FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
diracdec.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
3  * Copyright (C) 2009 David Conrad
4  * Copyright (C) 2011 Jordi Ortiz
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * Dirac Decoder
26  * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
27  */
28 
29 #include "avcodec.h"
30 #include "get_bits.h"
31 #include "bytestream.h"
32 #include "internal.h"
33 #include "golomb.h"
34 #include "dirac_arith.h"
35 #include "mpeg12data.h"
36 #include "libavcodec/mpegvideo.h"
37 #include "mpegvideoencdsp.h"
38 #include "dirac_dwt.h"
39 #include "dirac.h"
40 #include "diractab.h"
41 #include "diracdsp.h"
42 #include "videodsp.h"
43 
44 /**
45  * The spec limits this to 3 for frame coding, but in practice can be as high as 6
46  */
47 #define MAX_REFERENCE_FRAMES 8
48 #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
49 #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
50 #define MAX_QUANT 255 /* max quant for VC-2 */
51 #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
52 
53 /**
54  * DiracBlock->ref flags, if set then the block does MC from the given ref
55  */
56 #define DIRAC_REF_MASK_REF1 1
57 #define DIRAC_REF_MASK_REF2 2
58 #define DIRAC_REF_MASK_GLOBAL 4
59 
60 /**
61  * Value of Picture.reference when Picture is not a reference picture, but
62  * is held for delayed output.
63  */
64 #define DELAYED_PIC_REF 4
65 
66 #define CALC_PADDING(size, depth) \
67  (((size + (1 << depth) - 1) >> depth) << depth)
68 
69 #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
70 
71 typedef struct {
73  int interpolated[3]; /* 1 if hpel[] is valid */
74  uint8_t *hpel[3][4];
75  uint8_t *hpel_base[3][4];
76  int reference;
77 } DiracFrame;
78 
79 typedef struct {
80  union {
81  int16_t mv[2][2];
82  int16_t dc[3];
83  } u; /* anonymous unions aren't in C99 :( */
85 } DiracBlock;
86 
87 typedef struct SubBand {
88  int level;
89  int orientation;
90  int stride; /* in bytes */
91  int width;
92  int height;
93  int pshift;
94  int quant;
95  uint8_t *ibuf;
96  struct SubBand *parent;
97 
98  /* for low delay */
99  unsigned length;
101 } SubBand;
102 
103 typedef struct Plane {
105 
106  int width;
107  int height;
108  ptrdiff_t stride;
109 
110  /* block length */
113  /* block separation (block n+1 starts after this many pixels in block n) */
116  /* amount of overspill on each edge (half of the overlap between blocks) */
119 
121 } Plane;
122 
123 typedef struct DiracContext {
132  int frame_number; /* number of the next frame to display */
136 
137  int bit_depth; /* bit depth */
138  int pshift; /* pixel shift = bit_depth > 8 */
139 
140  int zero_res; /* zero residue flag */
141  int is_arith; /* whether coeffs use arith or golomb coding */
142  int core_syntax; /* use core syntax only */
143  int low_delay; /* use the low delay syntax */
144  int hq_picture; /* high quality picture, enables low_delay */
145  int ld_picture; /* use low delay picture, turns on low_delay */
146  int dc_prediction; /* has dc prediction */
147  int globalmc_flag; /* use global motion compensation */
148  int num_refs; /* number of reference pictures */
149 
150  /* wavelet decoding */
151  unsigned wavelet_depth; /* depth of the IDWT */
152  unsigned wavelet_idx;
153 
154  /**
155  * schroedinger older than 1.0.8 doesn't store
156  * quant delta if only one codebook exists in a band
157  */
158  unsigned old_delta_quant;
159  unsigned codeblock_mode;
160 
161  unsigned num_x; /* number of horizontal slices */
162  unsigned num_y; /* number of vertical slices */
163 
164  struct {
165  unsigned width;
166  unsigned height;
168 
169  struct {
170  AVRational bytes; /* average bytes per slice */
171  uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
172  } lowdelay;
173 
174  struct {
175  unsigned prefix_bytes;
176  uint64_t size_scaler;
177  } highquality;
178 
179  struct {
180  int pan_tilt[2]; /* pan/tilt vector */
181  int zrs[2][2]; /* zoom/rotate/shear matrix */
182  int perspective[2]; /* perspective vector */
183  unsigned zrs_exp;
184  unsigned perspective_exp;
185  } globalmc[2];
186 
187  /* motion compensation */
188  uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
189  int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
190  unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
191 
192  int blwidth; /* number of blocks (horizontally) */
193  int blheight; /* number of blocks (vertically) */
194  int sbwidth; /* number of superblocks (horizontally) */
195  int sbheight; /* number of superblocks (vertically) */
196 
199 
202 
203  uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
206 
208 
209  void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
210  void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
211  void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
214 
217 
221 } DiracContext;
222 
229 };
230 
231 /* magic number division by 3 from schroedinger */
232 static inline int divide3(int x)
233 {
234  return ((x+1)*21845 + 10922) >> 16;
235 }
236 
237 static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
238 {
239  DiracFrame *remove_pic = NULL;
240  int i, remove_idx = -1;
241 
242  for (i = 0; framelist[i]; i++)
243  if (framelist[i]->avframe->display_picture_number == picnum) {
244  remove_pic = framelist[i];
245  remove_idx = i;
246  }
247 
248  if (remove_pic)
249  for (i = remove_idx; framelist[i]; i++)
250  framelist[i] = framelist[i+1];
251 
252  return remove_pic;
253 }
254 
255 static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
256 {
257  int i;
258  for (i = 0; i < maxframes; i++)
259  if (!framelist[i]) {
260  framelist[i] = frame;
261  return 0;
262  }
263  return -1;
264 }
265 
267 {
268  int sbwidth = DIVRNDUP(s->seq.width, 4);
269  int sbheight = DIVRNDUP(s->seq.height, 4);
270  int i, w, h, top_padding;
271 
272  /* todo: think more about this / use or set Plane here */
273  for (i = 0; i < 3; i++) {
274  int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
275  int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
276  w = s->seq.width >> (i ? s->chroma_x_shift : 0);
277  h = s->seq.height >> (i ? s->chroma_y_shift : 0);
278 
279  /* we allocate the max we support here since num decompositions can
280  * change from frame to frame. Stride is aligned to 16 for SIMD, and
281  * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
282  * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
283  * on each side */
284  top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
285  w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
286  h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
287 
288  s->plane[i].idwt.buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
289  s->plane[i].idwt.tmp = av_malloc_array((w+16), 2 << s->pshift);
290  s->plane[i].idwt.buf = s->plane[i].idwt.buf_base + (top_padding*w)*(2 << s->pshift);
291  if (!s->plane[i].idwt.buf_base || !s->plane[i].idwt.tmp)
292  return AVERROR(ENOMEM);
293  }
294 
295  /* fixme: allocate using real stride here */
296  s->sbsplit = av_malloc_array(sbwidth, sbheight);
297  s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
298 
299  if (!s->sbsplit || !s->blmotion)
300  return AVERROR(ENOMEM);
301  return 0;
302 }
303 
305 {
306  int w = s->seq.width;
307  int h = s->seq.height;
308 
309  av_assert0(stride >= w);
310  stride += 64;
311 
312  if (s->buffer_stride >= stride)
313  return 0;
314  s->buffer_stride = 0;
315 
317  memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
318  av_freep(&s->mctmp);
319  av_freep(&s->mcscratch);
320 
322 
323  s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
325 
326  if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
327  return AVERROR(ENOMEM);
328 
329  s->buffer_stride = stride;
330  return 0;
331 }
332 
334 {
335  int i, j, k;
336 
337  for (i = 0; i < MAX_FRAMES; i++) {
338  if (s->all_frames[i].avframe->data[0]) {
340  memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
341  }
342 
343  for (j = 0; j < 3; j++)
344  for (k = 1; k < 4; k++)
345  av_freep(&s->all_frames[i].hpel_base[j][k]);
346  }
347 
348  memset(s->ref_frames, 0, sizeof(s->ref_frames));
349  memset(s->delay_frames, 0, sizeof(s->delay_frames));
350 
351  for (i = 0; i < 3; i++) {
352  av_freep(&s->plane[i].idwt.buf_base);
353  av_freep(&s->plane[i].idwt.tmp);
354  }
355 
356  s->buffer_stride = 0;
357  av_freep(&s->sbsplit);
358  av_freep(&s->blmotion);
360 
361  av_freep(&s->mctmp);
362  av_freep(&s->mcscratch);
363 }
364 
366 {
367  DiracContext *s = avctx->priv_data;
368  int i;
369 
370  s->avctx = avctx;
371  s->frame_number = -1;
372 
375  ff_videodsp_init(&s->vdsp, 8);
376 
377  for (i = 0; i < MAX_FRAMES; i++) {
379  if (!s->all_frames[i].avframe) {
380  while (i > 0)
381  av_frame_free(&s->all_frames[--i].avframe);
382  return AVERROR(ENOMEM);
383  }
384  }
385 
386  return 0;
387 }
388 
390 {
391  DiracContext *s = avctx->priv_data;
393  s->seen_sequence_header = 0;
394  s->frame_number = -1;
395 }
396 
398 {
399  DiracContext *s = avctx->priv_data;
400  int i;
401 
402  dirac_decode_flush(avctx);
403  for (i = 0; i < MAX_FRAMES; i++)
405 
406  return 0;
407 }
408 
409 #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
410 
411 static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
412 {
413  int sign, coeff;
414  uint32_t buf;
415 
416  OPEN_READER(re, gb);
417  UPDATE_CACHE(re, gb);
418  buf = GET_CACHE(re, gb);
419 
420  if (buf & 0x80000000) {
421  LAST_SKIP_BITS(re,gb,1);
422  CLOSE_READER(re, gb);
423  return 0;
424  }
425 
426  if (buf & 0xAA800000) {
427  buf >>= 32 - 8;
429 
431  } else {
432  unsigned ret = 1;
433 
434  do {
435  buf >>= 32 - 8;
436  SKIP_BITS(re, gb,
438 
439  if (ff_interleaved_golomb_vlc_len[buf] != 9) {
440  ret <<= (ff_interleaved_golomb_vlc_len[buf] - 1) >> 1;
442  break;
443  }
444  ret = (ret << 4) | ff_interleaved_dirac_golomb_vlc_code[buf];
445  UPDATE_CACHE(re, gb);
446  buf = GET_CACHE(re, gb);
447  } while (ret<0x8000000U && BITS_AVAILABLE(re, gb));
448 
449  coeff = ret - 1;
450  }
451 
452  coeff = (coeff * qfactor + qoffset) >> 2;
453  sign = SHOW_SBITS(re, gb, 1);
454  LAST_SKIP_BITS(re, gb, 1);
455  coeff = (coeff ^ sign) - sign;
456 
457  CLOSE_READER(re, gb);
458  return coeff;
459 }
460 
461 #define UNPACK_ARITH(n, type) \
462  static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
463  SubBand *b, type *buf, int x, int y) \
