FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
diracdec.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
3  * Copyright (C) 2009 David Conrad
4  * Copyright (C) 2011 Jordi Ortiz
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * Dirac Decoder
26  * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
27  */
28 
29 #include "avcodec.h"
30 #include "get_bits.h"
31 #include "bytestream.h"
32 #include "internal.h"
33 #include "golomb.h"
34 #include "dirac_arith.h"
35 #include "dirac_vlc.h"
36 #include "mpeg12data.h"
37 #include "libavcodec/mpegvideo.h"
38 #include "mpegvideoencdsp.h"
39 #include "dirac_dwt.h"
40 #include "dirac.h"
41 #include "diractab.h"
42 #include "diracdsp.h"
43 #include "videodsp.h"
44 
45 /**
46  * The spec limits this to 3 for frame coding, but in practice can be as high as 6
47  */
48 #define MAX_REFERENCE_FRAMES 8
49 #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
50 #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
51 #define MAX_QUANT 255 /* max quant for VC-2 */
52 #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
53 
54 /**
55  * DiracBlock->ref flags, if set then the block does MC from the given ref
56  */
57 #define DIRAC_REF_MASK_REF1 1
58 #define DIRAC_REF_MASK_REF2 2
59 #define DIRAC_REF_MASK_GLOBAL 4
60 
61 /**
62  * Value of Picture.reference when Picture is not a reference picture, but
63  * is held for delayed output.
64  */
65 #define DELAYED_PIC_REF 4
66 
67 #define CALC_PADDING(size, depth) \
68  (((size + (1 << depth) - 1) >> depth) << depth)
69 
70 #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
71 
72 typedef struct {
74  int interpolated[3]; /* 1 if hpel[] is valid */
75  uint8_t *hpel[3][4];
76  uint8_t *hpel_base[3][4];
77  int reference;
78 } DiracFrame;
79 
80 typedef struct {
81  union {
82  int16_t mv[2][2];
83  int16_t dc[3];
84  } u; /* anonymous unions aren't in C99 :( */
86 } DiracBlock;
87 
88 typedef struct SubBand {
89  int level;
90  int orientation;
91  int stride; /* in bytes */
92  int width;
93  int height;
94  int pshift;
95  int quant;
96  uint8_t *ibuf;
97  struct SubBand *parent;
98 
99  /* for low delay */
100  unsigned length;
102 } SubBand;
103 
104 typedef struct Plane {
106 
107  int width;
108  int height;
109  ptrdiff_t stride;
110 
111  /* block length */
114  /* block separation (block n+1 starts after this many pixels in block n) */
117  /* amount of overspill on each edge (half of the overlap between blocks) */
120 
122 } Plane;
123 
124 /* Used by Low Delay and High Quality profiles */
125 typedef struct DiracSlice {
127  int slice_x;
128  int slice_y;
129  int bytes;
130 } DiracSlice;
131 
132 typedef struct DiracContext {
142  int frame_number; /* number of the next frame to display */
146 
147  int bit_depth; /* bit depth */
148  int pshift; /* pixel shift = bit_depth > 8 */
149 
150  int zero_res; /* zero residue flag */
151  int is_arith; /* whether coeffs use arith or golomb coding */
152  int core_syntax; /* use core syntax only */
153  int low_delay; /* use the low delay syntax */
154  int hq_picture; /* high quality picture, enables low_delay */
155  int ld_picture; /* use low delay picture, turns on low_delay */
156  int dc_prediction; /* has dc prediction */
157  int globalmc_flag; /* use global motion compensation */
158  int num_refs; /* number of reference pictures */
159 
160  /* wavelet decoding */
161  unsigned wavelet_depth; /* depth of the IDWT */
162  unsigned wavelet_idx;
163 
164  /**
165  * schroedinger older than 1.0.8 doesn't store
166  * quant delta if only one codebook exists in a band
167  */
168  unsigned old_delta_quant;
169  unsigned codeblock_mode;
170 
171  unsigned num_x; /* number of horizontal slices */
172  unsigned num_y; /* number of vertical slices */
173 
174  uint8_t *thread_buf; /* Per-thread buffer for coefficient storage */
175  int threads_num_buf; /* Current # of buffers allocated */
176  int thread_buf_size; /* Each thread has a buffer this size */
177 
180 
181  struct {
182  unsigned width;
183  unsigned height;
185 
186  struct {
187  AVRational bytes; /* average bytes per slice */
188  uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
189  } lowdelay;
190 
191  struct {
192  unsigned prefix_bytes;
193  uint64_t size_scaler;
194  } highquality;
195 
196  struct {
197  int pan_tilt[2]; /* pan/tilt vector */
198  int zrs[2][2]; /* zoom/rotate/shear matrix */
199  int perspective[2]; /* perspective vector */
200  unsigned zrs_exp;
201  unsigned perspective_exp;
202  } globalmc[2];
203 
204  /* motion compensation */
205  uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
206  int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
207  unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
208 
209  int blwidth; /* number of blocks (horizontally) */
210  int blheight; /* number of blocks (vertically) */
211  int sbwidth; /* number of superblocks (horizontally) */
212  int sbheight; /* number of superblocks (vertically) */
213 
216 
219 
220  uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
223 
225 
226  void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
227  void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
228  void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
231 
234 
238 } DiracContext;
239 
246 };
247 
248 /* magic number division by 3 from schroedinger */
249 static inline int divide3(int x)
250 {
251  return ((x+1)*21845 + 10922) >> 16;
252 }
253 
254 static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
255 {
256  DiracFrame *remove_pic = NULL;
257  int i, remove_idx = -1;
258 
259  for (i = 0; framelist[i]; i++)
260  if (framelist[i]->avframe->display_picture_number == picnum) {
261  remove_pic = framelist[i];
262  remove_idx = i;
263  }
264 
265  if (remove_pic)
266  for (i = remove_idx; framelist[i]; i++)
267  framelist[i] = framelist[i+1];
268 
269  return remove_pic;
270 }
271 
272 static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
273 {
274  int i;
275  for (i = 0; i < maxframes; i++)
276  if (!framelist[i]) {
277  framelist[i] = frame;
278  return 0;
279  }
280  return -1;
281 }
282 
284 {
285  int sbwidth = DIVRNDUP(s->seq.width, 4);
286  int sbheight = DIVRNDUP(s->seq.height, 4);
287  int i, w, h, top_padding;
288 
289  /* todo: think more about this / use or set Plane here */
290  for (i = 0; i < 3; i++) {
291  int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
292  int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
293  w = s->seq.width >> (i ? s->chroma_x_shift : 0);
294  h = s->seq.height >> (i ? s->chroma_y_shift : 0);
295 
296  /* we allocate the max we support here since num decompositions can
297  * change from frame to frame. Stride is aligned to 16 for SIMD, and
298  * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
299  * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
300  * on each side */
301  top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
302  w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
303  h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
304 
305  s->plane[i].idwt.buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
306  s->plane[i].idwt.tmp = av_malloc_array((w+16), 2 << s->pshift);
307  s->plane[i].idwt.buf = s->plane[i].idwt.buf_base + (top_padding*w)*(2 << s->pshift);
308  if (!s->plane[i].idwt.buf_base || !s->plane[i].idwt.tmp)
309  return AVERROR(ENOMEM);
310  }
311 
312  /* fixme: allocate using real stride here */
313  s->sbsplit = av_malloc_array(sbwidth, sbheight);
314  s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
315 
316  if (!s->sbsplit || !s->blmotion)
317  return AVERROR(ENOMEM);
318  return 0;
319 }
320 
322 {
323  int w = s->seq.width;
324  int h = s->seq.height;
325 
326  av_assert0(stride >= w);
327  stride += 64;
328 
329  if (s->buffer_stride >= stride)
330  return 0;
331  s->buffer_stride = 0;
332 
334  memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
335  av_freep(&s->mctmp);
336  av_freep(&s->mcscratch);
337 
339 
340  s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
342 
343  if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
344  return AVERROR(ENOMEM);
345 
346  s->buffer_stride = stride;
347  return 0;
348 }
349 
351 {
352  int i, j, k;
353 
354  for (i = 0; i < MAX_FRAMES; i++) {
355  if (s->all_frames[i].avframe->data[0]) {
357  memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
358  }
359 
360  for (j = 0; j < 3; j++)
361  for (k = 1; k < 4; k++)
362  av_freep(&s->all_frames[i].hpel_base[j][k]);
363  }
364 
365  memset(s->ref_frames, 0, sizeof(s->ref_frames));
366  memset(s->delay_frames, 0, sizeof(s->delay_frames));
367 
368  for (i = 0; i < 3; i++) {
369  av_freep(&s->plane[i].idwt.buf_base);
370  av_freep(&s->plane[i].idwt.tmp);
371  }
372 
373  s->buffer_stride = 0;
374  av_freep(&s->sbsplit);
