thread_buf_size = -1;
393 
397  ff_videodsp_init(&s->vdsp, 8);
398 
399  for (i = 0; i < MAX_FRAMES; i++) {
401  if (!s->all_frames[i].avframe) {
402  while (i > 0)
403  av_frame_free(&s->all_frames[--i].avframe);
404  return AVERROR(ENOMEM);
405  }
406  }
407 
408  return 0;
409 }
410 
412 {
413  DiracContext *s = avctx->priv_data;
415  s->seen_sequence_header = 0;
416  s->frame_number = -1;
417 }
418 
420 {
421  DiracContext *s = avctx->priv_data;
422  int i;
423 
425 
426  dirac_decode_flush(avctx);
427  for (i = 0; i < MAX_FRAMES; i++)
429 
430  av_freep(&s->thread_buf);
432 
433  return 0;
434 }
435 
436 static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
437 {
438  int coeff = dirac_get_se_golomb(gb);
439  const int sign = FFSIGN(coeff);
440  if (coeff)
441  coeff = sign*((sign * coeff * qfactor + qoffset) >> 2);
442  return coeff;
443 }
444 
445 #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
446 
447 #define UNPACK_ARITH(n, type) \
448  static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
449  SubBand *b, type *buf, int x, int y) \
450  { \
451  int coeff, sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
452  const int mstride = -(b->stride >> (1+b->pshift)); \
453  if (b->parent) { \
454  const type *pbuf = (type *)b->parent->ibuf; \
455  const int stride = b->parent->stride >> (1+b->parent->pshift); \
456  pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
457  } \
458  if (b->orientation == subband_hl) \
459  sign_pred = buf[mstride]; \
460  if (x) { \
461  pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
462  if (b->orientation == subband_lh) \
463  sign_pred = buf[-1]; \
464  } else { \
465  pred_ctx += !buf[mstride]; \
466  } \
467  coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
468  if (coeff) { \
469  coeff = (coeff * qfactor + qoffset) >> 2; \
470  sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
471  coeff = (coeff ^ -sign) + sign; \
472  } \
473  *buf = coeff; \
474  } \
475 
476 UNPACK_ARITH(8, int16_t)
478 
479 /**
480  * Decode the coeffs in the rectangle defined by left, right, top, bottom
481  * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
482  */
483 static inline void codeblock(DiracContext *s, SubBand *b,
484  GetBitContext *gb, DiracArith *c,
485  int left, int right, int top, int bottom,
486  int blockcnt_one, int is_arith)
487 {
488  int x, y, zero_block;
489  int qoffset, qfactor;
490  uint8_t *buf;
491 
492  /* check for any coded coefficients in this codeblock */
493  if (!blockcnt_one) {
494  if (is_arith)
495  zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
496  else
497  zero_block = get_bits1(gb);
498 
499  if (zero_block)
500  return;
501  }
502 
503  if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
504  int quant = b->quant;
505  if (is_arith)
507  else
508  quant += dirac_get_se_golomb(gb);
509  if (quant < 0) {
510  av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
511  return;
512  }
513  b->quant = quant;
514  }
515 
516  if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
517  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
518  b->quant = 0;
519  return;
520  }
521 
522  qfactor = ff_dirac_qscale_tab[b->quant];
523  /* TODO: context pointer? */
524  if (!s->num_refs)
525  qoffset = ff_dirac_qoffset_intra_tab[b->quant] + 2;
526  else
527  qoffset = ff_dirac_qoffset_inter_tab[b->quant] + 2;
528 
529  buf = b->ibuf + top * b->stride;
530  if (is_arith) {
531  for (y = top; y < bottom; y++) {
532  for (x = left; x < right; x++) {
533  if (b->pshift) {
534  coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
535  } else {
536  coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
537  }
538  }
539  buf += b->stride;
540  }
541  } else {
542  for (y = top; y < bottom; y++) {
543  for (x = left; x < right; x++) {
544  int val = coeff_unpack_golomb(gb, qfactor, qoffset);
545  if (b->pshift) {
546  AV_WN32(&buf[4*x], val);
547  } else {
548  AV_WN16(&buf[2*x], val);
549  }
550  }
551  buf += b->stride;
552  }
553  }
554 }
555 
556 /**
557  * Dirac Specification ->
558  * 13.3 intra_dc_prediction(band)
559  */
560 #define INTRA_DC_PRED(n, type) \
561  static inline void intra_dc_prediction_##n(SubBand *b) \
562  { \
563  type *buf = (type*)b->ibuf; \
564  int x, y; \
565  \
566  for (x = 1; x < b->width; x++) \
567  buf[x] += buf[x-1]; \
568  buf += (b->stride >> (1+b->pshift)); \
569  \
570  for (y = 1; y < b->height; y++) { \
571  buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
572  \
573  for (x = 1; x < b->width; x++) { \
574  int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
575  buf[x] += divide3(pred); \
576  } \
577  buf += (b->stride >> (1+b->pshift)); \
578  } \
579  } \
580 
581 INTRA_DC_PRED(8, int16_t)
583 
584 /**
585  * Dirac Specification ->
586  * 13.4.2 Non-skipped subbands. subband_coeffs()
587  */
589 {
590  int cb_x, cb_y, left, right, top, bottom;
591  DiracArith c;
592  GetBitContext gb;
593  int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
594  int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
595  int blockcnt_one = (cb_width + cb_height) == 2;
596 
597  if (!b->length)
598  return;
599 
600  init_get_bits8(&gb, b->coeff_data, b->length);
601 
602  if (is_arith)
603  ff_dirac_init_arith_decoder(&c, &gb, b->length);
604 
605  top = 0;
606  for (cb_y = 0; cb_y < cb_height; cb_y++) {
607  bottom = (b->height * (cb_y+1LL)) / cb_height;
608  left = 0;
609  for (cb_x = 0; cb_x < cb_width; cb_x++) {
610  right = (b->width * (cb_x+1LL)) / cb_width;
611  codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
612  left = right;
613  }
614  top = bottom;
615  }
616 
617  if (b->orientation == subband_ll && s->num_refs == 0) {
618  if (s->pshift) {
619  intra_dc_prediction_10(b);
620  } else {
621  intra_dc_prediction_8(b);
622  }
623  }
624 }
625 
626 static int decode_subband_arith(AVCodecContext *avctx, void *b)
627 {
628  DiracContext *s = avctx->priv_data;
629  decode_subband_internal(s, b, 1);
630  return 0;
631 }
632 
633 static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
634 {
635  DiracContext *s = avctx->priv_data;
636  SubBand **b = arg;
637  decode_subband_internal(s, *b, 0);
638  return 0;
639 }
640 
641 /**
642  * Dirac Specification ->
643  * [DIRAC_STD] 13.4.1 core_transform_data()
644  */
646 {
647  AVCodecContext *avctx = s->avctx;
648  SubBand *bands[3*MAX_DWT_LEVELS+1];
649  enum dirac_subband orientation;
650  int level, num_bands = 0;
651 
652  /* Unpack all subbands at all levels. */
653  for (level = 0; level < s->wavelet_depth; level++) {
654  for (orientation = !!level; orientation < 4; orientation++) {
655  SubBand *b = &s->plane[comp].band[level][orientation];
656  bands[num_bands++] = b;
657 
658  align_get_bits(&s->gb);
659  /* [DIRAC_STD] 13.4.2 subband() */
661  if (b->length) {
663  align_get_bits(&s->gb);
664  b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
665  b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
666  skip_bits_long(&s->gb, b->length*8);
667  }
668  }
669  /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
670  if (s->is_arith)
671  avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
672  NULL, 4-!!level, sizeof(SubBand));
673  }
674  /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
675  if (!s->is_arith)
676  avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
677 }
678 
679 #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
680  type *buf = (type *)buf1; \
681  buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
682  if (get_bits_count(gb) >= ebits) \
683  return; \
684  if (buf2) { \
685  buf = (type *)buf2; \
686  buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
687  if (get_bits_count(gb) >= ebits) \
688  return; \
689  } \
690 
692  int slice_x, int slice_y, int bits_end,
693  SubBand *b1, SubBand *b2)
694 {
695  int left = b1->width * slice_x / s->num_x;
696  int right = b1->width *(slice_x+1) / s->num_x;
697  int top = b1->height * slice_y / s->num_y;
698  int bottom = b1->height *(slice_y+1) / s->num_y;
699 
700  int qfactor, qoffset;
701 
702  uint8_t *buf1 = b1->ibuf + top * b1->stride;
703  uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
704  int x, y;
705 
706  if (quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
707  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", quant);
708  return;
709  }
710  qfactor = ff_dirac_qscale_tab[quant];
711  qoffset = ff_dirac_qoffset_intra_tab[quant] + 2;
712  /* we have to constantly check for overread since the spec explicitly
713  requires this, with the meaning that all remaining coeffs are set to 0 */
714  if (get_bits_count(gb) >= bits_end)
715  return;
716 
717  if (s->pshift) {
718  for (y = top; y < bottom; y++) {
719  for (x = left; x < right; x++) {
720  PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
721  }
722  buf1 += b1->stride;
723  if (buf2)
724  buf2 += b2->stride;
725  }
726  }
727  else {
728  for (y = top; y < bottom; y++) {
729  for (x = left; x < right; x++) {
730  PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
731  }
732  buf1 += b1->stride;
733  if (buf2)
734  buf2 += b2->stride;
735  }
736  }
737 }
738 
739 /**
740  * Dirac Specification ->
741  * 13.5.2 Slices. slice(sx,sy)
742  */
743 static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
744 {
745  DiracContext *s = avctx->priv_data;
746  DiracSlice *slice = arg;
747  GetBitContext *gb = &slice->gb;
748  enum dirac_subband orientation;
749  int level, quant, chroma_bits, chroma_end;
750 
751  int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
752  int length_bits = av_log2(8 * slice->bytes)+1;
753  int luma_bits = get_bits_long(gb, length_bits);
754  int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
755 
756  /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
757  for (level = 0; level < s->wavelet_depth; level++)