464  { \
465  int coeff, sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
466  const int mstride = -(b->stride >> (1+b->pshift)); \
467  if (b->parent) { \
468  const type *pbuf = (type *)b->parent->ibuf; \
469  const int stride = b->parent->stride >> (1+b->parent->pshift); \
470  pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
471  } \
472  if (b->orientation == subband_hl) \
473  sign_pred = buf[mstride]; \
474  if (x) { \
475  pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
476  if (b->orientation == subband_lh) \
477  sign_pred = buf[-1]; \
478  } else { \
479  pred_ctx += !buf[mstride]; \
480  } \
481  coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
482  if (coeff) { \
483  coeff = (coeff * qfactor + qoffset) >> 2; \
484  sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
485  coeff = (coeff ^ -sign) + sign; \
486  } \
487  *buf = coeff; \
488  } \
489 
490 UNPACK_ARITH(8, int16_t)
492 
493 /**
494  * Decode the coeffs in the rectangle defined by left, right, top, bottom
495  * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
496  */
497 static inline void codeblock(DiracContext *s, SubBand *b,
498  GetBitContext *gb, DiracArith *c,
499  int left, int right, int top, int bottom,
500  int blockcnt_one, int is_arith)
501 {
502  int x, y, zero_block;
503  int qoffset, qfactor;
504  uint8_t *buf;
505 
506  /* check for any coded coefficients in this codeblock */
507  if (!blockcnt_one) {
508  if (is_arith)
509  zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
510  else
511  zero_block = get_bits1(gb);
512 
513  if (zero_block)
514  return;
515  }
516 
517  if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
518  int quant = b->quant;
519  if (is_arith)
521  else
522  quant += dirac_get_se_golomb(gb);
523  if (quant < 0) {
524  av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
525  return;
526  }
527  b->quant = quant;
528  }
529 
530  if (b->quant > 115) {
531  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
532  b->quant = 0;
533  return;
534  }
535 
536  qfactor = ff_dirac_qscale_tab[b->quant];
537  /* TODO: context pointer? */
538  if (!s->num_refs)
539  qoffset = ff_dirac_qoffset_intra_tab[b->quant] + 2;
540  else
541  qoffset = ff_dirac_qoffset_inter_tab[b->quant] + 2;
542 
543  buf = b->ibuf + top * b->stride;
544  if (is_arith) {
545  for (y = top; y < bottom; y++) {
546  for (x = left; x < right; x++) {
547  if (b->pshift) {
548  coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
549  } else {
550  coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
551  }
552  }
553  buf += b->stride;
554  }
555  } else {
556  for (y = top; y < bottom; y++) {
557  for (x = left; x < right; x++) {
558  int val = coeff_unpack_golomb(gb, qfactor, qoffset);
559  if (b->pshift) {
560  AV_WN32(&buf[4*x], val);
561  } else {
562  AV_WN16(&buf[2*x], val);
563  }
564  }
565  buf += b->stride;
566  }
567  }
568 }
569 
570 /**
571  * Dirac Specification ->
572  * 13.3 intra_dc_prediction(band)
573  */
574 #define INTRA_DC_PRED(n, type) \
575  static inline void intra_dc_prediction_##n(SubBand *b) \
576  { \
577  type *buf = (type*)b->ibuf; \
578  int x, y; \
579  \
580  for (x = 1; x < b->width; x++) \
581  buf[x] += buf[x-1]; \
582  buf += (b->stride >> (1+b->pshift)); \
583  \
584  for (y = 1; y < b->height; y++) { \
585  buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
586  \
587  for (x = 1; x < b->width; x++) { \
588  int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
589  buf[x] += divide3(pred); \
590  } \
591  buf += (b->stride >> (1+b->pshift)); \
592  } \
593  } \
594 
595 INTRA_DC_PRED(8, int16_t)
597 
598 /**
599  * Dirac Specification ->
600  * 13.4.2 Non-skipped subbands. subband_coeffs()
601  */
603 {
604  int cb_x, cb_y, left, right, top, bottom;
605  DiracArith c;
606  GetBitContext gb;
607  int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
608  int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
609  int blockcnt_one = (cb_width + cb_height) == 2;
610 
611  if (!b->length)
612  return;
613 
614  init_get_bits8(&gb, b->coeff_data, b->length);
615 
616  if (is_arith)
617  ff_dirac_init_arith_decoder(&c, &gb, b->length);
618 
619  top = 0;
620  for (cb_y = 0; cb_y < cb_height; cb_y++) {
621  bottom = (b->height * (cb_y+1LL)) / cb_height;
622  left = 0;
623  for (cb_x = 0; cb_x < cb_width; cb_x++) {
624  right = (b->width * (cb_x+1LL)) / cb_width;
625  codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
626  left = right;
627  }
628  top = bottom;
629  }
630 
631  if (b->orientation == subband_ll && s->num_refs == 0) {
632  if (s->pshift) {
633  intra_dc_prediction_10(b);
634  } else {
635  intra_dc_prediction_8(b);
636  }
637  }
638 }
639 
640 static int decode_subband_arith(AVCodecContext *avctx, void *b)
641 {
642  DiracContext *s = avctx->priv_data;
643  decode_subband_internal(s, b, 1);
644  return 0;
645 }
646 
647 static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
648 {
649  DiracContext *s = avctx->priv_data;
650  SubBand **b = arg;
651  decode_subband_internal(s, *b, 0);
652  return 0;
653 }
654 
655 /**
656  * Dirac Specification ->
657  * [DIRAC_STD] 13.4.1 core_transform_data()
658  */
660 {
661  AVCodecContext *avctx = s->avctx;
662  SubBand *bands[3*MAX_DWT_LEVELS+1];
663  enum dirac_subband orientation;
664  int level, num_bands = 0;
665 
666  /* Unpack all subbands at all levels. */
667  for (level = 0; level < s->wavelet_depth; level++) {
668  for (orientation = !!level; orientation < 4; orientation++) {
669  SubBand *b = &s->plane[comp].band[level][orientation];
670  bands[num_bands++] = b;
671 
672  align_get_bits(&s->gb);
673  /* [DIRAC_STD] 13.4.2 subband() */
674  b->length = svq3_get_ue_golomb(&s->gb);
675  if (b->length) {
676  b->quant = svq3_get_ue_golomb(&s->gb);
677  align_get_bits(&s->gb);
678  b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
679  b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
680  skip_bits_long(&s->gb, b->length*8);
681  }
682  }
683  /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
684  if (s->is_arith)
685  avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
686  NULL, 4-!!level, sizeof(SubBand));
687  }
688  /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
689  if (!s->is_arith)
690  avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
691 }
692 
693 #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
694  type *buf = (type *)buf1; \
695  buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
696  if (get_bits_count(gb) >= ebits) \
697  return; \
698  if (buf2) { \
699  buf = (type *)buf2; \
700  buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
701  if (get_bits_count(gb) >= ebits) \
702  return; \
703  } \
704 
706  int slice_x, int slice_y, int bits_end,
707  SubBand *b1, SubBand *b2)
708 {
709  int left = b1->width * slice_x / s->num_x;
710  int right = b1->width *(slice_x+1) / s->num_x;
711  int top = b1->height * slice_y / s->num_y;
712  int bottom = b1->height *(slice_y+1) / s->num_y;
713 
714  int qfactor, qoffset;
715 
716  uint8_t *buf1 = b1->ibuf + top * b1->stride;
717  uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
718  int x, y;
719 
720  if (quant > 115) {
721  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", quant);
722  return;
723  }
724  qfactor = ff_dirac_qscale_tab[quant & 0x7f];
725  qoffset = ff_dirac_qoffset_intra_tab[quant & 0x7f] + 2;
726  /* we have to constantly check for overread since the spec explicitly
727  requires this, with the meaning that all remaining coeffs are set to 0 */
728  if (get_bits_count(gb) >= bits_end)
729  return;
730 
731  if (s->pshift) {
732  for (y = top; y < bottom; y++) {
733  for (x = left; x < right; x++) {
734  PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
735  }
736  buf1 += b1->stride;
737  if (buf2)
738  buf2 += b2->stride;
739  }
740  }
741  else {
742  for (y = top; y < bottom; y++) {
743  for (x = left; x < right; x++) {
744  PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
745  }
746  buf1 += b1->stride;
747  if (buf2)
748  buf2 += b2->stride;
749  }
750  }
751 }
752 
753 /* Used by Low Delay and High Quality profiles */
754 typedef struct DiracSlice {
756  int slice_x;
757  int slice_y;
758  int bytes;
759 } DiracSlice;
760 
761 
762 /**
763  * Dirac Specification ->
764  * 13.5.2 Slices. slice(sx,sy)
765  */
766 static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
767 {
768  DiracContext *s = avctx->priv_data;
769  DiracSlice *slice = arg;
770  GetBitContext *gb = &slice->gb;
771  enum dirac_subband orientation;
772  int level, quant, chroma_bits, chroma_end;
773 
774  int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
775  int length_bits = av_log2(8 * slice->bytes)+1;
776  int luma_bits = get_bits_long(gb, length_bits);
777  int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
778 
779  /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
780  for (level = 0; level < s->wavelet_depth; level++)
781  for (orientation = !!level; orientation < 4; orientation++) {
782  quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
783  decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
784  &s->plane[0].band[level][orientation], NULL);
785  }
786 
787  /* consume any unused bits from luma */
788  skip_bits_long(gb, get_bits_count(gb) - luma_end);
789 
790  chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
791  chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
792  /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
793  for (level = 0; level < s->wavelet_depth; level++)
794  for (orientation = !!level; orientation < 4; orientation++) {
795  quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
796  decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
797  &s->plane[1].band[level][orientation],
798  &s->plane[2].band[level][orientation]);
799  }
800 
801  return 0;
802 }
803 
804 /**
805  * VC-2 Specification ->
806  * 13.5.3 hq_slice(sx,sy)
807  */
808 static int decode_hq_slice(AVCodecContext *avctx, void *arg)
809 {
810  int i, quant, level, orientation, quant_idx;
811  uint8_t quants[MAX_DWT_LEVELS][4];
812  DiracContext *s = avctx->priv_data;
813  DiracSlice *slice = arg;
814  GetBitContext *gb = &slice->gb;
815 
817  quant_idx = get_bits(gb, 8);
818 
819  /* Slice quantization (slice_quantizers() in the specs) */
820  for (level = 0; level < s->wavelet_depth; level++) {