375  av_freep(&s->blmotion);
377 
378  av_freep(&s->mctmp);
379  av_freep(&s->mcscratch);
380 }
381 
383 {
384  DiracContext *s = avctx->priv_data;
385  int i;
386 
387  s->avctx = avctx;
388  s->frame_number = -1;
389 
390  s->thread_buf = NULL;
391  s->threads_num_buf = -1;
392  s->thread_buf_size = -1;
393 
397  ff_videodsp_init(&s->vdsp, 8);
398 
399  for (i = 0; i < MAX_FRAMES; i++) {
401  if (!s->all_frames[i].avframe) {
402  while (i > 0)
403  av_frame_free(&s->all_frames[--i].avframe);
404  return AVERROR(ENOMEM);
405  }
406  }
407 
408  return 0;
409 }
410 
412 {
413  DiracContext *s = avctx->priv_data;
415  s->seen_sequence_header = 0;
416  s->frame_number = -1;
417 }
418 
420 {
421  DiracContext *s = avctx->priv_data;
422  int i;
423 
425 
426  dirac_decode_flush(avctx);
427  for (i = 0; i < MAX_FRAMES; i++)
429 
430  av_freep(&s->thread_buf);
432 
433  return 0;
434 }
435 
436 static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
437 {
438  int coeff = dirac_get_se_golomb(gb);
439  const int sign = FFSIGN(coeff);
440  if (coeff)
441  coeff = sign*((sign * coeff * qfactor + qoffset) >> 2);
442  return coeff;
443 }
444 
445 #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
446 
447 #define UNPACK_ARITH(n, type) \
448  static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
449  SubBand *b, type *buf, int x, int y) \
450  { \
451  int coeff, sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
452  const int mstride = -(b->stride >> (1+b->pshift)); \
453  if (b->parent) { \
454  const type *pbuf = (type *)b->parent->ibuf; \
455  const int stride = b->parent->stride >> (1+b->parent->pshift); \
456  pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
457  } \
458  if (b->orientation == subband_hl) \
459  sign_pred = buf[mstride]; \
460  if (x) { \
461  pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
462  if (b->orientation == subband_lh) \
463  sign_pred = buf[-1]; \
464  } else { \
465  pred_ctx += !buf[mstride]; \
466  } \
467  coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
468  if (coeff) { \
469  coeff = (coeff * qfactor + qoffset) >> 2; \
470  sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
471  coeff = (coeff ^ -sign) + sign; \
472  } \
473  *buf = coeff; \
474  } \
475 
476 UNPACK_ARITH(8, int16_t)
478 
479 /**
480  * Decode the coeffs in the rectangle defined by left, right, top, bottom
481  * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
482  */
483 static inline void codeblock(DiracContext *s, SubBand *b,
484  GetBitContext *gb, DiracArith *c,
485  int left, int right, int top, int bottom,
486  int blockcnt_one, int is_arith)
487 {
488  int x, y, zero_block;
489  int qoffset, qfactor;
490  uint8_t *buf;
491 
492  /* check for any coded coefficients in this codeblock */
493  if (!blockcnt_one) {
494  if (is_arith)
495  zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
496  else
497  zero_block = get_bits1(gb);
498 
499  if (zero_block)
500  return;
501  }
502 
503  if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
504  int quant = b->quant;
505  if (is_arith)
507  else
508  quant += dirac_get_se_golomb(gb);
509  if (quant < 0) {
510  av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
511  return;
512  }
513  b->quant = quant;
514  }
515 
516  if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
517  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
518  b->quant = 0;
519  return;
520  }
521 
522  qfactor = ff_dirac_qscale_tab[b->quant];
523  /* TODO: context pointer? */
524  if (!s->num_refs)
525  qoffset = ff_dirac_qoffset_intra_tab[b->quant] + 2;
526  else
527  qoffset = ff_dirac_qoffset_inter_tab[b->quant] + 2;
528 
529  buf = b->ibuf + top * b->stride;
530  if (is_arith) {
531  for (y = top; y < bottom; y++) {
532  for (x = left; x < right; x++) {
533  if (b->pshift) {
534  coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
535  } else {
536  coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
537  }
538  }
539  buf += b->stride;
540  }
541  } else {
542  for (y = top; y < bottom; y++) {
543  for (x = left; x < right; x++) {
544  int val = coeff_unpack_golomb(gb, qfactor, qoffset);
545  if (b->pshift) {
546  AV_WN32(&buf[4*x], val);
547  } else {
548  AV_WN16(&buf[2*x], val);
549  }
550  }
551  buf += b->stride;
552  }
553  }
554 }
555 
556 /**
557  * Dirac Specification ->
558  * 13.3 intra_dc_prediction(band)
559  */
560 #define INTRA_DC_PRED(n, type) \
561  static inline void intra_dc_prediction_##n(SubBand *b) \
562  { \
563  type *buf = (type*)b->ibuf; \
564  int x, y; \
565  \
566  for (x = 1; x < b->width; x++) \
567  buf[x] += buf[x-1]; \
568  buf += (b->stride >> (1+b->pshift)); \
569  \
570  for (y = 1; y < b->height; y++) { \
571  buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
572  \
573  for (x = 1; x < b->width; x++) { \
574  int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
575  buf[x] += divide3(pred); \
576  } \
577  buf += (b->stride >> (1+b->pshift)); \
578  } \
579  } \
580 
581 INTRA_DC_PRED(8, int16_t)
583 
584 /**
585  * Dirac Specification ->
586  * 13.4.2 Non-skipped subbands. subband_coeffs()
587  */
589 {
590  int cb_x, cb_y, left, right, top, bottom;
591  DiracArith c;
592  GetBitContext gb;
593  int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
594  int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
595  int blockcnt_one = (cb_width + cb_height) == 2;
596 
597  if (!b->length)
598  return;
599 
600  init_get_bits8(&gb, b->coeff_data, b->length);
601 
602  if (is_arith)
603  ff_dirac_init_arith_decoder(&c, &gb, b->length);
604 
605  top = 0;
606  for (cb_y = 0; cb_y < cb_height; cb_y++) {
607  bottom = (b->height * (cb_y+1LL)) / cb_height;
608  left = 0;
609  for (cb_x = 0; cb_x < cb_width; cb_x++) {
610  right = (b->width * (cb_x+1LL)) / cb_width;
611  codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
612  left = right;
613  }
614  top = bottom;
615  }
616 
617  if (b->orientation == subband_ll && s->num_refs == 0) {
618  if (s->pshift) {
619  intra_dc_prediction_10(b);
620  } else {
621  intra_dc_prediction_8(b);
622  }
623  }
624 }
625 
626 static int decode_subband_arith(AVCodecContext *avctx, void *b)
627 {
628  DiracContext *s = avctx->priv_data;
629  decode_subband_internal(s, b, 1);
630  return 0;
631 }
632 
633 static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
634 {
635  DiracContext *s = avctx->priv_data;
636  SubBand **b = arg;
637  decode_subband_internal(s, *b, 0);
638  return 0;
639 }
640 
641 /**
642  * Dirac Specification ->
643  * [DIRAC_STD] 13.4.1 core_transform_data()
644  */
646 {
647  AVCodecContext *avctx = s->avctx;
648  SubBand *bands[3*MAX_DWT_LEVELS+1];
649  enum dirac_subband orientation;
650  int level, num_bands = 0;
651 
652  /* Unpack all subbands at all levels. */
653  for (level = 0; level < s->wavelet_depth; level++) {
654  for (orientation = !!level; orientation < 4; orientation++) {
655  SubBand *b = &s->plane[comp].band[level][orientation];
656  bands[num_bands++] = b;
657 
658  align_get_bits(&s->gb);
659  /* [DIRAC_STD] 13.4.2 subband() */
661  if (b->length) {
663  align_get_bits(&s->gb);
664  b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
665  b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
666  skip_bits_long(&s->gb, b->length*8);
667  }
668  }
669  /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
670  if (s->is_arith)
671  avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
672  NULL, 4-!!level, sizeof(SubBand));
673  }
674  /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
675  if (!s->is_arith)
676  avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
677 }
678 
679 #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
680  type *buf = (type *)buf1; \
681  buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
682  if (get_bits_count(gb) >= ebits) \
683  return; \
684  if (buf2) { \
685  buf = (type *)buf2; \
686  buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
687  if (get_bits_count(gb) >= ebits) \
688  return; \
689  } \
690 
692  int slice_x, int slice_y, int bits_end,
693  SubBand *b1, SubBand *b2)
694 {
695  int left = b1->width * slice_x / s->num_x;
696  int right = b1->width *(slice_x+1) / s->num_x;
697  int top = b1->height * slice_y / s->num_y;
698  int bottom = b1->height *(slice_y+1) / s->num_y;
699 
700  int qfactor, qoffset;
701 
702  uint8_t *buf1 = b1->ibuf + top * b1->stride;
703  uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
704  int x, y;
705 
706  if (quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
707  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", quant);
708  return;
709  }
710  qfactor = ff_dirac_qscale_tab[quant];
711  qoffset = ff_dirac_qoffset_intra_tab[quant] + 2;
712  /* we have to constantly check for overread since the spec explicitly