758  for (orientation = !!level; orientation < 4; orientation++) {
759  quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
760  decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
761  &s->plane[0].band[level][orientation], NULL);
762  }
763 
764  /* consume any unused bits from luma */
765  skip_bits_long(gb, get_bits_count(gb) - luma_end);
766 
767  chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
768  chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
769  /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
770  for (level = 0; level < s->wavelet_depth; level++)
771  for (orientation = !!level; orientation < 4; orientation++) {
772  quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
773  decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
774  &s->plane[1].band[level][orientation],
775  &s->plane[2].band[level][orientation]);
776  }
777 
778  return 0;
779 }
780 
781 typedef struct SliceCoeffs {
782  int left;
783  int top;
784  int tot_h;
785  int tot_v;
786  int tot;
787 } SliceCoeffs;
788 
789 static int subband_coeffs(DiracContext *s, int x, int y, int p,
791 {
792  int level, coef = 0;
793  for (level = 0; level < s->wavelet_depth; level++) {
794  SliceCoeffs *o = &c[level];
795  SubBand *b = &s->plane[p].band[level][3]; /* orientation doens't matter */
796  o->top = b->height * y / s->num_y;
797  o->left = b->width * x / s->num_x;
798  o->tot_h = ((b->width * (x + 1)) / s->num_x) - o->left;
799  o->tot_v = ((b->height * (y + 1)) / s->num_y) - o->top;
800  o->tot = o->tot_h*o->tot_v;
801  coef += o->tot * (4 - !!level);
802  }
803  return coef;
804 }
805 
806 /**
807  * VC-2 Specification ->
808  * 13.5.3 hq_slice(sx,sy)
809  */
810 static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
811 {
812  int i, level, orientation, quant_idx;
813  int qfactor[MAX_DWT_LEVELS][4], qoffset[MAX_DWT_LEVELS][4];
814  GetBitContext *gb = &slice->gb;
815  SliceCoeffs coeffs_num[MAX_DWT_LEVELS];
816 
818  quant_idx = get_bits(gb, 8);
819 
820  if (quant_idx > DIRAC_MAX_QUANT_INDEX) {
821  av_log(s->avctx, AV_LOG_ERROR, "Invalid quantization index - %i\n", quant_idx);
822  return AVERROR_INVALIDDATA;
823  }
824 
825  /* Slice quantization (slice_quantizers() in the specs) */
826  for (level = 0; level < s->wavelet_depth; level++) {
827  for (orientation = !!level; orientation < 4; orientation++) {
828  const int quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0);
829  qfactor[level][orientation] = ff_dirac_qscale_tab[quant];
830  qoffset[level][orientation] = ff_dirac_qoffset_intra_tab[quant] + 2;
831  }
832  }
833 
834  /* Luma + 2 Chroma planes */
835  for (i = 0; i < 3; i++) {
836  int coef_num, coef_par, off = 0;
837  int64_t length = s->highquality.size_scaler*get_bits(gb, 8);
838  int64_t bits_end = get_bits_count(gb) + 8*length;
839  const uint8_t *addr = align_get_bits(gb);
840 
841  if (length*8 > get_bits_left(gb)) {
842  av_log(s->avctx, AV_LOG_ERROR, "end too far away\n");
843  return AVERROR_INVALIDDATA;
844  }
845 
846  coef_num = subband_coeffs(s, slice->slice_x, slice->slice_y, i, coeffs_num);
847 
848  if (s->pshift)
849  coef_par = ff_dirac_golomb_read_32bit(s->reader_ctx, addr,
850  length, tmp_buf, coef_num);
851  else
852  coef_par = ff_dirac_golomb_read_16bit(s->reader_ctx, addr,
853  length, tmp_buf, coef_num);
854 
855  if (coef_num > coef_par) {
856  const int start_b = coef_par * (1 << (s->pshift + 1));
857  const int end_b = coef_num * (1 << (s->pshift + 1));
858  memset(&tmp_buf[start_b], 0, end_b - start_b);
859  }
860 
861  for (level = 0; level < s->wavelet_depth; level++) {
862  const SliceCoeffs *c = &coeffs_num[level];
863  for (orientation = !!level; orientation < 4; orientation++) {
864  const SubBand *b1 = &s->plane[i].band[level][orientation];
865  uint8_t *buf = b1->ibuf + c->top * b1->stride + (c->left << (s->pshift + 1));
866 
867  /* Change to c->tot_h <= 4 for AVX2 dequantization */
868  const int qfunc = s->pshift + 2*(c->tot_h <= 2);
869  s->diracdsp.dequant_subband[qfunc](&tmp_buf[off], buf, b1->stride,
870  qfactor[level][orientation],
871  qoffset[level][orientation],
872  c->tot_v, c->tot_h);
873 
874  off += c->tot << (s->pshift + 1);
875  }
876  }
877 
878  skip_bits_long(gb, bits_end - get_bits_count(gb));
879  }
880 
881  return 0;
882 }
883 
884 static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
885 {
886  int i;
887  DiracContext *s = avctx->priv_data;
888  DiracSlice *slices = ((DiracSlice *)arg) + s->num_x*jobnr;
889  uint8_t *thread_buf = &s->thread_buf[s->thread_buf_size*threadnr];
890  for (i = 0; i < s->num_x; i++)
891  decode_hq_slice(s, &slices[i], thread_buf);
892  return 0;
893 }
894 
895 /**
896  * Dirac Specification ->
897  * 13.5.1 low_delay_transform_data()
898  */
900 {
901  AVCodecContext *avctx = s->avctx;
902  int slice_x, slice_y, bufsize;
903  int64_t coef_buf_size, bytes = 0;
904  const uint8_t *buf;
905  DiracSlice *slices;
907  int slice_num = 0;
908 
909  if (s->slice_params_num_buf != (s->num_x * s->num_y)) {
911  if (!s->slice_params_buf) {
912  av_log(s->avctx, AV_LOG_ERROR, "slice params buffer allocation failure\n");
913  s->slice_params_num_buf = 0;
914  return AVERROR(ENOMEM);
915  }
916  s->slice_params_num_buf = s->num_x * s->num_y;
917  }
918  slices = s->slice_params_buf;
919 
920  /* 8 becacuse that's how much the golomb reader could overread junk data
921  * from another plane/slice at most, and 512 because SIMD */
922  coef_buf_size = subband_coeffs(s, s->num_x - 1, s->num_y - 1, 0, tmp) + 8;
923  coef_buf_size = (coef_buf_size << (1 + s->pshift)) + 512;
924 
925  if (s->threads_num_buf != avctx->thread_count ||
926  s->thread_buf_size != coef_buf_size) {
927  s->threads_num_buf = avctx->thread_count;
928  s->thread_buf_size = coef_buf_size;
930  if (!s->thread_buf) {
931  av_log(s->avctx, AV_LOG_ERROR, "thread buffer allocation failure\n");
932  return AVERROR(ENOMEM);
933  }
934  }
935 
936  align_get_bits(&s->gb);
937  /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
938  buf = s->gb.buffer + get_bits_count(&s->gb)/8;
939  bufsize = get_bits_left(&s->gb);
940 
941  if (s->hq_picture) {
942  int i;
943 
944  for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
945  for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
946  bytes = s->highquality.prefix_bytes + 1;
947  for (i = 0; i < 3; i++) {
948  if (bytes <= bufsize/8)
949  bytes += buf[bytes] * s->highquality.size_scaler + 1;
950  }
951  if (bytes >= INT_MAX || bytes*8 > bufsize) {
952  av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
953  return AVERROR_INVALIDDATA;
954  }
955 
956  slices[slice_num].bytes = bytes;
957  slices[slice_num].slice_x = slice_x;
958  slices[slice_num].slice_y = slice_y;
959  init_get_bits(&slices[slice_num].gb, buf, bufsize);
960  slice_num++;
961 
962  buf += bytes;
963  if (bufsize/8 >= bytes)
964  bufsize -= bytes*8;
965  else
966  bufsize = 0;
967  }
968  }
969 
970  if (s->num_x*s->num_y != slice_num) {
971  av_log(s->avctx, AV_LOG_ERROR, "too few slices\n");
972  return AVERROR_INVALIDDATA;
973  }
974 
975  avctx->execute2(avctx, decode_hq_slice_row, slices, NULL, s->num_y);
976  } else {
977  for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
978  for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
979  bytes = (slice_num+1) * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den
980  - slice_num * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den;
981  slices[slice_num].bytes = bytes;
982  slices[slice_num].slice_x = slice_x;
983  slices[slice_num].slice_y = slice_y;
984  init_get_bits(&slices[slice_num].gb, buf, bufsize);
985  slice_num++;
986 
987  buf += bytes;
988  if (bufsize/8 >= bytes)
989  bufsize -= bytes*8;
990  else
991  bufsize = 0;
992  }
993  }
994  avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
995  sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */
996  }
997 
998  if (s->dc_prediction) {
999  if (s->pshift) {
1000  intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1001  intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1002  intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1003  } else {
1004  intra_dc_prediction_8(&s->plane[0].band[0][0]);
1005  intra_dc_prediction_8(&s->plane[1].band[0][0]);
1006  intra_dc_prediction_8(&s->plane[2].band[0][0]);
1007  }
1008  }
1009 
1010  return 0;
1011 }
1012 
1014 {
1015  int i, w, h, level, orientation;
1016 
1017  for (i = 0; i < 3; i++) {
1018  Plane *p = &s->plane[i];
1019 
1020  p->width = s->seq.width >> (i ? s->chroma_x_shift : 0);
1021  p->height = s->seq.height >> (i ? s->chroma_y_shift : 0);
1022  p->idwt.width = w = CALC_PADDING(p->width , s->wavelet_depth);
1023  p->idwt.height = h = CALC_PADDING(p->height, s->wavelet_depth);
1024  p->idwt.stride = FFALIGN(p->idwt.width, 8) << (1 + s->pshift);
1025 
1026  for (level = s->wavelet_depth-1; level >= 0; level--) {
1027  w = w>>1;
1028  h = h>>1;
1029  for (orientation = !!level; orientation < 4; orientation++) {
1030  SubBand *b = &p->band[level][orientation];
1031 
1032  b->pshift = s->pshift;
1033  b->ibuf = p->idwt.buf;
1034  b->level = level;
1035  b->stride = p->idwt.stride << (s->wavelet_depth - level);
1036  b->width = w;
1037  b->height = h;
1038  b->orientation = orientation;
1039 
1040  if (orientation & 1)
1041  b->ibuf += w << (1+b->pshift);
1042  if (orientation > 1)
1043  b->ibuf += (b->stride>>1);
1044 
1045  if (level)
1046  b->parent = &p->band[level-1][orientation];
1047  }
1048  }
1049 
1050  if (i > 0) {
1051  p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
1052  p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
1053  p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
1054  p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
1055  }
1056 
1057  p->xoffset = (p->xblen - p->xbsep)/2;
1058  p->yoffset = (p->yblen - p->ybsep)/2;