821  for (orientation = !!level; orientation < 4; orientation++) {
822  quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0);
823  quants[level][orientation] = quant;
824  }
825  }
826 
827  /* Luma + 2 Chroma planes */
828  for (i = 0; i < 3; i++) {
829  int64_t length = s->highquality.size_scaler * get_bits(gb, 8);
830  int64_t bits_left = 8 * length;
831  int64_t bits_end = get_bits_count(gb) + bits_left;
832 
833  if (bits_end >= INT_MAX) {
834  av_log(s->avctx, AV_LOG_ERROR, "end too far away\n");
835  return AVERROR_INVALIDDATA;
836  }
837 
838  for (level = 0; level < s->wavelet_depth; level++) {
839  for (orientation = !!level; orientation < 4; orientation++) {
840  decode_subband(s, gb, quants[level][orientation], slice->slice_x, slice->slice_y, bits_end,
841  &s->plane[i].band[level][orientation], NULL);
842  }
843  }
844  skip_bits_long(gb, bits_end - get_bits_count(gb));
845  }
846 
847  return 0;
848 }
849 
850 /**
851  * Dirac Specification ->
852  * 13.5.1 low_delay_transform_data()
853  */
855 {
856  AVCodecContext *avctx = s->avctx;
857  int slice_x, slice_y, bufsize;
858  int64_t bytes = 0;
859  const uint8_t *buf;
860  DiracSlice *slices;
861  int slice_num = 0;
862 
863  slices = av_mallocz_array(s->num_x, s->num_y * sizeof(DiracSlice));
864  if (!slices)
865  return AVERROR(ENOMEM);
866 
867  align_get_bits(&s->gb);
868  /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
869  buf = s->gb.buffer + get_bits_count(&s->gb)/8;
870  bufsize = get_bits_left(&s->gb);
871 
872  if (s->hq_picture) {
873  int i;
874 
875  for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
876  for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
877  bytes = s->highquality.prefix_bytes + 1;
878  for (i = 0; i < 3; i++) {
879  if (bytes <= bufsize/8)
880  bytes += buf[bytes] * s->highquality.size_scaler + 1;
881  }
882  if (bytes >= INT_MAX) {
883  av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
884  av_free(slices);
885  return AVERROR_INVALIDDATA;
886  }
887 
888  slices[slice_num].bytes = bytes;
889  slices[slice_num].slice_x = slice_x;
890  slices[slice_num].slice_y = slice_y;
891  init_get_bits(&slices[slice_num].gb, buf, bufsize);
892  slice_num++;
893 
894  buf += bytes;
895  if (bufsize/8 >= bytes)
896  bufsize -= bytes*8;
897  else
898  bufsize = 0;
899  }
900  }
901  avctx->execute(avctx, decode_hq_slice, slices, NULL, slice_num,
902  sizeof(DiracSlice));
903  } else {
904  for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
905  for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
906  bytes = (slice_num+1) * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den
907  - slice_num * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den;
908  slices[slice_num].bytes = bytes;
909  slices[slice_num].slice_x = slice_x;
910  slices[slice_num].slice_y = slice_y;
911  init_get_bits(&slices[slice_num].gb, buf, bufsize);
912  slice_num++;
913 
914  buf += bytes;
915  if (bufsize/8 >= bytes)
916  bufsize -= bytes*8;
917  else
918  bufsize = 0;
919  }
920  }
921  avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
922  sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */
923  }
924 
925  if (s->dc_prediction) {
926  if (s->pshift) {
927  intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
928  intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
929  intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
930  } else {
931  intra_dc_prediction_8(&s->plane[0].band[0][0]);
932  intra_dc_prediction_8(&s->plane[1].band[0][0]);
933  intra_dc_prediction_8(&s->plane[2].band[0][0]);
934  }
935  }
936  av_free(slices);
937  return 0;
938 }
939 
941 {
942  int i, w, h, level, orientation;
943 
944  for (i = 0; i < 3; i++) {
945  Plane *p = &s->plane[i];
946 
947  p->width = s->seq.width >> (i ? s->chroma_x_shift : 0);
948  p->height = s->seq.height >> (i ? s->chroma_y_shift : 0);
949  p->idwt.width = w = CALC_PADDING(p->width , s->wavelet_depth);
950  p->idwt.height = h = CALC_PADDING(p->height, s->wavelet_depth);
951  p->idwt.stride = FFALIGN(p->idwt.width, 8) << (1 + s->pshift);
952 
953  for (level = s->wavelet_depth-1; level >= 0; level--) {
954  w = w>>1;
955  h = h>>1;
956  for (orientation = !!level; orientation < 4; orientation++) {
957  SubBand *b = &p->band[level][orientation];
958 
959  b->pshift = s->pshift;
960  b->ibuf = p->idwt.buf;
961  b->level = level;
962  b->stride = p->idwt.stride << (s->wavelet_depth - level);
963  b->width = w;
964  b->height = h;
965  b->orientation = orientation;
966 
967  if (orientation & 1)
968  b->ibuf += w << (1+b->pshift);
969  if (orientation > 1)
970  b->ibuf += (b->stride>>1);
971 
972  if (level)
973  b->parent = &p->band[level-1][orientation];
974  }
975  }
976 
977  if (i > 0) {
978  p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
979  p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
980  p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
981  p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
982  }
983 
984  p->xoffset = (p->xblen - p->xbsep)/2;
985  p->yoffset = (p->yblen - p->ybsep)/2;
986  }
987 }
988 
989 /**
990  * Unpack the motion compensation parameters
991  * Dirac Specification ->
992  * 11.2 Picture prediction data. picture_prediction()
993  */
995 {
996  static const uint8_t default_blen[] = { 4, 12, 16, 24 };
997 
998  GetBitContext *gb = &s->gb;
999  unsigned idx, ref;
1000 
1001  align_get_bits(gb);
1002  /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
1003  /* Luma and Chroma are equal. 11.2.3 */
1004  idx = svq3_get_ue_golomb(gb); /* [DIRAC_STD] index */
1005 
1006  if (idx > 4) {
1007  av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
1008  return AVERROR_INVALIDDATA;
1009  }
1010 
1011  if (idx == 0) {
1012  s->plane[0].xblen = svq3_get_ue_golomb(gb);
1013  s->plane[0].yblen = svq3_get_ue_golomb(gb);
1014  s->plane[0].xbsep = svq3_get_ue_golomb(gb);
1015  s->plane[0].ybsep = svq3_get_ue_golomb(gb);
1016  } else {
1017  /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
1018  s->plane[0].xblen = default_blen[idx-1];
1019  s->plane[0].yblen = default_blen[idx-1];
1020  s->plane[0].xbsep = 4 * idx;
1021  s->plane[0].ybsep = 4 * idx;
1022  }
1023  /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
1024  Calculated in function dirac_unpack_block_motion_data */
1025 
1026  if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
1027  s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
1028  !s->plane[0].xblen || !s->plane[0].yblen) {
1030  "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
1031  s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
1032  return AVERROR_INVALIDDATA;
1033  }
1034  if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
1035  av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
1036  return AVERROR_INVALIDDATA;
1037  }
1038  if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
1039  av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
1040  return AVERROR_INVALIDDATA;
1041  }
1042  if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
1043  av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
1044  return AVERROR_PATCHWELCOME;
1045  }
1046 
1047  /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
1048  Read motion vector precision */
1050  if (s->mv_precision > 3) {
1051  av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
1052  return AVERROR_INVALIDDATA;
1053  }
1054 
1055  /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
1056  Read the global motion compensation parameters */
1057  s->globalmc_flag = get_bits1(gb);
1058  if (s->globalmc_flag) {
1059  memset(s->globalmc, 0, sizeof(s->globalmc));
1060  /* [DIRAC_STD] pan_tilt(gparams) */
1061  for (ref = 0; ref < s->num_refs; ref++) {
1062  if (get_bits1(gb)) {
1065  }
1066  /* [DIRAC_STD] zoom_rotate_shear(gparams)
1067  zoom/rotation/shear parameters */
1068  if (get_bits1(gb)) {
1070  s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
1071  s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
1072  s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
1073  s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
1074  } else {
1075  s->globalmc[ref].zrs[0][0] = 1;
1076  s->globalmc[ref].zrs[1][1] = 1;
1077  }
1078  /* [DIRAC_STD] perspective(gparams) */
1079  if (get_bits1(gb)) {
1083  }
1084  }
1085  }
1086 
1087  /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
1088  Picture prediction mode, not currently used. */
1089  if (svq3_get_ue_golomb(gb)) {
1090  av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
1091  return AVERROR_INVALIDDATA;
1092  }
1093 
1094  /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
1095  just data read, weight calculation will be done later on. */
1096  s->weight_log2denom = 1;
1097  s->weight[0] = 1;
1098  s->weight[1] = 1;
1099 
1100  if (get_bits1(gb)) {
1102  s->weight[0] = dirac_get_se_golomb(gb);
1103  if (s->num_refs == 2)
1104  s->weight[1] = dirac_get_se_golomb(gb);
1105  }
1106  return 0;
1107 }
1108 
1109 /**
1110  * Dirac Specification ->
1111  * 11.3 Wavelet transform data. wavelet_transform()
1112  */
1114 {
1115  GetBitContext *gb = &s->gb;
1116  int i, level;
1117  unsigned tmp;
1118 
1119 #define CHECKEDREAD(dst, cond, errmsg) \
1120  tmp = svq3_get_ue_golomb(gb); \
1121  if (cond) { \
1122  av_log(s->avctx, AV_LOG_ERROR, errmsg); \
1123  return AVERROR_INVALIDDATA; \
1124  }\
1125  dst = tmp;
1126 
1127  align_get_bits(gb);
1128 
1129  s->zero_res = s->num_refs ? get_bits1(gb) : 0;
1130  if (s->zero_res)
1131  return 0;
1132 
1133  /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
1134  CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
1135 
1136  CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
1137 
1138  if (!s->low_delay) {
1139  /* Codeblock parameters (core syntax only) */
1140  if (get_bits1(gb)) {
1141  for (i = 0; i <= s->wavelet_depth; i++) {
1142  CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
1143  CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
1144  }
1145 
1146  CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
1147  }
1148  else {
1149  for (i = 0; i <= s->wavelet_depth; i++)
1150  s->codeblock[i].width = s->codeblock[i].height = 1;
1151  }
1152  }
1153  else {
1154  s->num_x = svq3_get_ue_golomb(gb);
1155  s->num_y = svq3_get_ue_golomb(gb);
1156  if (s->ld_picture) {
1159  if (s->lowdelay.bytes.den <= 0) {