713  requires this, with the meaning that all remaining coeffs are set to 0 */
714  if (get_bits_count(gb) >= bits_end)
715  return;
716 
717  if (s->pshift) {
718  for (y = top; y < bottom; y++) {
719  for (x = left; x < right; x++) {
720  PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
721  }
722  buf1 += b1->stride;
723  if (buf2)
724  buf2 += b2->stride;
725  }
726  }
727  else {
728  for (y = top; y < bottom; y++) {
729  for (x = left; x < right; x++) {
730  PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
731  }
732  buf1 += b1->stride;
733  if (buf2)
734  buf2 += b2->stride;
735  }
736  }
737 }
738 
739 /**
740  * Dirac Specification ->
741  * 13.5.2 Slices. slice(sx,sy)
742  */
743 static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
744 {
745  DiracContext *s = avctx->priv_data;
746  DiracSlice *slice = arg;
747  GetBitContext *gb = &slice->gb;
748  enum dirac_subband orientation;
749  int level, quant, chroma_bits, chroma_end;
750 
751  int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
752  int length_bits = av_log2(8 * slice->bytes)+1;
753  int luma_bits = get_bits_long(gb, length_bits);
754  int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
755 
756  /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
757  for (level = 0; level < s->wavelet_depth; level++)
758  for (orientation = !!level; orientation < 4; orientation++) {
759  quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
760  decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
761  &s->plane[0].band[level][orientation], NULL);
762  }
763 
764  /* consume any unused bits from luma */
765  skip_bits_long(gb, get_bits_count(gb) - luma_end);
766 
767  chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
768  chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
769  /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
770  for (level = 0; level < s->wavelet_depth; level++)
771  for (orientation = !!level; orientation < 4; orientation++) {
772  quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
773  decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
774  &s->plane[1].band[level][orientation],
775  &s->plane[2].band[level][orientation]);
776  }
777 
778  return 0;
779 }
780 
781 typedef struct SliceCoeffs {
782  int left;
783  int top;
784  int tot_h;
785  int tot_v;
786  int tot;
787 } SliceCoeffs;
788 
789 static int subband_coeffs(DiracContext *s, int x, int y, int p,
791 {
792  int level, coef = 0;
793  for (level = 0; level < s->wavelet_depth; level++) {
794  SliceCoeffs *o = &c[level];
795  SubBand *b = &s->plane[p].band[level][3]; /* orientation doens't matter */
796  o->top = b->height * y / s->num_y;
797  o->left = b->width * x / s->num_x;
798  o->tot_h = ((b->width * (x + 1)) / s->num_x) - o->left;
799  o->tot_v = ((b->height * (y + 1)) / s->num_y) - o->top;
800  o->tot = o->tot_h*o->tot_v;
801  coef += o->tot * (4 - !!level);
802  }
803  return coef;
804 }
805 
806 /**
807  * VC-2 Specification ->
808  * 13.5.3 hq_slice(sx,sy)
809  */
810 static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
811 {
812  int i, level, orientation, quant_idx;
813  int qfactor[MAX_DWT_LEVELS][4], qoffset[MAX_DWT_LEVELS][4];
814  GetBitContext *gb = &slice->gb;
815  SliceCoeffs coeffs_num[MAX_DWT_LEVELS];
816 
818  quant_idx = get_bits(gb, 8);
819 
820  if (quant_idx > DIRAC_MAX_QUANT_INDEX) {
821  av_log(s->avctx, AV_LOG_ERROR, "Invalid quantization index - %i\n", quant_idx);
822  return AVERROR_INVALIDDATA;
823  }
824 
825  /* Slice quantization (slice_quantizers() in the specs) */
826  for (level = 0; level < s->wavelet_depth; level++) {
827  for (orientation = !!level; orientation < 4; orientation++) {
828  const int quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0);
829  qfactor[level][orientation] = ff_dirac_qscale_tab[quant];
830  qoffset[level][orientation] = ff_dirac_qoffset_intra_tab[quant] + 2;
831  }
832  }
833 
834  /* Luma + 2 Chroma planes */
835  for (i = 0; i < 3; i++) {
836  int coef_num, coef_par, off = 0;
837  int64_t length = s->highquality.size_scaler*get_bits(gb, 8);
838  int64_t bits_end = get_bits_count(gb) + 8*length;
839  const uint8_t *addr = align_get_bits(gb);
840 
841  if (length*8 > get_bits_left(gb)) {
842  av_log(s->avctx, AV_LOG_ERROR, "end too far away\n");
843  return AVERROR_INVALIDDATA;
844  }
845 
846  coef_num = subband_coeffs(s, slice->slice_x, slice->slice_y, i, coeffs_num);
847 
848  if (s->pshift)
849  coef_par = ff_dirac_golomb_read_32bit(s->reader_ctx, addr,
850  length, tmp_buf, coef_num);
851  else
852  coef_par = ff_dirac_golomb_read_16bit(s->reader_ctx, addr,
853  length, tmp_buf, coef_num);
854 
855  if (coef_num > coef_par) {
856  const int start_b = coef_par * (1 << (s->pshift + 1));
857  const int end_b = coef_num * (1 << (s->pshift + 1));
858  memset(&tmp_buf[start_b], 0, end_b - start_b);
859  }
860 
861  for (level = 0; level < s->wavelet_depth; level++) {
862  const SliceCoeffs *c = &coeffs_num[level];
863  for (orientation = !!level; orientation < 4; orientation++) {
864  const SubBand *b1 = &s->plane[i].band[level][orientation];
865  uint8_t *buf = b1->ibuf + c->top * b1->stride + (c->left << (s->pshift + 1));
866 
867  /* Change to c->tot_h <= 4 for AVX2 dequantization */
868  const int qfunc = s->pshift + 2*(c->tot_h <= 2);
869  s->diracdsp.dequant_subband[qfunc](&tmp_buf[off], buf, b1->stride,
870  qfactor[level][orientation],
871  qoffset[level][orientation],
872  c->tot_v, c->tot_h);
873 
874  off += c->tot << (s->pshift + 1);
875  }
876  }
877 
878  skip_bits_long(gb, bits_end - get_bits_count(gb));
879  }
880 
881  return 0;
882 }
883 
884 static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
885 {
886  int i;
887  DiracContext *s = avctx->priv_data;
888  DiracSlice *slices = ((DiracSlice *)arg) + s->num_x*jobnr;
889  uint8_t *thread_buf = &s->thread_buf[s->thread_buf_size*threadnr];
890  for (i = 0; i < s->num_x; i++)
891  decode_hq_slice(s, &slices[i], thread_buf);
892  return 0;
893 }
894 
895 /**
896  * Dirac Specification ->
897  * 13.5.1 low_delay_transform_data()
898  */
900 {
901  AVCodecContext *avctx = s->avctx;
902  int slice_x, slice_y, bufsize;
903  int64_t coef_buf_size, bytes = 0;
904  const uint8_t *buf;
905  DiracSlice *slices;
907  int slice_num = 0;
908 
909  if (s->slice_params_num_buf != (s->num_x * s->num_y)) {
910  s->slice_params_buf = av_realloc_f(s->thread_buf, s->num_x * s->num_y, sizeof(DiracSlice));
911  if (!s->slice_params_buf) {
912  av_log(s->avctx, AV_LOG_ERROR, "slice params buffer allocation failure\n");
913  return AVERROR(ENOMEM);
914  }
915  s->slice_params_num_buf = s->num_x * s->num_y;
916  }
917  slices = s->slice_params_buf;
918 
919  /* 8 becacuse that's how much the golomb reader could overread junk data
920  * from another plane/slice at most, and 512 because SIMD */
921  coef_buf_size = subband_coeffs(s, s->num_x - 1, s->num_y - 1, 0, tmp) + 8;
922  coef_buf_size = (coef_buf_size << (1 + s->pshift)) + 512;
923 
924  if (s->threads_num_buf != avctx->thread_count ||
925  s->thread_buf_size != coef_buf_size) {
926  s->threads_num_buf = avctx->thread_count;
927  s->thread_buf_size = coef_buf_size;
929  if (!s->thread_buf) {
930  av_log(s->avctx, AV_LOG_ERROR, "thread buffer allocation failure\n");
931  return AVERROR(ENOMEM);
932  }
933  }
934 
935  align_get_bits(&s->gb);
936  /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
937  buf = s->gb.buffer + get_bits_count(&s->gb)/8;
938  bufsize = get_bits_left(&s->gb);
939 
940  if (s->hq_picture) {
941  int i;
942 
943  for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
944  for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
945  bytes = s->highquality.prefix_bytes + 1;
946  for (i = 0; i < 3; i++) {
947  if (bytes <= bufsize/8)
948  bytes += buf[bytes] * s->highquality.size_scaler + 1;
949  }
950  if (bytes >= INT_MAX || bytes*8 > bufsize) {
951  av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
952  return AVERROR_INVALIDDATA;
953  }
954 
955  slices[slice_num].bytes = bytes;
956  slices[slice_num].slice_x = slice_x;
957  slices[slice_num].slice_y = slice_y;
958  init_get_bits(&slices[slice_num].gb, buf, bufsize);
959  slice_num++;
960 
961  buf += bytes;
962  if (bufsize/8 >= bytes)
963  bufsize -= bytes*8;
964  else
965  bufsize = 0;
966  }
967  }
968 
969  if (s->num_x*s->num_y != slice_num) {
970  av_log(s->avctx, AV_LOG_ERROR, "too few slices\n");
971  return AVERROR_INVALIDDATA;
972  }
973 
974  avctx->execute2(avctx, decode_hq_slice_row, slices, NULL, s->num_y);
975  } else {
976  for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
977  for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
978  bytes = (slice_num+1) * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den