1059  }
1060 }
1061 
1062 /**
1063  * Unpack the motion compensation parameters
1064  * Dirac Specification ->
1065  * 11.2 Picture prediction data. picture_prediction()
1066  */
1068 {
1069  static const uint8_t default_blen[] = { 4, 12, 16, 24 };
1070 
1071  GetBitContext *gb = &s->gb;
1072  unsigned idx, ref;
1073 
1074  align_get_bits(gb);
1075  /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
1076  /* Luma and Chroma are equal. 11.2.3 */
1077  idx = get_interleaved_ue_golomb(gb); /* [DIRAC_STD] index */
1078 
1079  if (idx > 4) {
1080  av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
1081  return AVERROR_INVALIDDATA;
1082  }
1083 
1084  if (idx == 0) {
1089  } else {
1090  /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
1091  s->plane[0].xblen = default_blen[idx-1];
1092  s->plane[0].yblen = default_blen[idx-1];
1093  s->plane[0].xbsep = 4 * idx;
1094  s->plane[0].ybsep = 4 * idx;
1095  }
1096  /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
1097  Calculated in function dirac_unpack_block_motion_data */
1098 
1099  if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
1100  s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
1101  !s->plane[0].xblen || !s->plane[0].yblen) {
1103  "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
1104  s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
1105  return AVERROR_INVALIDDATA;
1106  }
1107  if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
1108  av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
1109  return AVERROR_INVALIDDATA;
1110  }
1111  if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
1112  av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
1113  return AVERROR_INVALIDDATA;
1114  }
1115  if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
1116  av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
1117  return AVERROR_PATCHWELCOME;
1118  }
1119 
1120  /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
1121  Read motion vector precision */
1123  if (s->mv_precision > 3) {
1124  av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
1125  return AVERROR_INVALIDDATA;
1126  }
1127 
1128  /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
1129  Read the global motion compensation parameters */
1130  s->globalmc_flag = get_bits1(gb);
1131  if (s->globalmc_flag) {
1132  memset(s->globalmc, 0, sizeof(s->globalmc));
1133  /* [DIRAC_STD] pan_tilt(gparams) */
1134  for (ref = 0; ref < s->num_refs; ref++) {
1135  if (get_bits1(gb)) {
1138  }
1139  /* [DIRAC_STD] zoom_rotate_shear(gparams)
1140  zoom/rotation/shear parameters */
1141  if (get_bits1(gb)) {
1143  s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
1144  s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
1145  s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
1146  s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
1147  } else {
1148  s->globalmc[ref].zrs[0][0] = 1;
1149  s->globalmc[ref].zrs[1][1] = 1;
1150  }
1151  /* [DIRAC_STD] perspective(gparams) */
1152  if (get_bits1(gb)) {
1156  }
1157  }
1158  }
1159 
1160  /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
1161  Picture prediction mode, not currently used. */
1162  if (get_interleaved_ue_golomb(gb)) {
1163  av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
1164  return AVERROR_INVALIDDATA;
1165  }
1166 
1167  /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
1168  just data read, weight calculation will be done later on. */
1169  s->weight_log2denom = 1;
1170  s->weight[0] = 1;
1171  s->weight[1] = 1;
1172 
1173  if (get_bits1(gb)) {
1175  s->weight[0] = dirac_get_se_golomb(gb);
1176  if (s->num_refs == 2)
1177  s->weight[1] = dirac_get_se_golomb(gb);
1178  }
1179  return 0;
1180 }
1181 
1182 /**
1183  * Dirac Specification ->
1184  * 11.3 Wavelet transform data. wavelet_transform()
1185  */
1187 {
1188  GetBitContext *gb = &s->gb;
1189  int i, level;
1190  unsigned tmp;
1191 
1192 #define CHECKEDREAD(dst, cond, errmsg) \
1193  tmp = get_interleaved_ue_golomb(gb); \
1194  if (cond) { \
1195  av_log(s->avctx, AV_LOG_ERROR, errmsg); \
1196  return AVERROR_INVALIDDATA; \
1197  }\
1198  dst = tmp;
1199 
1200  align_get_bits(gb);
1201 
1202  s->zero_res = s->num_refs ? get_bits1(gb) : 0;
1203  if (s->zero_res)
1204  return 0;
1205 
1206  /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
1207  CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
1208 
1209  CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
1210 
1211  if (!s->low_delay) {
1212  /* Codeblock parameters (core syntax only) */
1213  if (get_bits1(gb)) {
1214  for (i = 0; i <= s->wavelet_depth; i++) {
1215  CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
1216  CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
1217  }
1218 
1219  CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
1220  }
1221  else {
1222  for (i = 0; i <= s->wavelet_depth; i++)
1223  s->codeblock[i].width = s->codeblock[i].height = 1;
1224  }
1225  }
1226  else {
1229  if (s->num_x * s->num_y == 0 || s->num_x * (uint64_t)s->num_y > INT_MAX) {
1230  av_log(s->avctx,AV_LOG_ERROR,"Invalid numx/y\n");
1231  s->num_x = s->num_y = 0;
1232  return AVERROR_INVALIDDATA;
1233  }
1234  if (s->ld_picture) {
1237  if (s->lowdelay.bytes.den <= 0) {
1238  av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
1239  return AVERROR_INVALIDDATA;
1240  }
1241  } else if (s->hq_picture) {
1244  if (s->highquality.prefix_bytes >= INT_MAX / 8) {
1245  av_log(s->avctx,AV_LOG_ERROR,"too many prefix bytes\n");
1246  return AVERROR_INVALIDDATA;
1247  }
1248  }
1249 
1250  /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
1251  if (get_bits1(gb)) {
1252  av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
1253  /* custom quantization matrix */
1254  s->lowdelay.quant[0][0] = get_interleaved_ue_golomb(gb);
1255  for (level = 0; level < s->wavelet_depth; level++) {
1259  }
1260  } else {
1261  if (s->wavelet_depth > 4) {
1262  av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
1263  return AVERROR_INVALIDDATA;
1264  }
1265  /* default quantization matrix */
1266  for (level = 0; level < s->wavelet_depth; level++)
1267  for (i = 0; i < 4; i++) {
1269  /* haar with no shift differs for different depths */
1270  if (s->wavelet_idx == 3)
1271  s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
1272  }
1273  }
1274  }
1275  return 0;
1276 }
1277 
1278 static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
1279 {
1280  static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
1281 
1282  if (!(x|y))
1283  return 0;
1284  else if (!y)
1285  return sbsplit[-1];
1286  else if (!x)
1287  return sbsplit[-stride];
1288 
1289  return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
1290 }
1291 
1292 static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
1293 {
1294  int pred;
1295 
1296  if (!(x|y))
1297  return 0;
1298  else if (!y)
1299  return block[-1].ref & refmask;
1300  else if (!x)
1301  return block[-stride].ref & refmask;
1302 
1303  /* return the majority */
1304  pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
1305  return (pred >> 1) & refmask;
1306 }
1307 
1308 static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
1309 {
1310  int i, n = 0;
1311 
1312  memset(block->u.dc, 0, sizeof(block->u.dc));
1313 
1314  if (x && !(block[-1].ref & 3)) {
1315  for (i = 0; i < 3; i++)
1316  block->u.dc[i] += block[-1].u.dc[i];
1317  n++;
1318  }
1319 
1320  if (y && !(block[-stride].ref & 3)) {
1321  for (i = 0; i < 3; i++)
1322  block->u.dc[i] += block[-stride].u.dc[i];
1323  n++;
1324  }
1325 
1326  if (x && y && !(block[-1-stride].ref & 3)) {
1327  for (i = 0; i < 3; i++)
1328  block->u.dc[i] += block[-1-stride].u.dc[i];
1329  n++;
1330  }
1331 
1332  if (n == 2) {
1333  for (i = 0; i < 3; i++)
1334  block->u.dc[i] = (block->u.dc[i]+1)>>1;
1335  } else if (n == 3) {
1336  for (i = 0; i < 3; i++)
1337  block->u.dc[i] = divide3(block->u.dc[i]);
1338  }
1339 }
1340 
1341 static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
1342 {
1343  int16_t *pred[3];
1344  int refmask = ref+1;
1345  int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
1346  int n = 0;
1347 
1348  if (x && (block[-1].ref & mask) == refmask)
1349  pred[n++] = block[-1].u.mv[ref];
1350 
1351  if (y && (block[-stride].ref & mask) == refmask)
1352  pred[n++] = block[-stride].u.mv[ref];
1353 
1354  if (x && y && (block[-stride-1].ref & mask) == refmask)
1355  pred[n++] = block[-stride-1].u.mv[ref];
1356 
1357  switch (n) {
1358  case 0:
1359  block->u.mv[ref][0] = 0;
1360  block->u.mv[ref][1] = 0;
1361  break;
1362  case 1:
1363  block->u.mv[ref][0] = pred[0][0];
1364  block->u.mv[ref][1] = pred[0][1];
1365  break;
1366  case 2:
1367  block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
1368  block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
1369  break;
1370  case 3:
1371  block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
1372  block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
1373  break;
1374  }
1375 }
1376 
1377 static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
1378 {
1379  int ez = s->globalmc[ref].zrs_exp;
1380  int ep = s->globalmc[ref].perspective_exp;
1381  int (*A)[2] = s->globalmc[ref].zrs;
1382  int *b = s->globalmc[ref].pan_tilt;
1383  int *c = s->globalmc[ref].perspective;
1384 
1385  int m = (1<<ep) - (c[0]*x + c[1]*y);
1386  int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
1387  int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
1388 
1389  block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
1390  block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
1391 }
1392 
1394  int stride, int x, int y)
1395 {
1396  int i;
1397 
1398  block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
1399  block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
1400 