1160  av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
1161  return AVERROR_INVALIDDATA;
1162  }
1163  } else if (s->hq_picture) {
1166  if (s->highquality.prefix_bytes >= INT_MAX / 8) {
1167  av_log(s->avctx,AV_LOG_ERROR,"too many prefix bytes\n");
1168  return AVERROR_INVALIDDATA;
1169  }
1170  }
1171 
1172  /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
1173  if (get_bits1(gb)) {
1174  av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
1175  /* custom quantization matrix */
1176  s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb);
1177  for (level = 0; level < s->wavelet_depth; level++) {
1178  s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb);
1179  s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb);
1180  s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb);
1181  }
1182  } else {
1183  if (s->wavelet_depth > 4) {
1184  av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
1185  return AVERROR_INVALIDDATA;
1186  }
1187  /* default quantization matrix */
1188  for (level = 0; level < s->wavelet_depth; level++)
1189  for (i = 0; i < 4; i++) {
1191  /* haar with no shift differs for different depths */
1192  if (s->wavelet_idx == 3)
1193  s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
1194  }
1195  }
1196  }
1197  return 0;
1198 }
1199 
1200 static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
1201 {
1202  static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
1203 
1204  if (!(x|y))
1205  return 0;
1206  else if (!y)
1207  return sbsplit[-1];
1208  else if (!x)
1209  return sbsplit[-stride];
1210 
1211  return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
1212 }
1213 
1214 static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
1215 {
1216  int pred;
1217 
1218  if (!(x|y))
1219  return 0;
1220  else if (!y)
1221  return block[-1].ref & refmask;
1222  else if (!x)
1223  return block[-stride].ref & refmask;
1224 
1225  /* return the majority */
1226  pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
1227  return (pred >> 1) & refmask;
1228 }
1229 
1230 static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
1231 {
1232  int i, n = 0;
1233 
1234  memset(block->u.dc, 0, sizeof(block->u.dc));
1235 
1236  if (x && !(block[-1].ref & 3)) {
1237  for (i = 0; i < 3; i++)
1238  block->u.dc[i] += block[-1].u.dc[i];
1239  n++;
1240  }
1241 
1242  if (y && !(block[-stride].ref & 3)) {
1243  for (i = 0; i < 3; i++)
1244  block->u.dc[i] += block[-stride].u.dc[i];
1245  n++;
1246  }
1247 
1248  if (x && y && !(block[-1-stride].ref & 3)) {
1249  for (i = 0; i < 3; i++)
1250  block->u.dc[i] += block[-1-stride].u.dc[i];
1251  n++;
1252  }
1253 
1254  if (n == 2) {
1255  for (i = 0; i < 3; i++)
1256  block->u.dc[i] = (block->u.dc[i]+1)>>1;
1257  } else if (n == 3) {
1258  for (i = 0; i < 3; i++)
1259  block->u.dc[i] = divide3(block->u.dc[i]);
1260  }
1261 }
1262 
1263 static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
1264 {
1265  int16_t *pred[3];
1266  int refmask = ref+1;
1267  int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
1268  int n = 0;
1269 
1270  if (x && (block[-1].ref & mask) == refmask)
1271  pred[n++] = block[-1].u.mv[ref];
1272 
1273  if (y && (block[-stride].ref & mask) == refmask)
1274  pred[n++] = block[-stride].u.mv[ref];
1275 
1276  if (x && y && (block[-stride-1].ref & mask) == refmask)
1277  pred[n++] = block[-stride-1].u.mv[ref];
1278 
1279  switch (n) {
1280  case 0:
1281  block->u.mv[ref][0] = 0;
1282  block->u.mv[ref][1] = 0;
1283  break;
1284  case 1:
1285  block->u.mv[ref][0] = pred[0][0];
1286  block->u.mv[ref][1] = pred[0][1];
1287  break;
1288  case 2:
1289  block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
1290  block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
1291  break;
1292  case 3:
1293  block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
1294  block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
1295  break;
1296  }
1297 }
1298 
1299 static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
1300 {
1301  int ez = s->globalmc[ref].zrs_exp;
1302  int ep = s->globalmc[ref].perspective_exp;
1303  int (*A)[2] = s->globalmc[ref].zrs;
1304  int *b = s->globalmc[ref].pan_tilt;
1305  int *c = s->globalmc[ref].perspective;
1306 
1307  int m = (1<<ep) - (c[0]*x + c[1]*y);
1308  int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
1309  int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
1310 
1311  block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
1312  block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
1313 }
1314 
1316  int stride, int x, int y)
1317 {
1318  int i;
1319 
1320  block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
1321  block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
1322 
1323  if (s->num_refs == 2) {
1324  block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
1325  block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
1326  }
1327 
1328  if (!block->ref) {
1329  pred_block_dc(block, stride, x, y);
1330  for (i = 0; i < 3; i++)
1331  block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
1332  return;
1333  }
1334 
1335  if (s->globalmc_flag) {
1336  block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
1337  block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
1338  }
1339 
1340  for (i = 0; i < s->num_refs; i++)
1341  if (block->ref & (i+1)) {
1342  if (block->ref & DIRAC_REF_MASK_GLOBAL) {
1343  global_mv(s, block, x, y, i);
1344  } else {
1345  pred_mv(block, stride, x, y, i);
1346  block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1347  block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1348  }
1349  }
1350 }
1351 
1352 /**
1353  * Copies the current block to the other blocks covered by the current superblock split mode
1354  */
1356 {
1357  int x, y;
1358  DiracBlock *dst = block;
1359 
1360  for (x = 1; x < size; x++)
1361  dst[x] = *block;
1362 
1363  for (y = 1; y < size; y++) {
1364  dst += stride;
1365  for (x = 0; x < size; x++)
1366  dst[x] = *block;
1367  }
1368 }
1369 
1370 /**
1371  * Dirac Specification ->
1372  * 12. Block motion data syntax
1373  */
1375 {
1376  GetBitContext *gb = &s->gb;
1377  uint8_t *sbsplit = s->sbsplit;
1378  int i, x, y, q, p;
1379  DiracArith arith[8];
1380 
1381  align_get_bits(gb);
1382 
1383  /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
1384  s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep);
1385  s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep);
1386  s->blwidth = 4 * s->sbwidth;
1387  s->blheight = 4 * s->sbheight;
1388 
1389  /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
1390  decode superblock split modes */
1391  ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); /* svq3_get_ue_golomb(gb) is the length */
1392  for (y = 0; y < s->sbheight; y++) {
1393  for (x = 0; x < s->sbwidth; x++) {
1394  unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
1395  if (split > 2)
1396  return AVERROR_INVALIDDATA;
1397  sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
1398  }
1399  sbsplit += s->sbwidth;
1400  }
1401 
1402  /* setup arith decoding */
1404  for (i = 0; i < s->num_refs; i++) {
1405  ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, svq3_get_ue_golomb(gb));
1406  ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, svq3_get_ue_golomb(gb));
1407  }
1408  for (i = 0; i < 3; i++)
1409  ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb));
1410 
1411  for (y = 0; y < s->sbheight; y++)
1412  for (x = 0; x < s->sbwidth; x++) {
1413  int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
1414  int step = 4 >> s->sbsplit[y * s->sbwidth + x];
1415 
1416  for (q = 0; q < blkcnt; q++)
1417  for (p = 0; p < blkcnt; p++) {
1418  int bx = 4 * x + p*step;
1419  int by = 4 * y + q*step;
1420  DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
1421  decode_block_params(s, arith, block, s->blwidth, bx, by);
1422  propagate_block_data(block, s->blwidth, step);
1423  }
1424  }
1425 
1426  return 0;
1427 }
1428 
1429 static int weight(int i, int blen, int offset)
1430 {
1431 #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
1432  (1 + (6*(i) + offset - 1) / (2*offset - 1))
1433 
1434  if (i < 2*offset)
1435  return ROLLOFF(i);
1436  else if (i > blen-1 - 2*offset)
1437  return ROLLOFF(blen-1 - i);
1438  return 8;
1439 }
1440 
1441 static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
1442  int left, int right, int wy)
1443 {
1444  int x;
1445  for (x = 0; left && x < p->xblen >> 1; x++)
1446  obmc_weight[x] = wy*8;
1447  for (; x < p->xblen >> right; x++)
1448  obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
1449  for (; x < p->xblen; x++)
1450  obmc_weight[x] = wy*8;
1451  for (; x < stride; x++)
1452  obmc_weight[x] = 0;
1453 }
1454 
1455 static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
1456  int left, int right, int top, int bottom)
1457 {
1458  int y;
1459  for (y = 0; top && y < p->yblen >> 1; y++) {
1460  init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1461  obmc_weight += stride;
1462  }
1463  for (; y < p->yblen >> bottom; y++) {
1464  int wy = weight(y, p->yblen, p->yoffset);
1465  init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
1466  obmc_weight += stride;
1467  }
1468  for (; y < p->yblen; y++) {
1469  init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1470  obmc_weight += stride;
1471  }
1472 }
1473 
1474 static void init_obmc_weights(DiracContext *s, Plane *p, int by)
1475 {
1476  int top = !by;
1477  int bottom = by == s->blheight-1;
1478 
1479  /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
1480  if (top || bottom || by == 1) {
1481  init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
1482  init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
1483  init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
1484  }
1485 }
1486 
1487 static const uint8_t epel_weights[4][4][4] = {
1488  {{ 16, 0, 0, 0 },
1489  { 12, 4, 0, 0 },
1490  { 8, 8, 0, 0 },
1491  { 4, 12, 0, 0 }},
1492  {{ 12, 0, 4, 0 },
1493  { 9, 3, 3, 1 },
1494  { 6, 6, 2, 2 },
1495  { 3, 9, 1, 3 }},
1496  {{ 8, 0, 8, 0 },
1497  { 6, 2, 6, 2 },
1498  { 4, 4, 4, 4 },
1499  { 2, 6, 2, 6 }},
1500  {{ 4, 0, 12, 0 },
1501  { 3, 1, 9, 3 },
1502  { 2, 2, 6, 6 },
1503  { 1, 3, 3, 9 }}
1504 };
1505 
1506 /**
1507  * For block x,y, determine which of the hpel planes to do bilinear
1508  * interpolation from and set src[] to the location in each hpel plane
1509  * to MC from.