979  - slice_num * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den;
980  slices[slice_num].bytes = bytes;
981  slices[slice_num].slice_x = slice_x;
982  slices[slice_num].slice_y = slice_y;
983  init_get_bits(&slices[slice_num].gb, buf, bufsize);
984  slice_num++;
985 
986  buf += bytes;
987  if (bufsize/8 >= bytes)
988  bufsize -= bytes*8;
989  else
990  bufsize = 0;
991  }
992  }
993  avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
994  sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */
995  }
996 
997  if (s->dc_prediction) {
998  if (s->pshift) {
999  intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1000  intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1001  intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1002  } else {
1003  intra_dc_prediction_8(&s->plane[0].band[0][0]);
1004  intra_dc_prediction_8(&s->plane[1].band[0][0]);
1005  intra_dc_prediction_8(&s->plane[2].band[0][0]);
1006  }
1007  }
1008 
1009  return 0;
1010 }
1011 
1013 {
1014  int i, w, h, level, orientation;
1015 
1016  for (i = 0; i < 3; i++) {
1017  Plane *p = &s->plane[i];
1018 
1019  p->width = s->seq.width >> (i ? s->chroma_x_shift : 0);
1020  p->height = s->seq.height >> (i ? s->chroma_y_shift : 0);
1021  p->idwt.width = w = CALC_PADDING(p->width , s->wavelet_depth);
1022  p->idwt.height = h = CALC_PADDING(p->height, s->wavelet_depth);
1023  p->idwt.stride = FFALIGN(p->idwt.width, 8) << (1 + s->pshift);
1024 
1025  for (level = s->wavelet_depth-1; level >= 0; level--) {
1026  w = w>>1;
1027  h = h>>1;
1028  for (orientation = !!level; orientation < 4; orientation++) {
1029  SubBand *b = &p->band[level][orientation];
1030 
1031  b->pshift = s->pshift;
1032  b->ibuf = p->idwt.buf;
1033  b->level = level;
1034  b->stride = p->idwt.stride << (s->wavelet_depth - level);
1035  b->width = w;
1036  b->height = h;
1037  b->orientation = orientation;
1038 
1039  if (orientation & 1)
1040  b->ibuf += w << (1+b->pshift);
1041  if (orientation > 1)
1042  b->ibuf += (b->stride>>1);
1043 
1044  if (level)
1045  b->parent = &p->band[level-1][orientation];
1046  }
1047  }
1048 
1049  if (i > 0) {
1050  p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
1051  p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
1052  p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
1053  p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
1054  }
1055 
1056  p->xoffset = (p->xblen - p->xbsep)/2;
1057  p->yoffset = (p->yblen - p->ybsep)/2;
1058  }
1059 }
1060 
1061 /**
1062  * Unpack the motion compensation parameters
1063  * Dirac Specification ->
1064  * 11.2 Picture prediction data. picture_prediction()
1065  */
1067 {
1068  static const uint8_t default_blen[] = { 4, 12, 16, 24 };
1069 
1070  GetBitContext *gb = &s->gb;
1071  unsigned idx, ref;
1072 
1073  align_get_bits(gb);
1074  /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
1075  /* Luma and Chroma are equal. 11.2.3 */
1076  idx = get_interleaved_ue_golomb(gb); /* [DIRAC_STD] index */
1077 
1078  if (idx > 4) {
1079  av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
1080  return AVERROR_INVALIDDATA;
1081  }
1082 
1083  if (idx == 0) {
1088  } else {
1089  /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
1090  s->plane[0].xblen = default_blen[idx-1];
1091  s->plane[0].yblen = default_blen[idx-1];
1092  s->plane[0].xbsep = 4 * idx;
1093  s->plane[0].ybsep = 4 * idx;
1094  }
1095  /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
1096  Calculated in function dirac_unpack_block_motion_data */
1097 
1098  if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
1099  s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
1100  !s->plane[0].xblen || !s->plane[0].yblen) {
1102  "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
1103  s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
1104  return AVERROR_INVALIDDATA;
1105  }
1106  if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
1107  av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
1108  return AVERROR_INVALIDDATA;
1109  }
1110  if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
1111  av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
1112  return AVERROR_INVALIDDATA;
1113  }
1114  if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
1115  av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
1116  return AVERROR_PATCHWELCOME;
1117  }
1118 
1119  /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
1120  Read motion vector precision */
1122  if (s->mv_precision > 3) {
1123  av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
1124  return AVERROR_INVALIDDATA;
1125  }
1126 
1127  /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
1128  Read the global motion compensation parameters */
1129  s->globalmc_flag = get_bits1(gb);
1130  if (s->globalmc_flag) {
1131  memset(s->globalmc, 0, sizeof(s->globalmc));
1132  /* [DIRAC_STD] pan_tilt(gparams) */
1133  for (ref = 0; ref < s->num_refs; ref++) {
1134  if (get_bits1(gb)) {
1137  }
1138  /* [DIRAC_STD] zoom_rotate_shear(gparams)
1139  zoom/rotation/shear parameters */
1140  if (get_bits1(gb)) {
1142  s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
1143  s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
1144  s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
1145  s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
1146  } else {
1147  s->globalmc[ref].zrs[0][0] = 1;
1148  s->globalmc[ref].zrs[1][1] = 1;
1149  }
1150  /* [DIRAC_STD] perspective(gparams) */
1151  if (get_bits1(gb)) {
1155  }
1156  }
1157  }
1158 
1159  /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
1160  Picture prediction mode, not currently used. */
1161  if (get_interleaved_ue_golomb(gb)) {
1162  av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
1163  return AVERROR_INVALIDDATA;
1164  }
1165 
1166  /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
1167  just data read, weight calculation will be done later on. */
1168  s->weight_log2denom = 1;
1169  s->weight[0] = 1;
1170  s->weight[1] = 1;
1171 
1172  if (get_bits1(gb)) {
1174  s->weight[0] = dirac_get_se_golomb(gb);
1175  if (s->num_refs == 2)
1176  s->weight[1] = dirac_get_se_golomb(gb);
1177  }
1178  return 0;
1179 }
1180 
1181 /**
1182  * Dirac Specification ->
1183  * 11.3 Wavelet transform data. wavelet_transform()
1184  */
1186 {
1187  GetBitContext *gb = &s->gb;
1188  int i, level;
1189  unsigned tmp;
1190 
1191 #define CHECKEDREAD(dst, cond, errmsg) \
1192  tmp = get_interleaved_ue_golomb(gb); \
1193  if (cond) { \
1194  av_log(s->avctx, AV_LOG_ERROR, errmsg); \
1195  return AVERROR_INVALIDDATA; \
1196  }\
1197  dst = tmp;
1198 
1199  align_get_bits(gb);
1200 
1201  s->zero_res = s->num_refs ? get_bits1(gb) : 0;
1202  if (s->zero_res)
1203  return 0;
1204 
1205  /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
1206  CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
1207 
1208  CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
1209 
1210  if (!s->low_delay) {
1211  /* Codeblock parameters (core syntax only) */
1212  if (get_bits1(gb)) {
1213  for (i = 0; i <= s->wavelet_depth; i++) {
1214  CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
1215  CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
1216  }
1217 
1218  CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
1219  }
1220  else {
1221  for (i = 0; i <= s->wavelet_depth; i++)
1222  s->codeblock[i].width = s->codeblock[i].height = 1;
1223  }
1224  }
1225  else {
1228  if (s->ld_picture) {
1231  if (s->lowdelay.bytes.den <= 0) {
1232  av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
1233  return AVERROR_INVALIDDATA;
1234  }
1235  } else if (s->hq_picture) {
1238  if (s->highquality.prefix_bytes >= INT_MAX / 8) {
1239  av_log(s->avctx,AV_LOG_ERROR,"too many prefix bytes\n");
1240  return AVERROR_INVALIDDATA;
1241  }
1242  }
1243 
1244  /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
1245  if (get_bits1(gb)) {
1246  av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
1247  /* custom quantization matrix */
1248  s->lowdelay.quant[0][0] = get_interleaved_ue_golomb(gb);
1249  for (level = 0; level < s->wavelet_depth; level++) {
1253  }
1254  } else {
1255  if (s->wavelet_depth > 4) {
1256  av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
1257  return AVERROR_INVALIDDATA;
1258  }
1259  /* default quantization matrix */
1260  for (level = 0; level < s->wavelet_depth; level++)
1261  for (i = 0; i < 4; i++) {
1263  /* haar with no shift differs for different depths */
1264  if (s->wavelet_idx == 3)
1265  s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
1266  }
1267  }
1268  }
1269  return 0;
1270 }
1271 
1272 static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
1273 {
1274  static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
1275 
1276  if (!(x|y))
1277  return 0;
1278  else if (!y)