1401  if (s->num_refs == 2) {
1402  block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
1403  block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
1404  }
1405 
1406  if (!block->ref) {
1407  pred_block_dc(block, stride, x, y);
1408  for (i = 0; i < 3; i++)
1409  block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
1410  return;
1411  }
1412 
1413  if (s->globalmc_flag) {
1414  block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
1415  block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
1416  }
1417 
1418  for (i = 0; i < s->num_refs; i++)
1419  if (block->ref & (i+1)) {
1420  if (block->ref & DIRAC_REF_MASK_GLOBAL) {
1421  global_mv(s, block, x, y, i);
1422  } else {
1423  pred_mv(block, stride, x, y, i);
1424  block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1425  block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1426  }
1427  }
1428 }
1429 
1430 /**
1431  * Copies the current block to the other blocks covered by the current superblock split mode
1432  */
1434 {
1435  int x, y;
1436  DiracBlock *dst = block;
1437 
1438  for (x = 1; x < size; x++)
1439  dst[x] = *block;
1440 
1441  for (y = 1; y < size; y++) {
1442  dst += stride;
1443  for (x = 0; x < size; x++)
1444  dst[x] = *block;
1445  }
1446 }
1447 
1448 /**
1449  * Dirac Specification ->
1450  * 12. Block motion data syntax
1451  */
1453 {
1454  GetBitContext *gb = &s->gb;
1455  uint8_t *sbsplit = s->sbsplit;
1456  int i, x, y, q, p;
1457  DiracArith arith[8];
1458 
1459  align_get_bits(gb);
1460 
1461  /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
1462  s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep);
1463  s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep);
1464  s->blwidth = 4 * s->sbwidth;
1465  s->blheight = 4 * s->sbheight;
1466 
1467  /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
1468  decode superblock split modes */
1469  ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb)); /* get_interleaved_ue_golomb(gb) is the length */
1470  for (y = 0; y < s->sbheight; y++) {
1471  for (x = 0; x < s->sbwidth; x++) {
1472  unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
1473  if (split > 2)
1474  return AVERROR_INVALIDDATA;
1475  sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
1476  }
1477  sbsplit += s->sbwidth;
1478  }
1479 
1480  /* setup arith decoding */
1482  for (i = 0; i < s->num_refs; i++) {
1483  ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1484  ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1485  }
1486  for (i = 0; i < 3; i++)
1488 
1489  for (y = 0; y < s->sbheight; y++)
1490  for (x = 0; x < s->sbwidth; x++) {
1491  int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
1492  int step = 4 >> s->sbsplit[y * s->sbwidth + x];
1493 
1494  for (q = 0; q < blkcnt; q++)
1495  for (p = 0; p < blkcnt; p++) {
1496  int bx = 4 * x + p*step;
1497  int by = 4 * y + q*step;
1498  DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
1499  decode_block_params(s, arith, block, s->blwidth, bx, by);
1500  propagate_block_data(block, s->blwidth, step);
1501  }
1502  }
1503 
1504  return 0;
1505 }
1506 
1507 static int weight(int i, int blen, int offset)
1508 {
1509 #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
1510  (1 + (6*(i) + offset - 1) / (2*offset - 1))
1511 
1512  if (i < 2*offset)
1513  return ROLLOFF(i);
1514  else if (i > blen-1 - 2*offset)
1515  return ROLLOFF(blen-1 - i);
1516  return 8;
1517 }
1518 
1519 static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
1520  int left, int right, int wy)
1521 {
1522  int x;
1523  for (x = 0; left && x < p->xblen >> 1; x++)
1524  obmc_weight[x] = wy*8;
1525  for (; x < p->xblen >> right; x++)
1526  obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
1527  for (; x < p->xblen; x++)
1528  obmc_weight[x] = wy*8;
1529  for (; x < stride; x++)
1530  obmc_weight[x] = 0;
1531 }
1532 
1533 static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
1534  int left, int right, int top, int bottom)
1535 {
1536  int y;
1537  for (y = 0; top && y < p->yblen >> 1; y++) {
1538  init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1539  obmc_weight += stride;
1540  }
1541  for (; y < p->yblen >> bottom; y++) {
1542  int wy = weight(y, p->yblen, p->yoffset);
1543  init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
1544  obmc_weight += stride;
1545  }
1546  for (; y < p->yblen; y++) {
1547  init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1548  obmc_weight += stride;
1549  }
1550 }
1551 
1552 static void init_obmc_weights(DiracContext *s, Plane *p, int by)
1553 {
1554  int top = !by;
1555  int bottom = by == s->blheight-1;
1556 
1557  /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
1558  if (top || bottom || by == 1) {
1559  init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
1560  init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
1561  init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
1562  }
1563 }
1564 
1565 static const uint8_t epel_weights[4][4][4] = {
1566  {{ 16, 0, 0, 0 },
1567  { 12, 4, 0, 0 },
1568  { 8, 8, 0, 0 },
1569  { 4, 12, 0, 0 }},
1570  {{ 12, 0, 4, 0 },
1571  { 9, 3, 3, 1 },
1572  { 6, 6, 2, 2 },
1573  { 3, 9, 1, 3 }},
1574  {{ 8, 0, 8, 0 },
1575  { 6, 2, 6, 2 },
1576  { 4, 4, 4, 4 },
1577  { 2, 6, 2, 6 }},
1578  {{ 4, 0, 12, 0 },
1579  { 3, 1, 9, 3 },
1580  { 2, 2, 6, 6 },
1581  { 1, 3, 3, 9 }}
1582 };
1583 
1584 /**
1585  * For block x,y, determine which of the hpel planes to do bilinear
1586  * interpolation from and set src[] to the location in each hpel plane
1587  * to MC from.
1588  *
1589  * @return the index of the put_dirac_pixels_tab function to use
1590  * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
1591  */
1593  int x, int y, int ref, int plane)
1594 {
1595  Plane *p = &s->plane[plane];
1596  uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
1597  int motion_x = block->u.mv[ref][0];
1598  int motion_y = block->u.mv[ref][1];
1599  int mx, my, i, epel, nplanes = 0;
1600 
1601  if (plane) {
1602  motion_x >>= s->chroma_x_shift;
1603  motion_y >>= s->chroma_y_shift;
1604  }
1605 
1606  mx = motion_x & ~(-1U << s->mv_precision);
1607  my = motion_y & ~(-1U << s->mv_precision);
1608  motion_x >>= s->mv_precision;
1609  motion_y >>= s->mv_precision;
1610  /* normalize subpel coordinates to epel */
1611  /* TODO: template this function? */
1612  mx <<= 3 - s->mv_precision;
1613  my <<= 3 - s->mv_precision;
1614 
1615  x += motion_x;
1616  y += motion_y;
1617  epel = (mx|my)&1;
1618 
1619  /* hpel position */
1620  if (!((mx|my)&3)) {
1621  nplanes = 1;
1622  src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
1623  } else {
1624  /* qpel or epel */
1625  nplanes = 4;
1626  for (i = 0; i < 4; i++)
1627  src[i] = ref_hpel[i] + y*p->stride + x;
1628 
1629  /* if we're interpolating in the right/bottom halves, adjust the planes as needed
1630  we increment x/y because the edge changes for half of the pixels */
1631  if (mx > 4) {
1632  src[0] += 1;
1633  src[2] += 1;
1634  x++;
1635  }
1636  if (my > 4) {
1637  src[0] += p->stride;
1638  src[1] += p->stride;
1639  y++;
1640  }
1641 
1642  /* hpel planes are:
1643  [0]: F [1]: H
1644  [2]: V [3]: C */
1645  if (!epel) {
1646  /* check if we really only need 2 planes since either mx or my is
1647  a hpel position. (epel weights of 0 handle this there) */
1648  if (!(mx&3)) {
1649  /* mx == 0: average [0] and [2]
1650  mx == 4: average [1] and [3] */
1651  src[!mx] = src[2 + !!mx];
1652  nplanes = 2;
1653  } else if (!(my&3)) {
1654  src[0] = src[(my>>1) ];
1655  src[1] = src[(my>>1)+1];
1656  nplanes = 2;
1657  }
1658  } else {
1659  /* adjust the ordering if needed so the weights work */
1660  if (mx > 4) {
1661  FFSWAP(const uint8_t *, src[0], src[1]);
1662  FFSWAP(const uint8_t *, src[2], src[3]);
1663  }
1664  if (my > 4) {
1665  FFSWAP(const uint8_t *, src[0], src[2]);
1666  FFSWAP(const uint8_t *, src[1], src[3]);
1667  }
1668  src[4] = epel_weights[my&3][mx&3];
1669  }
1670  }
1671 
1672  /* fixme: v/h _edge_pos */
1673  if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
1674  y + p->yblen > p->height+EDGE_WIDTH/2 ||
1675  x < 0 || y < 0) {
1676  for (i = 0; i < nplanes; i++) {
1677  s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
1678  p->stride, p->stride,
1679  p->xblen, p->yblen, x, y,
1680  p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
1681  src[i] = s->edge_emu_buffer[i];
1682  }
1683  }
1684  return (nplanes>>1) + epel;
1685 }
1686 
1687 static void add_dc(uint16_t *dst, int dc, int stride,
1688  uint8_t *obmc_weight, int xblen, int yblen)
1689 {
1690  int x, y;
1691  dc += 128;
1692 
1693  for (y = 0; y < yblen; y++) {
1694  for (x = 0; x < xblen; x += 2) {
1695  dst[x ] += dc * obmc_weight[x ];
1696  dst[x+1] += dc * obmc_weight[x+1];
1697  }
1698  dst += stride;
1699  obmc_weight += MAX_BLOCKSIZE;
1700  }
1701 }
1702 
1704  uint16_t *mctmp, uint8_t *obmc_weight,
1705  int plane, int dstx, int dsty)
1706 {
1707  Plane *p = &s->plane[plane];
1708  const uint8_t *src[5];
1709  int idx;
1710 
1711  switch (block->ref&3) {
1712  case 0: /* DC */
1713  add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
1714  return;
1715  case 1:
1716  case 2:
1717  idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
1718  s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1719  if (s->weight_func)
1721  s->weight[0] + s->weight[1], p->yblen);
1722  break;
1723  case 3:
1724  idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
1725  s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1726  idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
1727  if (s->biweight_func) {
1728  /* fixme: +32 is a quick hack */
1729  s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
1731  s->weight[0], s->weight[1], p->yblen);
1732  } else
1733  s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1734  break;