1510  *
1511  * @return the index of the put_dirac_pixels_tab function to use
1512  * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
1513  */
1515  int x, int y, int ref, int plane)
1516 {
1517  Plane *p = &s->plane[plane];
1518  uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
1519  int motion_x = block->u.mv[ref][0];
1520  int motion_y = block->u.mv[ref][1];
1521  int mx, my, i, epel, nplanes = 0;
1522 
1523  if (plane) {
1524  motion_x >>= s->chroma_x_shift;
1525  motion_y >>= s->chroma_y_shift;
1526  }
1527 
1528  mx = motion_x & ~(-1U << s->mv_precision);
1529  my = motion_y & ~(-1U << s->mv_precision);
1530  motion_x >>= s->mv_precision;
1531  motion_y >>= s->mv_precision;
1532  /* normalize subpel coordinates to epel */
1533  /* TODO: template this function? */
1534  mx <<= 3 - s->mv_precision;
1535  my <<= 3 - s->mv_precision;
1536 
1537  x += motion_x;
1538  y += motion_y;
1539  epel = (mx|my)&1;
1540 
1541  /* hpel position */
1542  if (!((mx|my)&3)) {
1543  nplanes = 1;
1544  src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
1545  } else {
1546  /* qpel or epel */
1547  nplanes = 4;
1548  for (i = 0; i < 4; i++)
1549  src[i] = ref_hpel[i] + y*p->stride + x;
1550 
1551  /* if we're interpolating in the right/bottom halves, adjust the planes as needed
1552  we increment x/y because the edge changes for half of the pixels */
1553  if (mx > 4) {
1554  src[0] += 1;
1555  src[2] += 1;
1556  x++;
1557  }
1558  if (my > 4) {
1559  src[0] += p->stride;
1560  src[1] += p->stride;
1561  y++;
1562  }
1563 
1564  /* hpel planes are:
1565  [0]: F [1]: H
1566  [2]: V [3]: C */
1567  if (!epel) {
1568  /* check if we really only need 2 planes since either mx or my is
1569  a hpel position. (epel weights of 0 handle this there) */
1570  if (!(mx&3)) {
1571  /* mx == 0: average [0] and [2]
1572  mx == 4: average [1] and [3] */
1573  src[!mx] = src[2 + !!mx];
1574  nplanes = 2;
1575  } else if (!(my&3)) {
1576  src[0] = src[(my>>1) ];
1577  src[1] = src[(my>>1)+1];
1578  nplanes = 2;
1579  }
1580  } else {
1581  /* adjust the ordering if needed so the weights work */
1582  if (mx > 4) {
1583  FFSWAP(const uint8_t *, src[0], src[1]);
1584  FFSWAP(const uint8_t *, src[2], src[3]);
1585  }
1586  if (my > 4) {
1587  FFSWAP(const uint8_t *, src[0], src[2]);
1588  FFSWAP(const uint8_t *, src[1], src[3]);
1589  }
1590  src[4] = epel_weights[my&3][mx&3];
1591  }
1592  }
1593 
1594  /* fixme: v/h _edge_pos */
1595  if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
1596  y + p->yblen > p->height+EDGE_WIDTH/2 ||
1597  x < 0 || y < 0) {
1598  for (i = 0; i < nplanes; i++) {
1599  s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
1600  p->stride, p->stride,
1601  p->xblen, p->yblen, x, y,
1602  p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
1603  src[i] = s->edge_emu_buffer[i];
1604  }
1605  }
1606  return (nplanes>>1) + epel;
1607 }
1608 
1609 static void add_dc(uint16_t *dst, int dc, int stride,
1610  uint8_t *obmc_weight, int xblen, int yblen)
1611 {
1612  int x, y;
1613  dc += 128;
1614 
1615  for (y = 0; y < yblen; y++) {
1616  for (x = 0; x < xblen; x += 2) {
1617  dst[x ] += dc * obmc_weight[x ];
1618  dst[x+1] += dc * obmc_weight[x+1];
1619  }
1620  dst += stride;
1621  obmc_weight += MAX_BLOCKSIZE;
1622  }
1623 }
1624 
1626  uint16_t *mctmp, uint8_t *obmc_weight,
1627  int plane, int dstx, int dsty)
1628 {
1629  Plane *p = &s->plane[plane];
1630  const uint8_t *src[5];
1631  int idx;
1632 
1633  switch (block->ref&3) {
1634  case 0: /* DC */
1635  add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
1636  return;
1637  case 1:
1638  case 2:
1639  idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
1640  s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1641  if (s->weight_func)
1643  s->weight[0] + s->weight[1], p->yblen);
1644  break;
1645  case 3:
1646  idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
1647  s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1648  idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
1649  if (s->biweight_func) {
1650  /* fixme: +32 is a quick hack */
1651  s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
1653  s->weight[0], s->weight[1], p->yblen);
1654  } else
1655  s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1656  break;
1657  }
1658  s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
1659 }
1660 
1661 static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
1662 {
1663  Plane *p = &s->plane[plane];
1664  int x, dstx = p->xbsep - p->xoffset;
1665 
1666  block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
1667  mctmp += p->xbsep;
1668 
1669  for (x = 1; x < s->blwidth-1; x++) {
1670  block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
1671  dstx += p->xbsep;
1672  mctmp += p->xbsep;
1673  }
1674  block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
1675 }
1676 
1677 static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
1678 {
1679  int idx = 0;
1680  if (xblen > 8)
1681  idx = 1;
1682  if (xblen > 16)
1683  idx = 2;
1684 
1685  memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
1686  memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
1687  s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
1688  if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
1691  } else {
1692  s->weight_func = NULL;
1693  s->biweight_func = NULL;
1694  }
1695 }
1696 
1698 {
1699  /* chroma allocates an edge of 8 when subsampled
1700  which for 4:2:2 means an h edge of 16 and v edge of 8
1701  just use 8 for everything for the moment */
1702  int i, edge = EDGE_WIDTH/2;
1703 
1704  ref->hpel[plane][0] = ref->avframe->data[plane];
1705  s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
1706 
1707  /* no need for hpel if we only have fpel vectors */
1708  if (!s->mv_precision)
1709  return 0;
1710 
1711  for (i = 1; i < 4; i++) {
1712  if (!ref->hpel_base[plane][i])
1713  ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
1714  if (!ref->hpel_base[plane][i]) {
1715  return AVERROR(ENOMEM);
1716  }
1717  /* we need to be 16-byte aligned even for chroma */
1718  ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
1719  }
1720 
1721  if (!ref->interpolated[plane]) {
1722  s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
1723  ref->hpel[plane][3], ref->hpel[plane][0],
1724  ref->avframe->linesize[plane], width, height);
1725  s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1726  s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1727  s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1728  }
1729  ref->interpolated[plane] = 1;
1730 
1731  return 0;
1732 }
1733 
1734 /**
1735  * Dirac Specification ->
1736  * 13.0 Transform data syntax. transform_data()
1737  */
1739 {
1740  DWTContext d;
1741  int y, i, comp, dsty;
1742  int ret;
1743 
1744  if (s->low_delay) {
1745  /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
1746  for (comp = 0; comp < 3; comp++) {
1747  Plane *p = &s->plane[comp];
1748  memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1749  }
1750  if (!s->zero_res) {
1751  if ((ret = decode_lowdelay(s)) < 0)
1752  return ret;
1753  }
1754  }
1755 
1756  for (comp = 0; comp < 3; comp++) {
1757  Plane *p = &s->plane[comp];
1759 
1760  /* FIXME: small resolutions */
1761  for (i = 0; i < 4; i++)
1762  s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
1763 
1764  if (!s->zero_res && !s->low_delay)
1765  {
1766  memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1767  decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
1768  }
1769  ret = ff_spatial_idwt_init(&d, &p->idwt, s->wavelet_idx+2,
1770  s->wavelet_depth, s->bit_depth);
1771  if (ret < 0)
1772  return ret;
1773 
1774  if (!s->num_refs) { /* intra */
1775  for (y = 0; y < p->height; y += 16) {
1776  int idx = (s->bit_depth - 8) >> 1;
1777  ff_spatial_idwt_slice2(&d, y+16); /* decode */
1778  s->diracdsp.put_signed_rect_clamped[idx](frame + y*p->stride,
1779  p->stride,
1780  p->idwt.buf + y*p->idwt.stride,
1781  p->idwt.stride, p->width, 16);
1782  }
1783  } else { /* inter */
1784  int rowheight = p->ybsep*p->stride;
1785 
1786  select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
1787 
1788  for (i = 0; i < s->num_refs; i++) {
1789  int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
1790  if (ret < 0)
1791  return ret;
1792  }
1793 
1794  memset(s->mctmp, 0, 4*p->yoffset*p->stride);
1795 
1796  dsty = -p->yoffset;
1797  for (y = 0; y < s->blheight; y++) {
1798  int h = 0,
1799  start = FFMAX(dsty, 0);
1800  uint16_t *mctmp = s->mctmp + y*rowheight;
1801  DiracBlock *blocks = s->blmotion + y*s->blwidth;
1802 
1803  init_obmc_weights(s, p, y);
1804 
1805  if (y == s->blheight-1 || start+p->ybsep > p->height)
1806  h = p->height - start;
1807  else
1808  h = p->ybsep - (start - dsty);
1809  if (h < 0)
1810  break;
1811 
1812  memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
1813  mc_row(s, blocks, mctmp, comp, dsty);
1814 
1815  mctmp += (start - dsty)*p->stride + p->xoffset;
1816  ff_spatial_idwt_slice2(&d, start + h); /* decode */
1817  /* NOTE: add_rect_clamped hasn't been templated hence the shifts.