1279  return sbsplit[-1];
1280  else if (!x)
1281  return sbsplit[-stride];
1282 
1283  return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
1284 }
1285 
1286 static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
1287 {
1288  int pred;
1289 
1290  if (!(x|y))
1291  return 0;
1292  else if (!y)
1293  return block[-1].ref & refmask;
1294  else if (!x)
1295  return block[-stride].ref & refmask;
1296 
1297  /* return the majority */
1298  pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
1299  return (pred >> 1) & refmask;
1300 }
1301 
1302 static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
1303 {
1304  int i, n = 0;
1305 
1306  memset(block->u.dc, 0, sizeof(block->u.dc));
1307 
1308  if (x && !(block[-1].ref & 3)) {
1309  for (i = 0; i < 3; i++)
1310  block->u.dc[i] += block[-1].u.dc[i];
1311  n++;
1312  }
1313 
1314  if (y && !(block[-stride].ref & 3)) {
1315  for (i = 0; i < 3; i++)
1316  block->u.dc[i] += block[-stride].u.dc[i];
1317  n++;
1318  }
1319 
1320  if (x && y && !(block[-1-stride].ref & 3)) {
1321  for (i = 0; i < 3; i++)
1322  block->u.dc[i] += block[-1-stride].u.dc[i];
1323  n++;
1324  }
1325 
1326  if (n == 2) {
1327  for (i = 0; i < 3; i++)
1328  block->u.dc[i] = (block->u.dc[i]+1)>>1;
1329  } else if (n == 3) {
1330  for (i = 0; i < 3; i++)
1331  block->u.dc[i] = divide3(block->u.dc[i]);
1332  }
1333 }
1334 
1335 static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
1336 {
1337  int16_t *pred[3];
1338  int refmask = ref+1;
1339  int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
1340  int n = 0;
1341 
1342  if (x && (block[-1].ref & mask) == refmask)
1343  pred[n++] = block[-1].u.mv[ref];
1344 
1345  if (y && (block[-stride].ref & mask) == refmask)
1346  pred[n++] = block[-stride].u.mv[ref];
1347 
1348  if (x && y && (block[-stride-1].ref & mask) == refmask)
1349  pred[n++] = block[-stride-1].u.mv[ref];
1350 
1351  switch (n) {
1352  case 0:
1353  block->u.mv[ref][0] = 0;
1354  block->u.mv[ref][1] = 0;
1355  break;
1356  case 1:
1357  block->u.mv[ref][0] = pred[0][0];
1358  block->u.mv[ref][1] = pred[0][1];
1359  break;
1360  case 2:
1361  block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
1362  block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
1363  break;
1364  case 3:
1365  block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
1366  block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
1367  break;
1368  }
1369 }
1370 
1371 static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
1372 {
1373  int ez = s->globalmc[ref].zrs_exp;
1374  int ep = s->globalmc[ref].perspective_exp;
1375  int (*A)[2] = s->globalmc[ref].zrs;
1376  int *b = s->globalmc[ref].pan_tilt;
1377  int *c = s->globalmc[ref].perspective;
1378 
1379  int m = (1<<ep) - (c[0]*x + c[1]*y);
1380  int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
1381  int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
1382 
1383  block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
1384  block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
1385 }
1386 
1388  int stride, int x, int y)
1389 {
1390  int i;
1391 
1392  block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
1393  block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
1394 
1395  if (s->num_refs == 2) {
1396  block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
1397  block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
1398  }
1399 
1400  if (!block->ref) {
1401  pred_block_dc(block, stride, x, y);
1402  for (i = 0; i < 3; i++)
1403  block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
1404  return;
1405  }
1406 
1407  if (s->globalmc_flag) {
1408  block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
1409  block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
1410  }
1411 
1412  for (i = 0; i < s->num_refs; i++)
1413  if (block->ref & (i+1)) {
1414  if (block->ref & DIRAC_REF_MASK_GLOBAL) {
1415  global_mv(s, block, x, y, i);
1416  } else {
1417  pred_mv(block, stride, x, y, i);
1418  block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1419  block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1420  }
1421  }
1422 }
1423 
1424 /**
1425  * Copies the current block to the other blocks covered by the current superblock split mode
1426  */
1428 {
1429  int x, y;
1430  DiracBlock *dst = block;
1431 
1432  for (x = 1; x < size; x++)
1433  dst[x] = *block;
1434 
1435  for (y = 1; y < size; y++) {
1436  dst += stride;
1437  for (x = 0; x < size; x++)
1438  dst[x] = *block;
1439  }
1440 }
1441 
1442 /**
1443  * Dirac Specification ->
1444  * 12. Block motion data syntax
1445  */
1447 {
1448  GetBitContext *gb = &s->gb;
1449  uint8_t *sbsplit = s->sbsplit;
1450  int i, x, y, q, p;
1451  DiracArith arith[8];
1452 
1453  align_get_bits(gb);
1454 
1455  /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
1456  s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep);
1457  s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep);
1458  s->blwidth = 4 * s->sbwidth;
1459  s->blheight = 4 * s->sbheight;
1460 
1461  /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
1462  decode superblock split modes */
1463  ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb)); /* get_interleaved_ue_golomb(gb) is the length */
1464  for (y = 0; y < s->sbheight; y++) {
1465  for (x = 0; x < s->sbwidth; x++) {
1466  unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
1467  if (split > 2)
1468  return AVERROR_INVALIDDATA;
1469  sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
1470  }
1471  sbsplit += s->sbwidth;
1472  }
1473 
1474  /* setup arith decoding */
1476  for (i = 0; i < s->num_refs; i++) {
1477  ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1478  ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1479  }
1480  for (i = 0; i < 3; i++)
1482 
1483  for (y = 0; y < s->sbheight; y++)
1484  for (x = 0; x < s->sbwidth; x++) {
1485  int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
1486  int step = 4 >> s->sbsplit[y * s->sbwidth + x];
1487 
1488  for (q = 0; q < blkcnt; q++)
1489  for (p = 0; p < blkcnt; p++) {
1490  int bx = 4 * x + p*step;
1491  int by = 4 * y + q*step;
1492  DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
1493  decode_block_params(s, arith, block, s->blwidth, bx, by);
1494  propagate_block_data(block, s->blwidth, step);
1495  }
1496  }
1497 
1498  return 0;
1499 }
1500 
1501 static int weight(int i, int blen, int offset)
1502 {
1503 #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
1504  (1 + (6*(i) + offset - 1) / (2*offset - 1))
1505 
1506  if (i < 2*offset)
1507  return ROLLOFF(i);
1508  else if (i > blen-1 - 2*offset)
1509  return ROLLOFF(blen-1 - i);
1510  return 8;
1511 }
1512 
1513 static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
1514  int left, int right, int wy)
1515 {
1516  int x;
1517  for (x = 0; left && x < p->xblen >> 1; x++)
1518  obmc_weight[x] = wy*8;
1519  for (; x < p->xblen >> right; x++)
1520  obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
1521  for (; x < p->xblen; x++)
1522  obmc_weight[x] = wy*8;
1523  for (; x < stride; x++)
1524  obmc_weight[x] = 0;
1525 }
1526 
1527 static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
1528  int left, int right, int top, int bottom)
1529 {
1530  int y;
1531  for (y = 0; top && y < p->yblen >> 1; y++) {
1532  init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1533  obmc_weight += stride;
1534  }
1535  for (; y < p->yblen >> bottom; y++) {
1536  int wy = weight(y, p->yblen, p->yoffset);
1537  init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
1538  obmc_weight += stride;
1539  }
1540  for (; y < p->yblen; y++) {
1541  init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1542  obmc_weight += stride;
1543  }
1544 }
1545 
1546 static void init_obmc_weights(DiracContext *s, Plane *p, int by)
1547 {
1548  int top = !by;
1549  int bottom = by == s->blheight-1;
1550 
1551  /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
1552  if (top || bottom || by == 1) {
1553  init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
1554  init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
1555  init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
1556  }
1557 }
1558 
1559 static const uint8_t epel_weights[4][4][4] = {
1560  {{ 16, 0, 0, 0 },
1561  { 12, 4, 0, 0 },
1562  { 8, 8, 0, 0 },
1563  { 4, 12, 0, 0 }},
1564  {{ 12, 0, 4, 0 },
1565  { 9, 3, 3, 1 },
1566  { 6, 6, 2, 2 },
1567  { 3, 9, 1, 3 }},
1568  {{ 8, 0, 8, 0 },
1569  { 6, 2, 6, 2 },
1570  { 4, 4, 4, 4 },
1571  { 2, 6, 2, 6 }},
1572  {{ 4, 0, 12, 0 },
1573  { 3, 1, 9, 3 },
1574  { 2, 2, 6, 6 },
1575  { 1, 3, 3, 9 }}
1576 };
1577 
1578 /**
1579  * For block x,y, determine which of the hpel planes to do bilinear
1580  * interpolation from and set src[] to the location in each hpel plane
1581  * to MC from.