1735  }
1736  s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
1737 }
1738 
1739 static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
1740 {
1741  Plane *p = &s->plane[plane];
1742  int x, dstx = p->xbsep - p->xoffset;
1743 
1744  block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
1745  mctmp += p->xbsep;
1746 
1747  for (x = 1; x < s->blwidth-1; x++) {
1748  block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
1749  dstx += p->xbsep;
1750  mctmp += p->xbsep;
1751  }
1752  block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
1753 }
1754 
1755 static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
1756 {
1757  int idx = 0;
1758  if (xblen > 8)
1759  idx = 1;
1760  if (xblen > 16)
1761  idx = 2;
1762 
1763  memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
1764  memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
1765  s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
1766  if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
1769  } else {
1770  s->weight_func = NULL;
1771  s->biweight_func = NULL;
1772  }
1773 }
1774 
1776 {
1777  /* chroma allocates an edge of 8 when subsampled
1778  which for 4:2:2 means an h edge of 16 and v edge of 8
1779  just use 8 for everything for the moment */
1780  int i, edge = EDGE_WIDTH/2;
1781 
1782  ref->hpel[plane][0] = ref->avframe->data[plane];
1783  s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
1784 
1785  /* no need for hpel if we only have fpel vectors */
1786  if (!s->mv_precision)
1787  return 0;
1788 
1789  for (i = 1; i < 4; i++) {
1790  if (!ref->hpel_base[plane][i])
1791  ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
1792  if (!ref->hpel_base[plane][i]) {
1793  return AVERROR(ENOMEM);
1794  }
1795  /* we need to be 16-byte aligned even for chroma */
1796  ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
1797  }
1798 
1799  if (!ref->interpolated[plane]) {
1800  s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
1801  ref->hpel[plane][3], ref->hpel[plane][0],
1802  ref->avframe->linesize[plane], width, height);
1803  s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1804  s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1805  s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1806  }
1807  ref->interpolated[plane] = 1;
1808 
1809  return 0;
1810 }
1811 
1812 /**
1813  * Dirac Specification ->
1814  * 13.0 Transform data syntax. transform_data()
1815  */
1817 {
1818  DWTContext d;
1819  int y, i, comp, dsty;
1820  int ret;
1821 
1822  if (s->low_delay) {
1823  /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
1824  if (!s->hq_picture) {
1825  for (comp = 0; comp < 3; comp++) {
1826  Plane *p = &s->plane[comp];
1827  memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1828  }
1829  }
1830  if (!s->zero_res) {
1831  if ((ret = decode_lowdelay(s)) < 0)
1832  return ret;
1833  }
1834  }
1835 
1836  for (comp = 0; comp < 3; comp++) {
1837  Plane *p = &s->plane[comp];
1839 
1840  /* FIXME: small resolutions */
1841  for (i = 0; i < 4; i++)
1842  s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
1843 
1844  if (!s->zero_res && !s->low_delay)
1845  {
1846  memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1847  decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
1848  }
1849  ret = ff_spatial_idwt_init(&d, &p->idwt, s->wavelet_idx+2,
1850  s->wavelet_depth, s->bit_depth);
1851  if (ret < 0)
1852  return ret;
1853 
1854  if (!s->num_refs) { /* intra */
1855  for (y = 0; y < p->height; y += 16) {
1856  int idx = (s->bit_depth - 8) >> 1;
1857  ff_spatial_idwt_slice2(&d, y+16); /* decode */
1858  s->diracdsp.put_signed_rect_clamped[idx](frame + y*p->stride,
1859  p->stride,
1860  p->idwt.buf + y*p->idwt.stride,
1861  p->idwt.stride, p->width, 16);
1862  }
1863  } else { /* inter */
1864  int rowheight = p->ybsep*p->stride;
1865 
1866  select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
1867 
1868  for (i = 0; i < s->num_refs; i++) {
1869  int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
1870  if (ret < 0)
1871  return ret;
1872  }
1873 
1874  memset(s->mctmp, 0, 4*p->yoffset*p->stride);
1875 
1876  dsty = -p->yoffset;
1877  for (y = 0; y < s->blheight; y++) {
1878  int h = 0,
1879  start = FFMAX(dsty, 0);
1880  uint16_t *mctmp = s->mctmp + y*rowheight;
1881  DiracBlock *blocks = s->blmotion + y*s->blwidth;
1882 
1883  init_obmc_weights(s, p, y);
1884 
1885  if (y == s->blheight-1 || start+p->ybsep > p->height)
1886  h = p->height - start;
1887  else
1888  h = p->ybsep - (start - dsty);
1889  if (h < 0)
1890  break;
1891 
1892  memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
1893  mc_row(s, blocks, mctmp, comp, dsty);
1894 
1895  mctmp += (start - dsty)*p->stride + p->xoffset;
1896  ff_spatial_idwt_slice2(&d, start + h); /* decode */
1897  /* NOTE: add_rect_clamped hasn't been templated hence the shifts.
1898  * idwt.stride is passed as pixels, not in bytes as in the rest of the decoder */
1899  s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
1900  (int16_t*)(p->idwt.buf) + start*(p->idwt.stride >> 1), (p->idwt.stride >> 1), p->width, h);
1901 
1902  dsty += p->ybsep;
1903  }
1904  }
1905  }
1906 
1907 
1908  return 0;
1909 }
1910 
1912 {
1913  int ret, i;
1914  int chroma_x_shift, chroma_y_shift;
1915  avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
1916 
1917  f->width = avctx->width + 2 * EDGE_WIDTH;
1918  f->height = avctx->height + 2 * EDGE_WIDTH + 2;
1919  ret = ff_get_buffer(avctx, f, flags);
1920  if (ret < 0)
1921  return ret;
1922 
1923  for (i = 0; f->data[i]; i++) {
1924  int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
1925  f->linesize[i] + 32;
1926  f->data[i] += offset;
1927  }
1928  f->width = avctx->width;
1929  f->height = avctx->height;
1930 
1931  return 0;
1932 }
1933 
1934 /**
1935  * Dirac Specification ->
1936  * 11.1.1 Picture Header. picture_header()
1937  */
1939 {
1940  unsigned retire, picnum;
1941  int i, j, ret;
1942  int64_t refdist, refnum;
1943  GetBitContext *gb = &s->gb;
1944 
1945  /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
1947 
1948 
1949  av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
1950 
1951  /* if this is the first keyframe after a sequence header, start our
1952  reordering from here */
1953  if (s->frame_number < 0)
1954  s->frame_number = picnum;
1955 
1956  s->ref_pics[0] = s->ref_pics[1] = NULL;
1957  for (i = 0; i < s->num_refs; i++) {
1958  refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
1959  refdist = INT64_MAX;
1960 
1961  /* find the closest reference to the one we want */
1962  /* Jordi: this is needed if the referenced picture hasn't yet arrived */
1963  for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
1964  if (s->ref_frames[j]
1965  && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
1966  s->ref_pics[i] = s->ref_frames[j];
1967  refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
1968  }
1969 
1970  if (!s->ref_pics[i] || refdist)
1971  av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
1972 
1973  /* if there were no references at all, allocate one */
1974  if (!s->ref_pics[i])
1975  for (j = 0; j < MAX_FRAMES; j++)
1976  if (!s->all_frames[j].avframe->data[0]) {
1977  s->ref_pics[i] = &s->all_frames[j];
1979  if (ret < 0)
1980  return ret;
1981  break;
1982  }
1983 
1984  if (!s->ref_pics[i]) {
1985  av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
1986  return AVERROR_INVALIDDATA;
1987  }
1988 
1989  }
1990 
1991  /* retire the reference frames that are not used anymore */
1992  if (s->current_picture->reference) {
1993  retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
1994  if (retire != picnum) {
1995  DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
1996 
1997  if (retire_pic)
1998  retire_pic->reference &= DELAYED_PIC_REF;
1999  else
2000  av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
2001  }
2002 
2003  /* if reference array is full, remove the oldest as per the spec */
2005  av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
2007  }
2008  }
2009 
2010  if (s->num_refs) {
2011  ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
2012  if (ret < 0)
2013  return ret;
2014  ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
2015  if (ret < 0)
2016  return ret;
2017  }
2018  ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
2019  if (ret < 0)
2020  return ret;
2021 
2022  init_planes(s);
2023  return 0;
2024 }
2025 
2026 static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
2027 {
2028  DiracFrame *out = s->delay_frames[0];
2029  int i, out_idx = 0;
2030  int ret;
2031 
2032  /* find frame with lowest picture number */
2033  for (i = 1; s->delay_frames[i]; i++)
2035  out = s->delay_frames[i];
2036  out_idx = i;
2037  }
2038 
2039  for (i = out_idx; s->delay_frames[i]; i++)
2040  s->delay_frames[i] = s->delay_frames[i+1];
2041 
2042  if (out) {
2043  out->reference ^= DELAYED_PIC_REF;
2044  *got_frame = 1;
2045  if((ret = av_frame_ref(picture, out->avframe)) < 0)
2046  return ret;
2047  }
2048 
2049  return 0;
2050 }
2051 
2052 /**
2053  * Dirac Specification ->
2054  * 9.6 Parse Info Header Syntax. parse_info()
2055  * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
2056  */
2057 #define DATA_UNIT_HEADER_SIZE 13
2058 
2059 /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
2060  inside the function parse_sequence() */
2061 static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
2062 {
2063  DiracContext *s = avctx->priv_data;
2064  DiracFrame *pic = NULL;
2065  AVDiracSeqHeader *dsh;
2066  int ret, i;
2067  uint8_t parse_code;
2068  unsigned tmp;
2069 
2070  if (size < DATA_UNIT_HEADER_SIZE)
2071  return AVERROR_INVALIDDATA;
2072 
2073  parse_code = buf[4];
2074 
2075  init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
2076 
2077  if (parse_code == DIRAC_PCODE_SEQ_HEADER) {