1818  * idwt.stride is passed as pixels, not in bytes as in the rest of the decoder */
1819  s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
1820  (int16_t*)(p->idwt.buf) + start*(p->idwt.stride >> 1), (p->idwt.stride >> 1), p->width, h);
1821 
1822  dsty += p->ybsep;
1823  }
1824  }
1825  }
1826 
1827 
1828  return 0;
1829 }
1830 
1832 {
1833  int ret, i;
1834  int chroma_x_shift, chroma_y_shift;
1835  avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
1836 
1837  f->width = avctx->width + 2 * EDGE_WIDTH;
1838  f->height = avctx->height + 2 * EDGE_WIDTH + 2;
1839  ret = ff_get_buffer(avctx, f, flags);
1840  if (ret < 0)
1841  return ret;
1842 
1843  for (i = 0; f->data[i]; i++) {
1844  int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
1845  f->linesize[i] + 32;
1846  f->data[i] += offset;
1847  }
1848  f->width = avctx->width;
1849  f->height = avctx->height;
1850 
1851  return 0;
1852 }
1853 
1854 /**
1855  * Dirac Specification ->
1856  * 11.1.1 Picture Header. picture_header()
1857  */
1859 {
1860  unsigned retire, picnum;
1861  int i, j, ret;
1862  int64_t refdist, refnum;
1863  GetBitContext *gb = &s->gb;
1864 
1865  /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
1867 
1868 
1869  av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
1870 
1871  /* if this is the first keyframe after a sequence header, start our
1872  reordering from here */
1873  if (s->frame_number < 0)
1874  s->frame_number = picnum;
1875 
1876  s->ref_pics[0] = s->ref_pics[1] = NULL;
1877  for (i = 0; i < s->num_refs; i++) {
1878  refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
1879  refdist = INT64_MAX;
1880 
1881  /* find the closest reference to the one we want */
1882  /* Jordi: this is needed if the referenced picture hasn't yet arrived */
1883  for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
1884  if (s->ref_frames[j]
1885  && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
1886  s->ref_pics[i] = s->ref_frames[j];
1887  refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
1888  }
1889 
1890  if (!s->ref_pics[i] || refdist)
1891  av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
1892 
1893  /* if there were no references at all, allocate one */
1894  if (!s->ref_pics[i])
1895  for (j = 0; j < MAX_FRAMES; j++)
1896  if (!s->all_frames[j].avframe->data[0]) {
1897  s->ref_pics[i] = &s->all_frames[j];
1899  break;
1900  }
1901 
1902  if (!s->ref_pics[i]) {
1903  av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
1904  return AVERROR_INVALIDDATA;
1905  }
1906 
1907  }
1908 
1909  /* retire the reference frames that are not used anymore */
1910  if (s->current_picture->reference) {
1911  retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
1912  if (retire != picnum) {
1913  DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
1914 
1915  if (retire_pic)
1916  retire_pic->reference &= DELAYED_PIC_REF;
1917  else
1918  av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
1919  }
1920 
1921  /* if reference array is full, remove the oldest as per the spec */
1923  av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
1925  }
1926  }
1927 
1928  if (s->num_refs) {
1929  ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
1930  if (ret < 0)
1931  return ret;
1932  ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
1933  if (ret < 0)
1934  return ret;
1935  }
1936  ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
1937  if (ret < 0)
1938  return ret;
1939 
1940  init_planes(s);
1941  return 0;
1942 }
1943 
1944 static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
1945 {
1946  DiracFrame *out = s->delay_frames[0];
1947  int i, out_idx = 0;
1948  int ret;
1949 
1950  /* find frame with lowest picture number */
1951  for (i = 1; s->delay_frames[i]; i++)
1953  out = s->delay_frames[i];
1954  out_idx = i;
1955  }
1956 
1957  for (i = out_idx; s->delay_frames[i]; i++)
1958  s->delay_frames[i] = s->delay_frames[i+1];
1959 
1960  if (out) {
1961  out->reference ^= DELAYED_PIC_REF;
1962  *got_frame = 1;
1963  if((ret = av_frame_ref(picture, out->avframe)) < 0)
1964  return ret;
1965  }
1966 
1967  return 0;
1968 }
1969 
1970 /**
1971  * Dirac Specification ->
1972  * 9.6 Parse Info Header Syntax. parse_info()
1973  * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
1974  */
1975 #define DATA_UNIT_HEADER_SIZE 13
1976 
1977 /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
1978  inside the function parse_sequence() */
1979 static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
1980 {
1981  DiracContext *s = avctx->priv_data;
1982  DiracFrame *pic = NULL;
1983  AVDiracSeqHeader *dsh;
1984  int ret, i;
1985  uint8_t parse_code;
1986  unsigned tmp;
1987 
1988  if (size < DATA_UNIT_HEADER_SIZE)
1989  return AVERROR_INVALIDDATA;
1990 
1991  parse_code = buf[4];
1992 
1993  init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
1994 
1995  if (parse_code == DIRAC_PCODE_SEQ_HEADER) {
1996  if (s->seen_sequence_header)
1997  return 0;
1998 
1999  /* [DIRAC_STD] 10. Sequence header */
2001  if (ret < 0) {
2002  av_log(avctx, AV_LOG_ERROR, "error parsing sequence header");
2003  return ret;
2004  }
2005 
2006  ret = ff_set_dimensions(avctx, dsh->width, dsh->height);
2007  if (ret < 0) {
2008  av_freep(&dsh);
2009  return ret;
2010  }
2011 
2012  ff_set_sar(avctx, dsh->sample_aspect_ratio);
2013  avctx->pix_fmt = dsh->pix_fmt;
2014  avctx->color_range = dsh->color_range;
2015  avctx->color_trc = dsh->color_trc;
2016  avctx->color_primaries = dsh->color_primaries;
2017  avctx->colorspace = dsh->colorspace;
2018  avctx->profile = dsh->profile;
2019  avctx->level = dsh->level;
2020  avctx->framerate = dsh->framerate;
2021  s->bit_depth = dsh->bit_depth;
2022  s->version.major = dsh->version.major;
2023  s->version.minor = dsh->version.minor;
2024  s->seq = *dsh;
2025  av_freep(&dsh);
2026 
2027  s->pshift = s->bit_depth > 8;
2028 
2030 
2031  ret = alloc_sequence_buffers(s);
2032  if (ret < 0)
2033  return ret;
2034 
2035  s->seen_sequence_header = 1;
2036  } else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */
2038  s->seen_sequence_header = 0;
2039  } else if (parse_code == DIRAC_PCODE_AUX) {
2040  if (buf[13] == 1) { /* encoder implementation/version */
2041  int ver[3];
2042  /* versions older than 1.0.8 don't store quant delta for
2043  subbands with only one codeblock */
2044  if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
2045  if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
2046  s->old_delta_quant = 1;
2047  }
2048  } else if (parse_code & 0x8) { /* picture data unit */
2049  if (!s->seen_sequence_header) {
2050  av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
2051  return AVERROR_INVALIDDATA;
2052  }
2053 
2054  /* find an unused frame */
2055  for (i = 0; i < MAX_FRAMES; i++)
2056  if (s->all_frames[i].avframe->data[0] == NULL)
2057  pic = &s->all_frames[i];
2058  if (!pic) {
2059  av_log(avctx, AV_LOG_ERROR, "framelist full\n");
2060  return AVERROR_INVALIDDATA;
2061  }
2062 
2063  av_frame_unref(pic->avframe);
2064 
2065  /* [DIRAC_STD] Defined in 9.6.1 ... */
2066  tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
2067  if (tmp > 2) {
2068  av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
2069  return AVERROR_INVALIDDATA;
2070  }
2071  s->num_refs = tmp;
2072  s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
2073  s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
2074  s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */
2075  s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */
2076  s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */
2077  s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */
2078  pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
2079  pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
2080  pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
2081 
2082  /* VC-2 Low Delay has a different parse code than the Dirac Low Delay */
2083  if (s->version.minor == 2 && parse_code == 0x88)
2084  s->ld_picture = 1;
2085 
2086  if (s->low_delay && !(s->ld_picture || s->hq_picture) ) {
2087  av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n");
2088  return AVERROR_INVALIDDATA;
2089  }
2090 
2091  if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
2092  return ret;
2093  s->current_picture = pic;
2094  s->plane[0].stride = pic->avframe->linesize[0];
2095  s->plane[1].stride = pic->avframe->linesize[1];
2096  s->plane[2].stride = pic->avframe->linesize[2];
2097 
2098  if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
2099  return AVERROR(ENOMEM);
2100 
2101  /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
2102  ret = dirac_decode_picture_header(s);
2103  if (ret < 0)
2104  return ret;
2105 
2106  /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
2107  ret = dirac_decode_frame_internal(s);
2108  if (ret < 0)
2109  return ret;
2110  }
2111  return 0;
2112 }
2113 
2114 static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
2115 {
2116  DiracContext *s = avctx->priv_data;
2117  AVFrame *picture = data;
2118  uint8_t *buf = pkt->data;
2119  int buf_size = pkt->size;
2120  int i, buf_idx = 0;
2121  int ret;
2122  unsigned data_unit_size;
2123 
2124  /* release unused frames */
2125  for (i = 0; i < MAX_FRAMES; i++)
2126  if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
2128  memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
2129  }
2130 
2131  s->current_picture = NULL;
2132  *got_frame = 0;
2133 
2134  /* end of stream, so flush delayed pics */
2135  if (buf_size == 0)
2136  return get_delayed_pic(s, (AVFrame *)data, got_frame);
2137 
2138  for (;;) {
2139  /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
2140  [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
2141  BBCD start code search */
2142  for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
2143  if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
2144  buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
2145  break;
2146  }
2147  /* BBCD found or end of data */
2148  if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
2149  break;
2150 
2151  data_unit_size = AV_RB32(buf+buf_idx+5);
2152  if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
2153  if(data_unit_size > buf_size - buf_idx)
2155  "Data unit with size %d is larger than input buffer, discarding\n",
2156  data_unit_size);
2157  buf_idx += 4;
2158  continue;
2159  }
2160  /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
2161  ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
2162  if (ret < 0)
2163  {
2164  av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
2165  return ret;
2166  }
2167  buf_idx += data_unit_size;
2168  }
2169 
2170  if (!s->current_picture)
2171  return buf_size;
2172 
2174  DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
2175 
2177 
2179  int min_num = s->delay_frames[0]->avframe->display_picture_number;
2180  /* Too many delayed frames, so we display the frame with the lowest pts */
2181  av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
2182 
2183  for (i = 1; s->delay_frames[i]; i++)
2184  if (s->delay_frames[i]->avframe->display_picture_number < min_num)
2185  min_num = s->delay_frames[i]->avframe->display_picture_number;
2186 
2187  delayed_frame = remove_frame(s->delay_frames, min_num);
2189  }
2190 
2191  if (delayed_frame) {
2192  delayed_frame->reference ^= DELAYED_PIC_REF;
2193  if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
2194  return ret;
2195  *got_frame = 1;
2196  }
2198  /* The right frame at the right time :-) */
2199  if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
2200  return ret;
2201  *got_frame = 1;
2202  }
2203 
2204  if (*got_frame)
2205  s->frame_number = picture->display_picture_number + 1;
2206 
2207  return buf_idx;
2208 }
2209 
2211  .name = "dirac",
2212  .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
2213  .type = AVMEDIA_TYPE_VIDEO,
2214  .id = AV_CODEC_ID_DIRAC,
2215  .priv_data_size = sizeof(DiracContext),
2217  .close = dirac_decode_end,
2221 };
const uint8_t ff_interleaved_dirac_golomb_vlc_code[256]
Definition: golomb.c:157
#define CHECKEDREAD(dst, cond, errmsg)
int quant
Definition: cfhd.h:52
int plane
Definition: avisynth_c.h:291
void(* add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
Definition: diracdec.c:211
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
#define NULL
Definition: coverity.c:32
#define UNPACK_ARITH(n, type)
Definition: diracdec.c:461
#define BITS_AVAILABLE(name, gb)
Definition: get_bits.h:122
AVRational framerate
Definition: avcodec.h:3337
const char const char void * val
Definition: avisynth_c.h:634
const int32_t ff_dirac_qscale_tab[116]
Definition: diractab.c:34
#define PARSE_VALUES(type, x, gb, ebits, buf1, buf2)
Definition: diracdec.c:693
const char * s
Definition: avisynth_c.h:631
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int blheight
Definition: diracdec.c:193
static av_cold int dirac_decode_end(AVCodecContext *avctx)
Definition: diracdec.c:397
static void codeblock(DiracContext *s, SubBand *b, GetBitContext *gb, DiracArith *c, int left, int right, int top, int bottom, int blockcnt_one, int is_arith)
Decode the coeffs in the rectangle defined by left, right, top, bottom [DIRAC_STD] 13...