1582  *
1583  * @return the index of the put_dirac_pixels_tab function to use
1584  * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
1585  */
1587  int x, int y, int ref, int plane)
1588 {
1589  Plane *p = &s->plane[plane];
1590  uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
1591  int motion_x = block->u.mv[ref][0];
1592  int motion_y = block->u.mv[ref][1];
1593  int mx, my, i, epel, nplanes = 0;
1594 
1595  if (plane) {
1596  motion_x >>= s->chroma_x_shift;
1597  motion_y >>= s->chroma_y_shift;
1598  }
1599 
1600  mx = motion_x & ~(-1U << s->mv_precision);
1601  my = motion_y & ~(-1U << s->mv_precision);
1602  motion_x >>= s->mv_precision;
1603  motion_y >>= s->mv_precision;
1604  /* normalize subpel coordinates to epel */
1605  /* TODO: template this function? */
1606  mx <<= 3 - s->mv_precision;
1607  my <<= 3 - s->mv_precision;
1608 
1609  x += motion_x;
1610  y += motion_y;
1611  epel = (mx|my)&1;
1612 
1613  /* hpel position */
1614  if (!((mx|my)&3)) {
1615  nplanes = 1;
1616  src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
1617  } else {
1618  /* qpel or epel */
1619  nplanes = 4;
1620  for (i = 0; i < 4; i++)
1621  src[i] = ref_hpel[i] + y*p->stride + x;
1622 
1623  /* if we're interpolating in the right/bottom halves, adjust the planes as needed
1624  we increment x/y because the edge changes for half of the pixels */
1625  if (mx > 4) {
1626  src[0] += 1;
1627  src[2] += 1;
1628  x++;
1629  }
1630  if (my > 4) {
1631  src[0] += p->stride;
1632  src[1] += p->stride;
1633  y++;
1634  }
1635 
1636  /* hpel planes are:
1637  [0]: F [1]: H
1638  [2]: V [3]: C */
1639  if (!epel) {
1640  /* check if we really only need 2 planes since either mx or my is
1641  a hpel position. (epel weights of 0 handle this there) */
1642  if (!(mx&3)) {
1643  /* mx == 0: average [0] and [2]
1644  mx == 4: average [1] and [3] */
1645  src[!mx] = src[2 + !!mx];
1646  nplanes = 2;
1647  } else if (!(my&3)) {
1648  src[0] = src[(my>>1) ];
1649  src[1] = src[(my>>1)+1];
1650  nplanes = 2;
1651  }
1652  } else {
1653  /* adjust the ordering if needed so the weights work */
1654  if (mx > 4) {
1655  FFSWAP(const uint8_t *, src[0], src[1]);
1656  FFSWAP(const uint8_t *, src[2], src[3]);
1657  }
1658  if (my > 4) {
1659  FFSWAP(const uint8_t *, src[0], src[2]);
1660  FFSWAP(const uint8_t *, src[1], src[3]);
1661  }
1662  src[4] = epel_weights[my&3][mx&3];
1663  }
1664  }
1665 
1666  /* fixme: v/h _edge_pos */
1667  if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
1668  y + p->yblen > p->height+EDGE_WIDTH/2 ||
1669  x < 0 || y < 0) {
1670  for (i = 0; i < nplanes; i++) {
1671  s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
1672  p->stride, p->stride,
1673  p->xblen, p->yblen, x, y,
1674  p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
1675  src[i] = s->edge_emu_buffer[i];
1676  }
1677  }
1678  return (nplanes>>1) + epel;
1679 }
1680 
1681 static void add_dc(uint16_t *dst, int dc, int stride,
1682  uint8_t *obmc_weight, int xblen, int yblen)
1683 {
1684  int x, y;
1685  dc += 128;
1686 
1687  for (y = 0; y < yblen; y++) {
1688  for (x = 0; x < xblen; x += 2) {
1689  dst[x ] += dc * obmc_weight[x ];
1690  dst[x+1] += dc * obmc_weight[x+1];
1691  }
1692  dst += stride;
1693  obmc_weight += MAX_BLOCKSIZE;
1694  }
1695 }
1696 
1698  uint16_t *mctmp, uint8_t *obmc_weight,
1699  int plane, int dstx, int dsty)
1700 {
1701  Plane *p = &s->plane[plane];
1702  const uint8_t *src[5];
1703  int idx;
1704 
1705  switch (block->ref&3) {
1706  case 0: /* DC */
1707  add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
1708  return;
1709  case 1:
1710  case 2:
1711  idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
1712  s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1713  if (s->weight_func)
1715  s->weight[0] + s->weight[1], p->yblen);
1716  break;
1717  case 3:
1718  idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
1719  s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1720  idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
1721  if (s->biweight_func) {
1722  /* fixme: +32 is a quick hack */
1723  s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
1725  s->weight[0], s->weight[1], p->yblen);
1726  } else
1727  s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1728  break;
1729  }
1730  s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
1731 }
1732 
1733 static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
1734 {
1735  Plane *p = &s->plane[plane];
1736  int x, dstx = p->xbsep - p->xoffset;
1737 
1738  block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
1739  mctmp += p->xbsep;
1740 
1741  for (x = 1; x < s->blwidth-1; x++) {
1742  block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
1743  dstx += p->xbsep;
1744  mctmp += p->xbsep;
1745  }
1746  block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
1747 }
1748 
1749 static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
1750 {
1751  int idx = 0;
1752  if (xblen > 8)
1753  idx = 1;
1754  if (xblen > 16)
1755  idx = 2;
1756 
1757  memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
1758  memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
1759  s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
1760  if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
1763  } else {
1764  s->weight_func = NULL;
1765  s->biweight_func = NULL;
1766  }
1767 }
1768 
1770 {
1771  /* chroma allocates an edge of 8 when subsampled
1772  which for 4:2:2 means an h edge of 16 and v edge of 8
1773  just use 8 for everything for the moment */
1774  int i, edge = EDGE_WIDTH/2;
1775 
1776  ref->hpel[plane][0] = ref->avframe->data[plane];
1777  s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
1778 
1779  /* no need for hpel if we only have fpel vectors */
1780  if (!s->mv_precision)
1781  return 0;
1782 
1783  for (i = 1; i < 4; i++) {
1784  if (!ref->hpel_base[plane][i])
1785  ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
1786  if (!ref->hpel_base[plane][i]) {
1787  return AVERROR(ENOMEM);
1788  }
1789  /* we need to be 16-byte aligned even for chroma */
1790  ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
1791  }
1792 
1793  if (!ref->interpolated[plane]) {
1794  s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
1795  ref->hpel[plane][3], ref->hpel[plane][0],
1796  ref->avframe->linesize[plane], width, height);
1797  s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1798  s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1799  s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1800  }
1801  ref->interpolated[plane] = 1;
1802 
1803  return 0;
1804 }
1805 
1806 /**
1807  * Dirac Specification ->
1808  * 13.0 Transform data syntax. transform_data()
1809  */
1811 {
1812  DWTContext d;
1813  int y, i, comp, dsty;
1814  int ret;
1815 
1816  if (s->low_delay) {
1817  /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
1818  if (!s->hq_picture) {
1819  for (comp = 0; comp < 3; comp++) {
1820  Plane *p = &s->plane[comp];
1821  memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1822  }
1823  }
1824  if (!s->zero_res) {
1825  if ((ret = decode_lowdelay(s)) < 0)
1826  return ret;
1827  }
1828  }
1829 
1830  for (comp = 0; comp < 3; comp++) {
1831  Plane *p = &s->plane[comp];
1833 
1834  /* FIXME: small resolutions */
1835  for (i = 0; i < 4; i++)
1836  s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
1837 
1838  if (!s->zero_res && !s->low_delay)
1839  {
1840  memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1841  decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
1842  }
1843  ret = ff_spatial_idwt_init(&d, &p->idwt, s->wavelet_idx+2,
1844  s->wavelet_depth, s->bit_depth);
1845  if (ret < 0)
1846  return ret;
1847 
1848  if (!s->num_refs) { /* intra */
1849  for (y = 0; y < p->height; y += 16) {
1850  int idx = (s->bit_depth - 8) >> 1;
1851  ff_spatial_idwt_slice2(&d, y+16); /* decode */
1852  s->diracdsp.put_signed_rect_clamped[idx](frame + y*p->stride,
1853  p->stride,
1854  p->idwt.buf + y*p->idwt.stride,
1855  p->idwt.stride, p->width, 16);
1856  }
1857  } else { /* inter */
1858  int rowheight = p->ybsep*p->stride;
1859 
1860  select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
1861 
1862  for (i = 0; i < s->num_refs; i++) {
1863  int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
1864  if (ret < 0)
1865  return ret;
1866  }
1867 
1868  memset(s->mctmp, 0, 4*p->yoffset*p->stride);
1869 
1870  dsty = -p->yoffset;
1871  for (y = 0; y < s->blheight; y++) {
1872  int h = 0,
1873  start = FFMAX(dsty, 0);
1874  uint16_t *mctmp = s->mctmp + y*rowheight;
1875  DiracBlock *blocks = s->blmotion + y*s->blwidth;
1876 
1877  init_obmc_weights(s, p, y);
1878 
1879  if (y == s->blheight-1 || start+p->ybsep > p->height)
1880  h = p->height - start;
1881  else
1882  h = p->ybsep - (start - dsty);
1883  if (h < 0)
1884  break;
1885 
1886  memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
1887  mc_row(s, blocks, mctmp, comp, dsty);
1888 
1889  mctmp += (start - dsty)*p->stride + p->xoffset;
1890  ff_spatial_idwt_slice2(&d, start + h); /* decode */
1891  /* NOTE: add_rect_clamped hasn't been templated hence the shifts.