2078  if (s->seen_sequence_header)
2079  return 0;
2080 
2081  /* [DIRAC_STD] 10. Sequence header */
2083  if (ret < 0) {
2084  av_log(avctx, AV_LOG_ERROR, "error parsing sequence header");
2085  return ret;
2086  }
2087 
2088  ret = ff_set_dimensions(avctx, dsh->width, dsh->height);
2089  if (ret < 0) {
2090  av_freep(&dsh);
2091  return ret;
2092  }
2093 
2094  ff_set_sar(avctx, dsh->sample_aspect_ratio);
2095  avctx->pix_fmt = dsh->pix_fmt;
2096  avctx->color_range = dsh->color_range;
2097  avctx->color_trc = dsh->color_trc;
2098  avctx->color_primaries = dsh->color_primaries;
2099  avctx->colorspace = dsh->colorspace;
2100  avctx->profile = dsh->profile;
2101  avctx->level = dsh->level;
2102  avctx->framerate = dsh->framerate;
2103  s->bit_depth = dsh->bit_depth;
2104  s->version.major = dsh->version.major;
2105  s->version.minor = dsh->version.minor;
2106  s->seq = *dsh;
2107  av_freep(&dsh);
2108 
2109  s->pshift = s->bit_depth > 8;
2110 
2112 
2113  ret = alloc_sequence_buffers(s);
2114  if (ret < 0)
2115  return ret;
2116 
2117  s->seen_sequence_header = 1;
2118  } else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */
2120  s->seen_sequence_header = 0;
2121  } else if (parse_code == DIRAC_PCODE_AUX) {
2122  if (buf[13] == 1) { /* encoder implementation/version */
2123  int ver[3];
2124  /* versions older than 1.0.8 don't store quant delta for
2125  subbands with only one codeblock */
2126  if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
2127  if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
2128  s->old_delta_quant = 1;
2129  }
2130  } else if (parse_code & 0x8) { /* picture data unit */
2131  if (!s->seen_sequence_header) {
2132  av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
2133  return AVERROR_INVALIDDATA;
2134  }
2135 
2136  /* find an unused frame */
2137  for (i = 0; i < MAX_FRAMES; i++)
2138  if (s->all_frames[i].avframe->data[0] == NULL)
2139  pic = &s->all_frames[i];
2140  if (!pic) {
2141  av_log(avctx, AV_LOG_ERROR, "framelist full\n");
2142  return AVERROR_INVALIDDATA;
2143  }
2144 
2145  av_frame_unref(pic->avframe);
2146 
2147  /* [DIRAC_STD] Defined in 9.6.1 ... */
2148  tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
2149  if (tmp > 2) {
2150  av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
2151  return AVERROR_INVALIDDATA;
2152  }
2153  s->num_refs = tmp;
2154  s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
2155  s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
2156  s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */
2157  s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */
2158  s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */
2159  s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */
2160  pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
2161  pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
2162  pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
2163 
2164  /* VC-2 Low Delay has a different parse code than the Dirac Low Delay */
2165  if (s->version.minor == 2 && parse_code == 0x88)
2166  s->ld_picture = 1;
2167 
2168  if (s->low_delay && !(s->ld_picture || s->hq_picture) ) {
2169  av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n");
2170  return AVERROR_INVALIDDATA;
2171  }
2172 
2173  if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
2174  return ret;
2175  s->current_picture = pic;
2176  s->plane[0].stride = pic->avframe->linesize[0];
2177  s->plane[1].stride = pic->avframe->linesize[1];
2178  s->plane[2].stride = pic->avframe->linesize[2];
2179 
2180  if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
2181  return AVERROR(ENOMEM);
2182 
2183  /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
2184  ret = dirac_decode_picture_header(s);
2185  if (ret < 0)
2186  return ret;
2187 
2188  /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
2189  ret = dirac_decode_frame_internal(s);
2190  if (ret < 0)
2191  return ret;
2192  }
2193  return 0;
2194 }
2195 
2196 static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
2197 {
2198  DiracContext *s = avctx->priv_data;
2199  AVFrame *picture = data;
2200  uint8_t *buf = pkt->data;
2201  int buf_size = pkt->size;
2202  int i, buf_idx = 0;
2203  int ret;
2204  unsigned data_unit_size;
2205 
2206  /* release unused frames */
2207  for (i = 0; i < MAX_FRAMES; i++)
2208  if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
2210  memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
2211  }
2212 
2213  s->current_picture = NULL;
2214  *got_frame = 0;
2215 
2216  /* end of stream, so flush delayed pics */
2217  if (buf_size == 0)
2218  return get_delayed_pic(s, (AVFrame *)data, got_frame);
2219 
2220  for (;;) {
2221  /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
2222  [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
2223  BBCD start code search */
2224  for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
2225  if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
2226  buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
2227  break;
2228  }
2229  /* BBCD found or end of data */
2230  if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
2231  break;
2232 
2233  data_unit_size = AV_RB32(buf+buf_idx+5);
2234  if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
2235  if(data_unit_size > buf_size - buf_idx)
2237  "Data unit with size %d is larger than input buffer, discarding\n",
2238  data_unit_size);
2239  buf_idx += 4;
2240  continue;
2241  }
2242  /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
2243  ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
2244  if (ret < 0)
2245  {
2246  av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
2247  return ret;
2248  }
2249  buf_idx += data_unit_size;
2250  }
2251 
2252  if (!s->current_picture)
2253  return buf_size;
2254 
2256  DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
2257 
2259 
2261  int min_num = s->delay_frames[0]->avframe->display_picture_number;
2262  /* Too many delayed frames, so we display the frame with the lowest pts */
2263  av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
2264 
2265  for (i = 1; s->delay_frames[i]; i++)
2266  if (s->delay_frames[i]->avframe->display_picture_number < min_num)
2267  min_num = s->delay_frames[i]->avframe->display_picture_number;
2268 
2269  delayed_frame = remove_frame(s->delay_frames, min_num);
2271  }
2272 
2273  if (delayed_frame) {
2274  delayed_frame->reference ^= DELAYED_PIC_REF;
2275  if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
2276  return ret;
2277  *got_frame = 1;
2278  }
2280  /* The right frame at the right time :-) */
2281  if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
2282  return ret;
2283  *got_frame = 1;
2284  }
2285 
2286  if (*got_frame)
2287  s->frame_number = picture->display_picture_number + 1;
2288 
2289  return buf_idx;
2290 }
2291 
2293  .name = "dirac",
2294  .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
2295  .type = AVMEDIA_TYPE_VIDEO,
2296  .id = AV_CODEC_ID_DIRAC,
2297  .priv_data_size = sizeof(DiracContext),
2299  .close = dirac_decode_end,
2303 };
#define CHECKEDREAD(dst, cond, errmsg)
int ff_dirac_golomb_read_32bit(DiracGolombLUT *lut_ctx, const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
Definition: dirac_vlc.c:42
int quant
Definition: cfhd.h:52
int plane
Definition: avisynth_c.h:422
void(* add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
Definition: diracdec.c:228
uint8_t * thread_buf
Definition: diracdec.c:174
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
#define NULL
Definition: coverity.c:32
#define UNPACK_ARITH(n, type)
Definition: diracdec.c:447
AVRational framerate
Definition: avcodec.h:3376
const char const char void * val
Definition: avisynth_c.h:771
const int32_t ff_dirac_qscale_tab[116]
Definition: diractab.c:34
#define PARSE_VALUES(type, x, gb, ebits, buf1, buf2)
Definition: diracdec.c:679
const char * s
Definition: avisynth_c.h:768
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int blheight
Definition: diracdec.c:210
static av_cold int dirac_decode_end(AVCodecContext *avctx)
Definition: diracdec.c:419
static void codeblock(DiracContext *s, SubBand *b, GetBitContext *gb, DiracArith *c, int left, int right, int top, int bottom, int blockcnt_one, int is_arith)
Decode the coeffs in the rectangle defined by left, right, top, bottom [DIRAC_STD] 13...
Definition: diracdec.c:483
enum AVColorRange color_range
Definition: dirac.h:107
#define av_realloc_f(p, o, n)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:184
dirac_weight_func weight_func
Definition: diracdec.c:229
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
static void flush(AVCodecContext *avctx)
uint8_t * sbsplit
Definition: diracdec.c:214
#define CTX_SB_DATA
Definition: dirac_arith.h:66
#define CTX_PMODE_REF2
Definition: dirac_arith.h:68
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:247
enum AVColorTransferCharacteristic color_trc
Definition: dirac.h:109
DiracFrame * ref_frames[MAX_REFERENCE_FRAMES+1]
Definition: diracdec.c:235
static int divide3(int x)
Definition: diracdec.c:249
static int dirac_decode_frame_internal(DiracContext *s)
Dirac Specification -> 13.0 Transform data syntax.
Definition: diracdec.c:1816
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:210
DiracVersionInfo version
Definition: dirac.h:112
int ld_picture
Definition: diracdec.c:155
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:204
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int bit_depth
Definition: diracdec.c:147
static void propagate_block_data(DiracBlock *block, int stride, int size)
Copies the current block to the other blocks covered by the current superblock split mode...
Definition: diracdec.c:1433
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:2413
dirac_weight_func weight_dirac_pixels_tab[3]
Definition: diracdsp.h:53
int num
Numerator.