Definition: diracdec.c:497
enum AVColorRange color_range
Definition: dirac.h:107
This structure describes decoded (raw) audio or video data.
Definition: frame.h:184
dirac_weight_func weight_func
Definition: diracdec.c:212
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
static void flush(AVCodecContext *avctx)
uint8_t * sbsplit
Definition: diracdec.c:197
#define CTX_SB_DATA
Definition: dirac_arith.h:66
#define CTX_PMODE_REF2
Definition: dirac_arith.h:68
float re
Definition: fft.c:73
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:247
enum AVColorTransferCharacteristic color_trc
Definition: dirac.h:109
DiracFrame * ref_frames[MAX_REFERENCE_FRAMES+1]
Definition: diracdec.c:218
static int divide3(int x)
Definition: diracdec.c:232
static int dirac_decode_frame_internal(DiracContext *s)
Dirac Specification -> 13.0 Transform data syntax.
Definition: diracdec.c:1738
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:210
DiracVersionInfo version
Definition: dirac.h:112
int ld_picture
Definition: diracdec.c:145
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:204
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int bit_depth
Definition: diracdec.c:137
static void propagate_block_data(DiracBlock *block, int stride, int size)
Copies the current block to the other blocks covered by the current superblock split mode...
Definition: diracdec.c:1355
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:2384
dirac_weight_func weight_dirac_pixels_tab[3]
Definition: diracdsp.h:49
int num
numerator
Definition: rational.h:44
int size
Definition: avcodec.h:1580
const char * b
Definition: vf_curves.c:109
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: diracdec.c:64
void ff_dirac_init_arith_decoder(DiracArith *c, GetBitContext *gb, int length)
Definition: dirac_arith.c:86
unsigned width
Definition: diracdec.c:165
#define DATA_UNIT_HEADER_SIZE
Dirac Specification -> 9.6 Parse Info Header Syntax.
Definition: diracdec.c:1975
const uint8_t * buffer
Definition: get_bits.h:56
int av_log2(unsigned v)
Definition: intmath.c:26
#define DECLARE_ALIGNED(n, t, v)
Definition: mem.h:53
uint8_t * buf
Definition: dirac_dwt.h:41
static unsigned svq3_get_ue_golomb(GetBitContext *gb)
Definition: golomb.h:115
uint8_t yoffset
Definition: diracdec.c:118
static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
Definition: diracdec.c:1299
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1876
GetBitContext gb
Definition: diracdec.c:755
static int dirac_get_arith_uint(DiracArith *c, int follow_ctx, int data_ctx)
Definition: dirac_arith.h:170
static int alloc_buffers(DiracContext *s, int stride)
Definition: diracdec.c:304
mpegvideo header.
DiracVersionInfo version
Definition: diracdec.c:128
unsigned height
Definition: diracdec.c:166
static int decode_hq_slice(AVCodecContext *avctx, void *arg)
VC-2 Specification -> 13.5.3 hq_slice(sx,sy)
Definition: diracdec.c:808
static AVPacket pkt
#define EDGE_TOP
static void dirac_decode_flush(AVCodecContext *avctx)
Definition: diracdec.c:389
const uint8_t * coeff_data
Definition: diracdec.c:100
static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
Definition: diracdec.c:1944
static int dirac_unpack_idwt_params(DiracContext *s)
Dirac Specification -> 11.3 Wavelet transform data.
Definition: diracdec.c:1113
int profile
profile
Definition: avcodec.h:3152
#define DIRAC_REF_MASK_REF2
Definition: diracdec.c:57
AVCodec.
Definition: avcodec.h:3541
int zrs[2][2]
Definition: diracdec.c:181
unsigned codeblock_mode
Definition: diracdec.c:159
int num_refs
Definition: diracdec.c:148
int av_dirac_parse_sequence_header(AVDiracSeqHeader **pdsh, const uint8_t *buf, size_t buf_size, void *log_ctx)
Parse a Dirac sequence header.
Definition: dirac.c:398
uint8_t xoffset
Definition: diracdec.c:117
uint8_t * tmp
Definition: dirac_dwt.h:43
unsigned weight_log2denom
Definition: diracdec.c:190
#define CTX_GLOBAL_BLOCK
Definition: dirac_arith.h:69
int width
Definition: cfhd.h:48
static int16_t block[64]
Definition: dct.c:113
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: avcodec.h:980
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
DiracFrame * delay_frames[MAX_DELAY+1]
Definition: diracdec.c:219
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
uint8_t * mcscratch
Definition: diracdec.c:204
int dc_prediction
Definition: diracdec.c:146
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
struct DiracContext::@47 globalmc[2]
void(* add_rect_clamped)(uint8_t *dst, const uint16_t *src, int stride, const int16_t *idwt, int idwt_stride, int width, int height)
Definition: diracdsp.h:46
uint8_t
#define av_cold
Definition: attributes.h:82
unsigned wavelet_idx
Definition: diracdec.c:152
#define av_malloc(s)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:140
Interface to Dirac Decoder/Encoder.
#define CTX_PMODE_REF1
Definition: dirac_arith.h:67
static int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
Definition: diracdec.c:411
#define DIVRNDUP(a, b)
Definition: diracdec.c:69
int hq_picture
Definition: diracdec.c:144
static av_cold int dirac_decode_init(AVCodecContext *avctx)
Definition: diracdec.c:365
uint8_t quant[MAX_DWT_LEVELS][4]
Definition: diracdec.c:171
unsigned prefix_bytes
Definition: diracdec.c:175
AVRational sample_aspect_ratio
Definition: dirac.h:104
unsigned num_x
Definition: diracdec.c:161
int low_delay
Definition: diracdec.c:143
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:374
Plane plane[3]
Definition: diracdec.c:133
static int dirac_get_se_golomb(GetBitContext *gb)
Definition: golomb.h:255
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
Definition: bytestream.h:87
static AVFrame * frame
#define height
uint8_t * data
Definition: avcodec.h:1579
static void free_sequence_buffers(DiracContext *s)
Definition: diracdec.c:333
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:199
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:225
int height
Definition: dirac_dwt.h:39
bitstream reader API header.
static const uint8_t epel_weights[4][4][4]
Definition: diracdec.c:1487
ptrdiff_t size
Definition: opengl_enc.c:101
uint8_t xblen
Definition: diracdec.c:111
static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
Dirac Specification -> 13.5.2 Slices.
Definition: diracdec.c:766
#define CTX_DC_DATA
Definition: dirac_arith.h:73
#define A(x)
Definition: vp56_arith.h:28
#define FFALIGN(x, a)
Definition: macros.h:48
#define av_log(a,...)
unsigned m
Definition: audioconvert.c:187
Definition: cfhd.h:43
void(* avg_dirac_pixels_tab[3][4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdsp.h:42
static void pred_block_dc(DiracBlock *block, int stride, int x, int y)
Definition: diracdec.c:1230
AVRational framerate
Definition: dirac.h:103
int pan_tilt[2]
Definition: diracdec.c:180
int interpolated[3]
Definition: diracdec.c:73
#define EDGE_WIDTH
Definition: mpegpicture.h:33
#define ROLLOFF(i)
#define U(x)
Definition: vp56_arith.h:37
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:568
dirac_subband
Definition: diracdec.c:223
const int32_t ff_dirac_qoffset_intra_tab[120]
Definition: diractab.c:53
av_cold void ff_diracdsp_init(DiracDSPContext *c)
Definition: diracdsp.c:198
#define UPDATE_CACHE(name, gb)
Definition: get_bits.h:160
int width
width and height of the video frame
Definition: frame.h:236
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
unsigned length
Definition: diracdec.c:99
static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
Definition: diracdec.c:2114
void(* dirac_hpel_filter)(uint8_t *dsth, uint8_t *dstv, uint8_t *dstc, const uint8_t *src, int stride, int width, int height)
Definition: diracdsp.h:30
uint8_t * hpel[3][4]
Definition: diracdec.c:74
int slice_x
Definition: diracdec.c:756
static const uint16_t mask[17]
Definition: lzw.c:38
uint16_t * mctmp
Definition: diracdec.c:203
#define AVERROR(e)
Definition: error.h:43
#define DIRAC_REF_MASK_GLOBAL
Definition: diracdec.c:58
int width
Definition: dirac_dwt.h:38
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:153
static int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
Definition: diracdec.c:1200
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:176
static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
Definition: diracdec.c:255
static void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
Definition: diracdec.c:1263
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
const char * arg
Definition: jacosubdec.c:66
const uint8_t ff_dirac_default_qmat[7][4][4]
Definition: diractab.c:24
unsigned num_y
Definition: diracdec.c:162
static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
Definition: diracdec.c:1697
static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5], int x, int y, int ref, int plane)
For block x,y, determine which of the hpel planes to do bilinear interpolation from and set src[] to ...
Definition: diracdec.c:1514
unsigned wavelet_depth
Definition: diracdec.c:151
#define CTX_MV_DATA
Definition: dirac_arith.h:71
int stride
Definition: cfhd.h:46
GLsizei GLsizei * length
Definition: opengl_enc.c:115
const char * name
Name of the codec implementation.
Definition: avcodec.h:3548
DiracFrame * current_picture
Definition: diracdec.c:215
int slice_y
Definition: diracdec.c:757
unsigned old_delta_quant
schroedinger older than 1.0.8 doesn't store quant delta if only one codebook exists in a band ...
Definition: diracdec.c:158
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define CLOSE_READER(name, gb)
Definition: get_bits.h:131
#define FFMAX(a, b)
Definition: common.h:94
static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
Definition: diracdec.c:1979
const uint8_t ff_interleaved_ue_golomb_vlc_code[256]
Definition: golomb.c:119
DiracDSPContext diracdsp
Definition: diracdec.c:127
int orientation
Definition: cfhd.h:45
#define MAX_BLOCKSIZE
Definition: diracdec.c:51
static char * split(char *message, char delim)
Definition: af_channelmap.c:81
int bytes
Definition: diracdec.c:758
#define SKIP_BITS(name, gb, num)
Definition: get_bits.h:175
#define INTRA_DC_PRED(n, type)
Dirac Specification -> 13.3 intra_dc_prediction(band)
Definition: diracdec.c:574
static void init_planes(DiracContext *s)
Definition: diracdec.c:940
int globalmc_flag
Definition: diracdec.c:147
AVCodec ff_dirac_decoder
Definition: diracdec.c:2210
static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block, int stride, int x, int y)
Definition: diracdec.c:1315
SubBand band[DWT_LEVELS][4]
Definition: cfhd.h:68
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:258
uint8_t * ibuf
Definition: cfhd.h:53
#define FFMIN(a, b)
Definition: common.h:96
int display_picture_number
picture number in display order
Definition: frame.h:289
#define CALC_PADDING(size, depth)
Definition: diracdec.c:66
DiracFrame * ref_pics[2]
Definition: diracdec.c:216
void(* avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdec.c:210
static void block_mc(DiracContext *s, DiracBlock *block, uint16_t *mctmp, uint8_t *obmc_weight, int plane, int dstx, int dsty)
Definition: diracdec.c:1625
enum AVColorSpace colorspace
Definition: dirac.h:110
static DiracFrame * remove_frame(DiracFrame *framelist[], int picnum)
Definition: diracdec.c:237
#define width
void ff_spatial_idwt_slice2(DWTContext *d, int y)
Definition: dirac_dwt.c:67
int width
picture width / height.