1892  * idwt.stride is passed as pixels, not in bytes as in the rest of the decoder */
1893  s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
1894  (int16_t*)(p->idwt.buf) + start*(p->idwt.stride >> 1), (p->idwt.stride >> 1), p->width, h);
1895 
1896  dsty += p->ybsep;
1897  }
1898  }
1899  }
1900 
1901 
1902  return 0;
1903 }
1904 
1906 {
1907  int ret, i;
1908  int chroma_x_shift, chroma_y_shift;
1909  avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
1910 
1911  f->width = avctx->width + 2 * EDGE_WIDTH;
1912  f->height = avctx->height + 2 * EDGE_WIDTH + 2;
1913  ret = ff_get_buffer(avctx, f, flags);
1914  if (ret < 0)
1915  return ret;
1916 
1917  for (i = 0; f->data[i]; i++) {
1918  int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
1919  f->linesize[i] + 32;
1920  f->data[i] += offset;
1921  }
1922  f->width = avctx->width;
1923  f->height = avctx->height;
1924 
1925  return 0;
1926 }
1927 
1928 /**
1929  * Dirac Specification ->
1930  * 11.1.1 Picture Header. picture_header()
1931  */
1933 {
1934  unsigned retire, picnum;
1935  int i, j, ret;
1936  int64_t refdist, refnum;
1937  GetBitContext *gb = &s->gb;
1938 
1939  /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
1941 
1942 
1943  av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
1944 
1945  /* if this is the first keyframe after a sequence header, start our
1946  reordering from here */
1947  if (s->frame_number < 0)
1948  s->frame_number = picnum;
1949 
1950  s->ref_pics[0] = s->ref_pics[1] = NULL;
1951  for (i = 0; i < s->num_refs; i++) {
1952  refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
1953  refdist = INT64_MAX;
1954 
1955  /* find the closest reference to the one we want */
1956  /* Jordi: this is needed if the referenced picture hasn't yet arrived */
1957  for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
1958  if (s->ref_frames[j]
1959  && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
1960  s->ref_pics[i] = s->ref_frames[j];
1961  refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
1962  }
1963 
1964  if (!s->ref_pics[i] || refdist)
1965  av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
1966 
1967  /* if there were no references at all, allocate one */
1968  if (!s->ref_pics[i])
1969  for (j = 0; j < MAX_FRAMES; j++)
1970  if (!s->all_frames[j].avframe->data[0]) {
1971  s->ref_pics[i] = &s->all_frames[j];
1973  break;
1974  }
1975 
1976  if (!s->ref_pics[i]) {
1977  av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
1978  return AVERROR_INVALIDDATA;
1979  }
1980 
1981  }
1982 
1983  /* retire the reference frames that are not used anymore */
1984  if (s->current_picture->reference) {
1985  retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
1986  if (retire != picnum) {
1987  DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
1988 
1989  if (retire_pic)
1990  retire_pic->reference &= DELAYED_PIC_REF;
1991  else
1992  av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
1993  }
1994 
1995  /* if reference array is full, remove the oldest as per the spec */
1997  av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
1999  }
2000  }
2001 
2002  if (s->num_refs) {
2003  ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
2004  if (ret < 0)
2005  return ret;
2006  ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
2007  if (ret < 0)
2008  return ret;
2009  }
2010  ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
2011  if (ret < 0)
2012  return ret;
2013 
2014  init_planes(s);
2015  return 0;
2016 }
2017 
2018 static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
2019 {
2020  DiracFrame *out = s->delay_frames[0];
2021  int i, out_idx = 0;
2022  int ret;
2023 
2024  /* find frame with lowest picture number */
2025  for (i = 1; s->delay_frames[i]; i++)
2027  out = s->delay_frames[i];
2028  out_idx = i;
2029  }
2030 
2031  for (i = out_idx; s->delay_frames[i]; i++)
2032  s->delay_frames[i] = s->delay_frames[i+1];
2033 
2034  if (out) {
2035  out->reference ^= DELAYED_PIC_REF;
2036  *got_frame = 1;
2037  if((ret = av_frame_ref(picture, out->avframe)) < 0)
2038  return ret;
2039  }
2040 
2041  return 0;
2042 }
2043 
2044 /**
2045  * Dirac Specification ->
2046  * 9.6 Parse Info Header Syntax. parse_info()
2047  * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
2048  */
2049 #define DATA_UNIT_HEADER_SIZE 13
2050 
2051 /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
2052  inside the function parse_sequence() */
2053 static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
2054 {
2055  DiracContext *s = avctx->priv_data;
2056  DiracFrame *pic = NULL;
2057  AVDiracSeqHeader *dsh;
2058  int ret, i;
2059  uint8_t parse_code;
2060  unsigned tmp;
2061 
2062  if (size < DATA_UNIT_HEADER_SIZE)
2063  return AVERROR_INVALIDDATA;
2064 
2065  parse_code = buf[4];
2066 
2067  init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
2068 
2069  if (parse_code == DIRAC_PCODE_SEQ_HEADER) {
2070  if (s->seen_sequence_header)
2071  return 0;
2072 
2073  /* [DIRAC_STD] 10. Sequence header */
2075  if (ret < 0) {
2076  av_log(avctx, AV_LOG_ERROR, "error parsing sequence header");
2077  return ret;
2078  }
2079 
2080  ret = ff_set_dimensions(avctx, dsh->width, dsh->height);
2081  if (ret < 0) {
2082  av_freep(&dsh);
2083  return ret;
2084  }
2085 
2086  ff_set_sar(avctx, dsh->sample_aspect_ratio);
2087  avctx->pix_fmt = dsh->pix_fmt;
2088  avctx->color_range = dsh->color_range;
2089  avctx->color_trc = dsh->color_trc;
2090  avctx->color_primaries = dsh->color_primaries;
2091  avctx->colorspace = dsh->colorspace;
2092  avctx->profile = dsh->profile;
2093  avctx->level = dsh->level;
2094  avctx->framerate = dsh->framerate;
2095  s->bit_depth = dsh->bit_depth;
2096  s->version.major = dsh->version.major;
2097  s->version.minor = dsh->version.minor;
2098  s->seq = *dsh;
2099  av_freep(&dsh);
2100 
2101  s->pshift = s->bit_depth > 8;
2102 
2104 
2105  ret = alloc_sequence_buffers(s);
2106  if (ret < 0)
2107  return ret;
2108 
2109  s->seen_sequence_header = 1;
2110  } else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */
2112  s->seen_sequence_header = 0;
2113  } else if (parse_code == DIRAC_PCODE_AUX) {
2114  if (buf[13] == 1) { /* encoder implementation/version */
2115  int ver[3];
2116  /* versions older than 1.0.8 don't store quant delta for
2117  subbands with only one codeblock */
2118  if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
2119  if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
2120  s->old_delta_quant = 1;
2121  }
2122  } else if (parse_code & 0x8) { /* picture data unit */
2123  if (!s->seen_sequence_header) {
2124  av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
2125  return AVERROR_INVALIDDATA;
2126  }
2127 
2128  /* find an unused frame */
2129  for (i = 0; i < MAX_FRAMES; i++)
2130  if (s->all_frames[i].avframe->data[0] == NULL)
2131  pic = &s->all_frames[i];
2132  if (!pic) {
2133  av_log(avctx, AV_LOG_ERROR, "framelist full\n");
2134  return AVERROR_INVALIDDATA;
2135  }
2136 
2137  av_frame_unref(pic->avframe);
2138 
2139  /* [DIRAC_STD] Defined in 9.6.1 ... */
2140  tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
2141  if (tmp > 2) {
2142  av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
2143  return AVERROR_INVALIDDATA;
2144  }
2145  s->num_refs = tmp;
2146  s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
2147  s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
2148  s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */
2149  s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */
2150  s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */
2151  s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */
2152  pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
2153  pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
2154  pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
2155 
2156  /* VC-2 Low Delay has a different parse code than the Dirac Low Delay */
2157  if (s->version.minor == 2 && parse_code == 0x88)
2158  s->ld_picture = 1;
2159 
2160  if (s->low_delay && !(s->ld_picture || s->hq_picture) ) {
2161  av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n");
2162  return AVERROR_INVALIDDATA;
2163  }
2164 
2165  if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
2166  return ret;
2167  s->current_picture = pic;
2168  s->plane[0].stride = pic->avframe->linesize[0];
2169  s->plane[1].stride = pic->avframe->linesize[1];
2170  s->plane[2].stride = pic->avframe->linesize[2];
2171 
2172  if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
2173  return AVERROR(ENOMEM);
2174 
2175  /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
2176  ret = dirac_decode_picture_header(s);
2177  if (ret < 0)
2178  return ret;
2179 
2180  /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
2181  ret = dirac_decode_frame_internal(s);
2182  if (ret < 0)
2183  return ret;
2184  }
2185  return 0;
2186 }
2187 
2188 static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
2189 {
2190  DiracContext *s = avctx->priv_data;
2191  AVFrame *picture = data;
2192  uint8_t *buf = pkt->data;
2193  int buf_size = pkt->size;
2194  int i, buf_idx = 0;
2195  int ret;
2196  unsigned data_unit_size;
2197 
2198  /* release unused frames */
2199  for (i = 0; i < MAX_FRAMES; i++)
2200  if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
2202  memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
2203  }
2204 
2205  s->current_picture = NULL;
2206  *got_frame = 0;
2207 
2208  /* end of stream, so flush delayed pics */
2209  if (buf_size == 0)
2210  return get_delayed_pic(s, (AVFrame *)data, got_frame);
2211 
2212  for (;;) {
2213  /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
2214  [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
2215  BBCD start code search */
2216  for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
2217  if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
2218  buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
2219  break;
2220  }
2221  /* BBCD found or end of data */
2222  if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
2223  break;
2224 
2225  data_unit_size = AV_RB32(buf+buf_idx+5);
2226  if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
2227  if(data_unit_size > buf_size - buf_idx)
2229  "Data unit with size %d is larger than input buffer, discarding\n",
2230  data_unit_size);
2231  buf_idx += 4;
2232  continue;
2233  }
2234  /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
2235  ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
2236  if (ret < 0)
2237  {
2238  av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
2239  return ret;
2240  }
2241  buf_idx += data_unit_size;
2242  }
2243 
2244  if (!s->current_picture)
2245  return buf_size;
2246 
2248  DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
2249 
2251 
2253  int min_num = s->delay_frames[0]->avframe->display_picture_number;
2254  /* Too many delayed frames, so we display the frame with the lowest pts */
2255  av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
2256 
2257  for (i = 1; s->delay_frames[i]; i++)
2258  if (s->delay_frames[i]->avframe->display_picture_number < min_num)
2259  min_num = s->delay_frames[i]->avframe->display_picture_number;
2260 
2261  delayed_frame = remove_frame(s->delay_frames, min_num);
2263  }
2264 
2265  if (delayed_frame) {
2266  delayed_frame->reference ^= DELAYED_PIC_REF;
2267  if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
2268  return ret;
2269  *got_frame = 1;
2270  }
2272  /* The right frame at the right time :-) */
2273  if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
2274  return ret;
2275  *got_frame = 1;
2276  }
2277 
2278  if (*got_frame)
2279  s->frame_number = picture->display_picture_number + 1;
2280 
2281  return buf_idx;
2282 }
2283 
2285  .name = "dirac",
2286  .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
2287  .type = AVMEDIA_TYPE_VIDEO,
2288  .id = AV_CODEC_ID_DIRAC,
2289  .priv_data_size = sizeof(DiracContext),
2291  .close = dirac_decode_end,
2295 };
#define CHECKEDREAD(dst, cond, errmsg)
int ff_dirac_golomb_read_32bit(DiracGolombLUT *lut_ctx, const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
Definition: dirac_vlc.c:42
int quant
Definition: cfhd.h:52
int plane
Definition: avisynth_c.h:291
void(* add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
Definition: diracdec.c:228
uint8_t * thread_buf
Definition: diracdec.c:174
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
#define NULL
Definition: coverity.c:32
#define UNPACK_ARITH(n, type)
Definition: diracdec.c:447
AVRational framerate
Definition: avcodec.h:3355
const char const char void * val
Definition: avisynth_c.h:634
const int32_t ff_dirac_qscale_tab[116]
Definition: diractab.c:34
#define PARSE_VALUES(type, x, gb, ebits, buf1, buf2)
Definition: diracdec.c:679
const char * s
Definition: avisynth_c.h:631
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int blheight
Definition: diracdec.c:210
static av_cold int dirac_decode_end(AVCodecContext *avctx)
Definition: diracdec.c:419
static void codeblock(DiracContext *s, SubBand *b, GetBitContext *gb, DiracArith *c, int left, int right, int top, int bottom, int blockcnt_one, int is_arith)
Decode the coeffs in the rectangle defined by left, right, top, bottom [DIRAC_STD] 13...