Definition: rational.h:59
int size
Definition: avcodec.h:1602
const char * b
Definition: vf_curves.c:113
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: diracdec.c:65
void ff_dirac_init_arith_decoder(DiracArith *c, GetBitContext *gb, int length)
Definition: dirac_arith.c:86
static int subband_coeffs(DiracContext *s, int x, int y, int p, SliceCoeffs c[MAX_DWT_LEVELS])
Definition: diracdec.c:789
unsigned width
Definition: diracdec.c:182
#define DATA_UNIT_HEADER_SIZE
Dirac Specification -> 9.6 Parse Info Header Syntax.
Definition: diracdec.c:2057
const uint8_t * buffer
Definition: get_bits.h:56
int av_log2(unsigned v)
Definition: intmath.c:26
uint8_t * buf
Definition: dirac_dwt.h:41
uint8_t yoffset
Definition: diracdec.c:119
static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
Definition: diracdec.c:1377
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1904
GetBitContext gb
Definition: diracdec.c:126
static int dirac_get_arith_uint(DiracArith *c, int follow_ctx, int data_ctx)
Definition: dirac_arith.h:170
static int alloc_buffers(DiracContext *s, int stride)
Definition: diracdec.c:321
int ff_dirac_golomb_read_16bit(DiracGolombLUT *lut_ctx, const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
Definition: dirac_vlc.c:82
mpegvideo header.
struct DiracContext::@57 lowdelay
DiracVersionInfo version
Definition: diracdec.c:138
unsigned height
Definition: diracdec.c:183
static AVPacket pkt
#define EDGE_TOP
static void dirac_decode_flush(AVCodecContext *avctx)
Definition: diracdec.c:411
const uint8_t * coeff_data
Definition: diracdec.c:101
#define src
Definition: vp8dsp.c:254
static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
Definition: diracdec.c:2026
static int dirac_unpack_idwt_params(DiracContext *s)
Dirac Specification -> 11.3 Wavelet transform data.
Definition: diracdec.c:1186
int profile
profile
Definition: avcodec.h:3182
#define DIRAC_REF_MASK_REF2
Definition: diracdec.c:58
AVCodec.
Definition: avcodec.h:3601
int zrs[2][2]
Definition: diracdec.c:198
static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
VC-2 Specification -> 13.5.3 hq_slice(sx,sy)
Definition: diracdec.c:810
unsigned codeblock_mode
Definition: diracdec.c:169
int num_refs
Definition: diracdec.c:158
int av_dirac_parse_sequence_header(AVDiracSeqHeader **pdsh, const uint8_t *buf, size_t buf_size, void *log_ctx)
Parse a Dirac sequence header.
Definition: dirac.c:398
uint8_t xoffset
Definition: diracdec.c:118
uint8_t * tmp
Definition: dirac_dwt.h:43
unsigned weight_log2denom
Definition: diracdec.c:207
#define CTX_GLOBAL_BLOCK
Definition: dirac_arith.h:69
int width
Definition: cfhd.h:48
static int16_t block[64]
Definition: dct.c:113
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: avcodec.h:984
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
DiracFrame * delay_frames[MAX_DELAY+1]
Definition: diracdec.c:236
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
uint8_t * mcscratch
Definition: diracdec.c:221
int dc_prediction
Definition: diracdec.c:156
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
void(* add_rect_clamped)(uint8_t *dst, const uint16_t *src, int stride, const int16_t *idwt, int idwt_stride, int width, int height)
Definition: diracdsp.h:47
uint8_t
#define av_cold
Definition: attributes.h:82
unsigned wavelet_idx
Definition: diracdec.c:162
#define av_malloc(s)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:145
Interface to Dirac Decoder/Encoder.
#define CTX_PMODE_REF1
Definition: dirac_arith.h:67
static int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
Definition: diracdec.c:436
#define DIVRNDUP(a, b)
Definition: diracdec.c:70
int hq_picture
Definition: diracdec.c:154
static av_cold int dirac_decode_init(AVCodecContext *avctx)
Definition: diracdec.c:382
uint8_t quant[MAX_DWT_LEVELS][4]
Definition: diracdec.c:188
unsigned prefix_bytes
Definition: diracdec.c:192
AVRational sample_aspect_ratio
Definition: dirac.h:104
unsigned num_x
Definition: diracdec.c:171
int low_delay
Definition: diracdec.c:153
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:385
Plane plane[3]
Definition: diracdec.c:143
static int dirac_get_se_golomb(GetBitContext *gb)
Definition: golomb.h:255
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
Definition: bytestream.h:87
static AVFrame * frame
DiracSlice * slice_params_buf
Definition: diracdec.c:178
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:101
#define height
uint8_t * data
Definition: avcodec.h:1601
static void free_sequence_buffers(DiracContext *s)
Definition: diracdec.c:350
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:199
static int flags
Definition: log.c:57
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:225
int height
Definition: dirac_dwt.h:39
bitstream reader API header.
static const uint8_t epel_weights[4][4][4]
Definition: diracdec.c:1565
ptrdiff_t size
Definition: opengl_enc.c:101
uint8_t xblen
Definition: diracdec.c:112
static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
Dirac Specification -> 13.5.2 Slices.
Definition: diracdec.c:743
#define CTX_DC_DATA
Definition: dirac_arith.h:73
#define A(x)
Definition: vp56_arith.h:28
#define FFALIGN(x, a)
Definition: macros.h:48
#define av_log(a,...)
Definition: cfhd.h:43
void(* avg_dirac_pixels_tab[3][4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdsp.h:43
static void pred_block_dc(DiracBlock *block, int stride, int x, int y)
Definition: diracdec.c:1308
AVRational framerate
Definition: dirac.h:103
int pan_tilt[2]
Definition: diracdec.c:197
int interpolated[3]
Definition: diracdec.c:74
#define EDGE_WIDTH
Definition: mpegpicture.h:33
#define ROLLOFF(i)
#define U(x)
Definition: vp56_arith.h:37
av_cold int ff_dirac_golomb_reader_init(DiracGolombLUT **lut_ctx)
Definition: dirac_vlc.c:227
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:568
dirac_subband
Definition: diracdec.c:240
const int32_t ff_dirac_qoffset_intra_tab[120]
Definition: diractab.c:53
av_cold void ff_diracdsp_init(DiracDSPContext *c)
Definition: diracdsp.c:219
int width
width and height of the video frame
Definition: frame.h:236
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
unsigned length
Definition: diracdec.c:100
static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
Definition: diracdec.c:2196
void(* dirac_hpel_filter)(uint8_t *dsth, uint8_t *dstv, uint8_t *dstc, const uint8_t *src, int stride, int width, int height)
Definition: diracdsp.h:31
uint8_t * hpel[3][4]
Definition: diracdec.c:75
int slice_x
Definition: diracdec.c:127
static const uint16_t mask[17]
Definition: lzw.c:38
uint16_t * mctmp
Definition: diracdec.c:220
#define AVERROR(e)
Definition: error.h:43
#define DIRAC_REF_MASK_GLOBAL
Definition: diracdec.c:59
int width
Definition: dirac_dwt.h:38
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:158
static int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
Definition: diracdec.c:1278
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:176
static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
Definition: diracdec.c:272
static void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
Definition: diracdec.c:1341
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
const char * arg
Definition: jacosubdec.c:66
const uint8_t ff_dirac_default_qmat[7][4][4]
Definition: diractab.c:24
unsigned num_y
Definition: diracdec.c:172
static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
Definition: diracdec.c:1775
static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5], int x, int y, int ref, int plane)
For block x,y, determine which of the hpel planes to do bilinear interpolation from and set src[] to ...
Definition: diracdec.c:1592
unsigned wavelet_depth
Definition: diracdec.c:161
#define CTX_MV_DATA
Definition: dirac_arith.h:71
int stride
Definition: cfhd.h:46
GLsizei GLsizei * length
Definition: opengl_enc.c:115
const char * name
Name of the codec implementation.
Definition: avcodec.h:3608
DiracFrame * current_picture
Definition: diracdec.c:232
#define DIRAC_MAX_QUANT_INDEX
Definition: diractab.h:41
int slice_y
Definition: diracdec.c:128
unsigned old_delta_quant
schroedinger older than 1.0.8 doesn't store quant delta if only one codebook exists in a band ...
Definition: diracdec.c:168
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
static void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.h:226
static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
Definition: diracdec.c:2061
DiracDSPContext diracdsp
Definition: diracdec.c:136
int orientation
Definition: cfhd.h:45
#define MAX_BLOCKSIZE
Definition: diracdec.c:52
static char * split(char *message, char delim)
Definition: af_channelmap.c:81
int bytes
Definition: diracdec.c:129
int slice_params_num_buf
Definition: diracdec.c:179
#define INTRA_DC_PRED(n, type)
Dirac Specification -> 13.3 intra_dc_prediction(band)
Definition: diracdec.c:560
static void init_planes(DiracContext *s)
Definition: diracdec.c:1013
int globalmc_flag
Definition: diracdec.c:157
AVCodec ff_dirac_decoder
Definition: diracdec.c:2292
static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block, int stride, int x, int y)
Definition: diracdec.c:1393
SubBand band[DWT_LEVELS][4]
Definition: cfhd.h:68
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:258
uint8_t * ibuf
Definition: cfhd.h:53
#define FFMIN(a, b)
Definition: common.h:96
int display_picture_number
picture number in display order
Definition: frame.h:293
#define CALC_PADDING(size, depth)
Definition: diracdec.c:67
static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: diracdec.c:884
DiracFrame * ref_pics[2]
Definition: diracdec.c:233
void(* avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdec.c:227
static void block_mc(DiracContext *s, DiracBlock *block, uint16_t *mctmp, uint8_t *obmc_weight, int plane, int dstx, int dsty)
Definition: diracdec.c:1703
enum AVColorSpace colorspace
Definition: dirac.h:110
static DiracFrame * remove_frame(DiracFrame *framelist[], int picnum)
Definition: diracdec.c:254
#define width
void ff_spatial_idwt_slice2(DWTContext *d, int y)
Definition: dirac_dwt.c:67
#define FFSIGN(a)
Definition: common.h:73
int width
picture width / height.