Definition: avcodec.h:1835
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
int perspective[2]
Definition: diracdec.c:182
static int dirac_unpack_prediction_parameters(DiracContext *s)
Unpack the motion compensation parameters Dirac Specification -> 11.2 Picture prediction data...
Definition: diracdec.c:994
int32_t
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:2363
MpegvideoEncDSPContext mpvencdsp
Definition: diracdec.c:125
static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
Definition: diracdec.c:1661
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
int level
level
Definition: avcodec.h:3241
unsigned perspective_exp
Definition: diracdec.c:184
#define LAST_SKIP_BITS(name, gb, num)
Definition: get_bits.h:181
int chroma_y_shift
Definition: diracdec.c:135
static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
Definition: diracdec.c:1677
int n
Definition: avisynth_c.h:547
int16_t dc[3]
Definition: diracdec.c:82
#define src
Definition: vp9dsp.c:530
void avcodec_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: imgconvert.c:38
uint8_t * edge_emu_buffer_base
Definition: diracdec.c:201
static void decode_component(DiracContext *s, int comp)
Dirac Specification -> [DIRAC_STD] 13.4.1 core_transform_data()
Definition: diracdec.c:659
static void init_obmc_weights(DiracContext *s, Plane *p, int by)
Definition: diracdec.c:1474
static const float pred[4]
Definition: siprdata.h:259
void(* add_dirac_obmc[3])(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
Definition: diracdsp.h:47
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
uint8_t * buf_base
Definition: dirac_dwt.h:42
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: avcodec.h:1022
static const int8_t mv[256][2]
Definition: 4xm.c:77
static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
Definition: diracdec.c:1831
VideoDSPContext vdsp
Definition: diracdec.c:126
uint8_t ybsep
Definition: diracdec.c:115
static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
Dirac Specification -> 13.4.2 Non-skipped subbands.
Definition: diracdec.c:602
Libavcodec external API header.
uint8_t * edge_emu_buffer[4]
Definition: diracdec.c:200
struct DiracContext::@44 codeblock[MAX_DWT_LEVELS+1]
int seen_sequence_header
Definition: diracdec.c:131
enum AVPixelFormat pix_fmt
Definition: dirac.h:106
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:215
const int ff_dirac_qoffset_inter_tab[122]
Definition: diractab.c:72
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:437
void(* dirac_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int h)
Definition: diracdsp.h:26
main external API structure.
Definition: avcodec.h:1648
int buffer_stride
Definition: diracdec.c:205
MPEG-1/2 tables.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: utils.c:928
DiracFrame all_frames[MAX_FRAMES]
Definition: diracdec.c:220
#define OPEN_READER(name, gb)
Definition: get_bits.h:120
int reference
Definition: diracdec.c:76
Arithmetic decoder for Dirac.
struct SubBand * parent
Definition: diracdec.c:96
void * buf
Definition: avisynth_c.h:553
dirac_biweight_func biweight_dirac_pixels_tab[3]
Definition: diracdsp.h:50
#define MAX_DWT_LEVELS
The spec limits the number of wavelet decompositions to 4 for both level 1 (VC-2) and 128 (long-gop d...
Definition: dirac.h:45
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:299
static int decode_lowdelay(DiracContext *s)
Dirac Specification -> 13.5.1 low_delay_transform_data()
Definition: diracdec.c:854
int core_syntax
Definition: diracdec.c:142
int frame_number
Definition: diracdec.c:132
static int dirac_get_arith_bit(DiracArith *c, int ctx)
Definition: dirac_arith.h:129
AVCodecContext * avctx
Definition: diracdec.c:124
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:2377
rational number numerator/denominator
Definition: rational.h:43
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2370
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:406
#define GET_CACHE(name, gb)
Definition: get_bits.h:197
union DiracBlock::@43 u
GetBitContext gb
Definition: diracdec.c:129
#define mid_pred
Definition: mathops.h:96
dirac_biweight_func biweight_func
Definition: diracdec.c:213
uint8_t xbsep
Definition: diracdec.c:114
#define u(width,...)
int chroma_x_shift
Definition: diracdec.c:134
AVRational bytes
Definition: diracdec.c:170
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:332
static int decode_subband_arith(AVCodecContext *avctx, void *b)
Definition: diracdec.c:640
static int weight(int i, int blen, int offset)
Definition: diracdec.c:1429
#define MAX_DELAY
Definition: diracdec.c:48
unsigned height
Definition: dirac.h:83
int zero_res
Definition: diracdec.c:140
const uint8_t * quant
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:484
#define MAX_FRAMES
Definition: diracdec.c:49
int pshift
Definition: cfhd.h:51
static int flags
Definition: cpu.c:47
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:198
uint8_t level
Definition: svq3.c:193
static int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
Definition: diracdec.c:1214
AVFrame * avframe
Definition: diracdec.c:72
DiracBlock * blmotion
Definition: diracdec.c:198
static int decode(AVCodecContext *avctx, void *data, int *got_sub, AVPacket *avpkt)
Definition: ccaption_dec.c:722
#define SHOW_SBITS(name, gb, num)
Definition: get_bits.h:194
#define MAX_REFERENCE_FRAMES
The spec limits this to 3 for frame coding, but in practice can be as high as 6.
Definition: diracdec.c:47
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
static int dirac_decode_picture_header(DiracContext *s)
Dirac Specification -> 11.1.1 Picture Header.
Definition: diracdec.c:1858
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:282
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
AVDiracSeqHeader seq
Definition: diracdec.c:130
#define AV_WN32(p, v)
Definition: intreadwrite.h:376
ptrdiff_t stride
Definition: cfhd.h:59
static double c[64]
static void decode_subband(DiracContext *s, GetBitContext *gb, int quant, int slice_x, int slice_y, int bits_end, SubBand *b1, SubBand *b2)
Definition: diracdec.c:705
static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
Definition: diracdec.c:647
int16_t weight[2]
Definition: diracdec.c:189
int16_t mv[2][2]
Definition: diracdec.c:81
static int dirac_get_arith_int(DiracArith *c, int follow_ctx, int data_ctx)
Definition: dirac_arith.h:185
#define CTX_MV_F1
Definition: dirac_arith.h:70
int sbheight
Definition: diracdec.c:195
int den
denominator
Definition: rational.h:45
static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int wy)
Definition: diracdec.c:1441
Core video DSP helper functions.
void(* put_dirac_pixels_tab[3][4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
dirac_pixels_tab[width][subpel] width is 2 for 32, 1 for 16, 0 for 8 subpel is 0 for fpel and hpel (o...
Definition: diracdsp.h:41
#define CTX_DC_F1
Definition: dirac_arith.h:72
void * priv_data
Definition: avcodec.h:1690
DWTPlane idwt
Definition: diracdec.c:104
static int alloc_sequence_buffers(DiracContext *s)
Definition: diracdec.c:266
void(* put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdec.c:209
#define av_free(p)
static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int top, int bottom)
Definition: diracdec.c:1455
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:3118
void(* draw_edges)(uint8_t *buf, int wrap, int width, int height, int w, int h, int sides)
#define CTX_SB_F1
Definition: dirac_arith.h:65
static uint8_t tmp[8]
Definition: des.c:38
struct DiracContext::@46 highquality
void(* dirac_biweight_func)(uint8_t *dst, const uint8_t *src, int stride, int log2_denom, int weightd, int weights, int h)
Definition: diracdsp.h:27
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:253
const uint8_t ff_interleaved_golomb_vlc_len[256]
Definition: golomb.c:100
int height
Definition: cfhd.h:50
static const double coeff[2][5]
Definition: vf_owdenoise.c:71
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:445
#define EDGE_BOTTOM
int width
Definition: cfhd.h:57
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> dc
static void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.h:229
int height
Definition: frame.h:236
FILE * out
Definition: movenc.c:54
uint8_t ref
Definition: diracdec.c:84
int is_arith
Definition: diracdec.c:141
#define av_freep(p)
static void comp(unsigned char *dst, int dst_stride, unsigned char *src, int src_stride, int add)
Definition: eamad.c:83
static void add_dc(uint16_t *dst, int dc, int stride, uint8_t *obmc_weight, int xblen, int yblen)
Definition: diracdec.c:1609
enum AVColorPrimaries color_primaries
Definition: dirac.h:108
void INT64 start
Definition: avisynth_c.h:553
#define AV_WN16(p, v)
Definition: intreadwrite.h:372
#define av_always_inline
Definition: attributes.h:39
struct DiracContext::@45 lowdelay
#define av_malloc_array(a, b)
uint8_t * hpel_base[3][4]
Definition: diracdec.c:75
unsigned width
Definition: dirac.h:82
#define FFSWAP(type, a, b)
Definition: common.h:99
#define stride
int stride
Definition: dirac_dwt.h:40
int height
Definition: cfhd.h:58
exp golomb vlc stuff
This structure stores compressed data.
Definition: avcodec.h:1556
void(* put_signed_rect_clamped[3])(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int width, int height)
Definition: diracdsp.h:44
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:1340
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:955
#define DIRAC_REF_MASK_REF1
DiracBlock->ref flags, if set then the block does MC from the given ref.
Definition: diracdec.c:56
uint64_t size_scaler
Definition: diracdec.c:176
unsigned zrs_exp
Definition: diracdec.c:183
#define FFMAX3(a, b, c)
Definition: common.h:95
uint8_t mv_precision
Definition: diracdec.c:188
static int dirac_unpack_block_motion_data(DiracContext *s)
Dirac Specification ->
Definition: diracdec.c:1374
Definition: cfhd.h:56
uint8_t obmc_weight[3][MAX_BLOCKSIZE *MAX_BLOCKSIZE]
Definition: diracdec.c:207
int ff_spatial_idwt_init(DWTContext *d, DWTPlane *p, enum dwt_type type, int decomposition_count, int bit_depth)
Definition: dirac_dwt.c:36
int level
Definition: cfhd.h:44
uint8_t yblen
Definition: diracdec.c:112