Definition: avcodec.h:1863
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
union DiracBlock::@55 u
int perspective[2]
Definition: diracdec.c:199
static int dirac_unpack_prediction_parameters(DiracContext *s)
Unpack the motion compensation parameters Dirac Specification -> 11.2 Picture prediction data...
Definition: diracdec.c:1067
int32_t
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:2392
av_cold void ff_dirac_golomb_reader_end(DiracGolombLUT **lut_ctx)
Definition: dirac_vlc.c:244
MpegvideoEncDSPContext mpvencdsp
Definition: diracdec.c:134
static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
Definition: diracdec.c:1739
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
int level
level
Definition: avcodec.h:3280
unsigned perspective_exp
Definition: diracdec.c:201
int chroma_y_shift
Definition: diracdec.c:145
static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
Definition: diracdec.c:1755
int n
Definition: avisynth_c.h:684
struct DiracContext::@59 globalmc[2]
int16_t dc[3]
Definition: diracdec.c:83
void avcodec_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: imgconvert.c:38
uint8_t * edge_emu_buffer_base
Definition: diracdec.c:218
static void decode_component(DiracContext *s, int comp)
Dirac Specification -> [DIRAC_STD] 13.4.1 core_transform_data()
Definition: diracdec.c:645
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:3108
static void init_obmc_weights(DiracContext *s, Plane *p, int by)
Definition: diracdec.c:1552
static const float pred[4]
Definition: siprdata.h:259
void(* add_dirac_obmc[3])(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
Definition: diracdsp.h:48
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
uint8_t * buf_base
Definition: dirac_dwt.h:42
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: avcodec.h:1026
static const int8_t mv[256][2]
Definition: 4xm.c:77
static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
Definition: diracdec.c:1911
VideoDSPContext vdsp
Definition: diracdec.c:135
uint8_t ybsep
Definition: diracdec.c:116
static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
Dirac Specification -> 13.4.2 Non-skipped subbands.
Definition: diracdec.c:588
Libavcodec external API header.
uint8_t * edge_emu_buffer[4]
Definition: diracdec.c:217
int seen_sequence_header
Definition: diracdec.c:141
enum AVPixelFormat pix_fmt
Definition: dirac.h:106
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:215
const int ff_dirac_qoffset_inter_tab[122]
Definition: diractab.c:72
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:437
struct DiracContext::@56 codeblock[MAX_DWT_LEVELS+1]
void(* dirac_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int h)
Definition: diracdsp.h:27
main external API structure.
Definition: avcodec.h:1676
int buffer_stride
Definition: diracdec.c:222
MPEG-1/2 tables.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: utils.c:947
DiracFrame all_frames[MAX_FRAMES]
Definition: diracdec.c:237
int reference
Definition: diracdec.c:77
Arithmetic decoder for Dirac.
struct SubBand * parent
Definition: diracdec.c:97
void * buf
Definition: avisynth_c.h:690
dirac_biweight_func biweight_dirac_pixels_tab[3]
Definition: diracdsp.h:54
#define MAX_DWT_LEVELS
The spec limits the number of wavelet decompositions to 4 for both level 1 (VC-2) and 128 (long-gop d...
Definition: dirac.h:45
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:299
static int decode_lowdelay(DiracContext *s)
Dirac Specification -> 13.5.1 low_delay_transform_data()
Definition: diracdec.c:899
int core_syntax
Definition: diracdec.c:152
int frame_number
Definition: diracdec.c:142
static int dirac_get_arith_bit(DiracArith *c, int ctx)
Definition: dirac_arith.h:129
AVCodecContext * avctx
Definition: diracdec.c:133
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:2406
Rational number (pair of numerator and denominator).
Definition: rational.h:58
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2399
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:406
GetBitContext gb
Definition: diracdec.c:139
#define mid_pred
Definition: mathops.h:96
dirac_biweight_func biweight_func
Definition: diracdec.c:230
uint8_t xbsep
Definition: diracdec.c:115
int thread_buf_size
Definition: diracdec.c:176
#define u(width,...)
int chroma_x_shift
Definition: diracdec.c:144
AVRational bytes
Definition: diracdec.c:187
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:332
static int decode_subband_arith(AVCodecContext *avctx, void *b)
Definition: diracdec.c:626
static int weight(int i, int blen, int offset)
Definition: diracdec.c:1507
#define MAX_DELAY
Definition: diracdec.c:49
unsigned height
Definition: dirac.h:83
int zero_res
Definition: diracdec.c:150
const uint8_t * quant
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:495
#define MAX_FRAMES
Definition: diracdec.c:50
int pshift
Definition: cfhd.h:51
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:198
uint8_t level
Definition: svq3.c:207
static int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
Definition: diracdec.c:1292
AVFrame * avframe
Definition: diracdec.c:73
DiracBlock * blmotion
Definition: diracdec.c:215
DiracGolombLUT * reader_ctx
Definition: diracdec.c:137
#define MAX_REFERENCE_FRAMES
The spec limits this to 3 for frame coding, but in practice can be as high as 6.
Definition: diracdec.c:48
int
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
static int dirac_decode_picture_header(DiracContext *s)
Dirac Specification -> 11.1.1 Picture Header.
Definition: diracdec.c:1938
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:282
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
AVDiracSeqHeader seq
Definition: diracdec.c:140
#define AV_WN32(p, v)
Definition: intreadwrite.h:376
ptrdiff_t stride
Definition: cfhd.h:59
static void decode_subband(DiracContext *s, GetBitContext *gb, int quant, int slice_x, int slice_y, int bits_end, SubBand *b1, SubBand *b2)
Definition: diracdec.c:691
static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
Definition: diracdec.c:633
int16_t weight[2]
Definition: diracdec.c:206
int16_t mv[2][2]
Definition: diracdec.c:82
static int dirac_get_arith_int(DiracArith *c, int follow_ctx, int data_ctx)
Definition: dirac_arith.h:185
#define CTX_MV_F1
Definition: dirac_arith.h:70
int sbheight
Definition: diracdec.c:212
int den
Denominator.
Definition: rational.h:60
static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int wy)
Definition: diracdec.c:1519
Core video DSP helper functions.
void(* put_dirac_pixels_tab[3][4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
dirac_pixels_tab[width][subpel] width is 2 for 32, 1 for 16, 0 for 8 subpel is 0 for fpel and hpel (o...
Definition: diracdsp.h:42
#define CTX_DC_F1
Definition: dirac_arith.h:72
void * priv_data
Definition: avcodec.h:1718
DWTPlane idwt
Definition: diracdec.c:105
static int alloc_sequence_buffers(DiracContext *s)
Definition: diracdec.c:283
void(* put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdec.c:226
static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int top, int bottom)
Definition: diracdec.c:1533
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:3148
void(* dequant_subband[4])(uint8_t *src, uint8_t *dst, ptrdiff_t stride, const int qf, const int qs, int tot_v, int tot_h)
Definition: diracdsp.h:51
int threads_num_buf
Definition: diracdec.c:175
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:3168
void(* draw_edges)(uint8_t *buf, int wrap, int width, int height, int w, int h, int sides)
#define CTX_SB_F1
Definition: dirac_arith.h:65
static uint8_t tmp[8]
Definition: des.c:38
void(* dirac_biweight_func)(uint8_t *dst, const uint8_t *src, int stride, int log2_denom, int weightd, int weights, int h)
Definition: diracdsp.h:28
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:253
int height
Definition: cfhd.h:50
static AVCodec * c
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:445
#define EDGE_BOTTOM
int width
Definition: cfhd.h:57
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> dc
struct DiracContext::@58 highquality
int height
Definition: frame.h:236
FILE * out
Definition: movenc.c:54
uint8_t ref
Definition: diracdec.c:85
int is_arith
Definition: diracdec.c:151
#define av_freep(p)
static void comp(unsigned char *dst, int dst_stride, unsigned char *src, int src_stride, int add)
Definition: eamad.c:83
static void add_dc(uint16_t *dst, int dc, int stride, uint8_t *obmc_weight, int xblen, int yblen)
Definition: diracdec.c:1687
enum AVColorPrimaries color_primaries
Definition: dirac.h:108
void INT64 start
Definition: avisynth_c.h:690
static int decode(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *pkt)
Definition: ffmpeg.c:2045
#define AV_WN16(p, v)
Definition: intreadwrite.h:372
#define av_always_inline
Definition: attributes.h:39
#define av_malloc_array(a, b)
uint8_t * hpel_base[3][4]
Definition: diracdec.c:76
unsigned width
Definition: dirac.h:82
#define FFSWAP(type, a, b)
Definition: common.h:99
static unsigned get_interleaved_ue_golomb(GetBitContext *gb)
Definition: golomb.h:115
#define stride
int stride
Definition: dirac_dwt.h:40
int height
Definition: cfhd.h:58
exp golomb vlc stuff
This structure stores compressed data.
Definition: avcodec.h:1578
void(* put_signed_rect_clamped[3])(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int width, int height)
Definition: diracdsp.h:45
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:1354
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:959
#define DIRAC_REF_MASK_REF1
DiracBlock->ref flags, if set then the block does MC from the given ref.
Definition: diracdec.c:57
uint64_t size_scaler
Definition: diracdec.c:193
unsigned zrs_exp
Definition: diracdec.c:200
#define FFMAX3(a, b, c)
Definition: common.h:95
uint8_t mv_precision
Definition: diracdec.c:205
static int dirac_unpack_block_motion_data(DiracContext *s)
Dirac Specification ->
Definition: diracdec.c:1452
Definition: cfhd.h:56
uint8_t obmc_weight[3][MAX_BLOCKSIZE *MAX_BLOCKSIZE]
Definition: diracdec.c:224
int ff_spatial_idwt_init(DWTContext *d, DWTPlane *p, enum dwt_type type, int decomposition_count, int bit_depth)
Definition: dirac_dwt.c:36
int level
Definition: cfhd.h:44
uint8_t yblen
Definition: diracdec.c:113