Definition: diracdec.c:483
enum AVColorRange color_range
Definition: dirac.h:107
#define av_realloc_f(p, o, n)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:184
dirac_weight_func weight_func
Definition: diracdec.c:229
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
static void flush(AVCodecContext *avctx)
uint8_t * sbsplit
Definition: diracdec.c:214
#define CTX_SB_DATA
Definition: dirac_arith.h:66
#define CTX_PMODE_REF2
Definition: dirac_arith.h:68
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:247
enum AVColorTransferCharacteristic color_trc
Definition: dirac.h:109
DiracFrame * ref_frames[MAX_REFERENCE_FRAMES+1]
Definition: diracdec.c:235
static int divide3(int x)
Definition: diracdec.c:249
static int dirac_decode_frame_internal(DiracContext *s)
Dirac Specification -> 13.0 Transform data syntax.
Definition: diracdec.c:1810
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:210
DiracVersionInfo version
Definition: dirac.h:112
int ld_picture
Definition: diracdec.c:155
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:204
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int bit_depth
Definition: diracdec.c:147
static void propagate_block_data(DiracBlock *block, int stride, int size)
Copies the current block to the other blocks covered by the current superblock split mode...
Definition: diracdec.c:1427
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:2393
dirac_weight_func weight_dirac_pixels_tab[3]
Definition: diracdsp.h:53
int num
numerator
Definition: rational.h:44
int size
Definition: avcodec.h:1589
const char * b
Definition: vf_curves.c:113
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: diracdec.c:65
void ff_dirac_init_arith_decoder(DiracArith *c, GetBitContext *gb, int length)
Definition: dirac_arith.c:86
static int subband_coeffs(DiracContext *s, int x, int y, int p, SliceCoeffs c[MAX_DWT_LEVELS])
Definition: diracdec.c:789
unsigned width
Definition: diracdec.c:182
#define DATA_UNIT_HEADER_SIZE
Dirac Specification -> 9.6 Parse Info Header Syntax.
Definition: diracdec.c:2049
const uint8_t * buffer
Definition: get_bits.h:56
int av_log2(unsigned v)
Definition: intmath.c:26
#define DECLARE_ALIGNED(n, t, v)
Definition: mem.h:53
uint8_t * buf
Definition: dirac_dwt.h:41
uint8_t yoffset
Definition: diracdec.c:119
static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
Definition: diracdec.c:1371
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1885
GetBitContext gb
Definition: diracdec.c:126
static int dirac_get_arith_uint(DiracArith *c, int follow_ctx, int data_ctx)
Definition: dirac_arith.h:170
static int alloc_buffers(DiracContext *s, int stride)
Definition: diracdec.c:321
int ff_dirac_golomb_read_16bit(DiracGolombLUT *lut_ctx, const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
Definition: dirac_vlc.c:82
mpegvideo header.
DiracVersionInfo version
Definition: diracdec.c:138
unsigned height
Definition: diracdec.c:183
static AVPacket pkt
#define EDGE_TOP
static void dirac_decode_flush(AVCodecContext *avctx)
Definition: diracdec.c:411
const uint8_t * coeff_data
Definition: diracdec.c:101
static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
Definition: diracdec.c:2018
static int dirac_unpack_idwt_params(DiracContext *s)
Dirac Specification -> 11.3 Wavelet transform data.
Definition: diracdec.c:1185
int profile
profile
Definition: avcodec.h:3161
#define DIRAC_REF_MASK_REF2
Definition: diracdec.c:58
AVCodec.
Definition: avcodec.h:3559
int zrs[2][2]
Definition: diracdec.c:198
static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
VC-2 Specification -> 13.5.3 hq_slice(sx,sy)
Definition: diracdec.c:810
unsigned codeblock_mode
Definition: diracdec.c:169
int num_refs
Definition: diracdec.c:158
int av_dirac_parse_sequence_header(AVDiracSeqHeader **pdsh, const uint8_t *buf, size_t buf_size, void *log_ctx)
Parse a Dirac sequence header.
Definition: dirac.c:398
uint8_t xoffset
Definition: diracdec.c:118
uint8_t * tmp
Definition: dirac_dwt.h:43
unsigned weight_log2denom
Definition: diracdec.c:207
#define CTX_GLOBAL_BLOCK
Definition: dirac_arith.h:69
int width
Definition: cfhd.h:48
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: avcodec.h:981
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
DiracFrame * delay_frames[MAX_DELAY+1]
Definition: diracdec.c:236
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
uint8_t * mcscratch
Definition: diracdec.c:221
int dc_prediction
Definition: diracdec.c:156
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
struct DiracContext::@47 globalmc[2]
void(* add_rect_clamped)(uint8_t *dst, const uint16_t *src, int stride, const int16_t *idwt, int idwt_stride, int width, int height)
Definition: diracdsp.h:47
uint8_t
#define av_cold
Definition: attributes.h:82
unsigned wavelet_idx
Definition: diracdec.c:162
#define av_malloc(s)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:140
Interface to Dirac Decoder/Encoder.
#define CTX_PMODE_REF1
Definition: dirac_arith.h:67
static int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
Definition: diracdec.c:436
#define DIVRNDUP(a, b)
Definition: diracdec.c:70
int hq_picture
Definition: diracdec.c:154
static av_cold int dirac_decode_init(AVCodecContext *avctx)
Definition: diracdec.c:382
uint8_t quant[MAX_DWT_LEVELS][4]
Definition: diracdec.c:188
unsigned prefix_bytes
Definition: diracdec.c:192
AVRational sample_aspect_ratio
Definition: dirac.h:104
unsigned num_x
Definition: diracdec.c:171
int low_delay
Definition: diracdec.c:153
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:374
Plane plane[3]
Definition: diracdec.c:143
static int dirac_get_se_golomb(GetBitContext *gb)
Definition: golomb.h:255
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_WL16 uint64_t_TMPL AV_WB64 unsigned int_TMPL AV_RB32
Definition: bytestream.h:87
static AVFrame * frame
DiracSlice * slice_params_buf
Definition: diracdec.c:178
#define height
uint8_t * data
Definition: avcodec.h:1588
static void free_sequence_buffers(DiracContext *s)
Definition: diracdec.c:350
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:199
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:225
int height
Definition: dirac_dwt.h:39
bitstream reader API header.
static const uint8_t epel_weights[4][4][4]
Definition: diracdec.c:1559
ptrdiff_t size
Definition: opengl_enc.c:101
uint8_t xblen
Definition: diracdec.c:112
static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
Dirac Specification -> 13.5.2 Slices.
Definition: diracdec.c:743
#define CTX_DC_DATA
Definition: dirac_arith.h:73
#define A(x)
Definition: vp56_arith.h:28
#define FFALIGN(x, a)
Definition: macros.h:48
#define av_log(a,...)
unsigned m
Definition: audioconvert.c:187
Definition: cfhd.h:43
void(* avg_dirac_pixels_tab[3][4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdsp.h:43
static void pred_block_dc(DiracBlock *block, int stride, int x, int y)
Definition: diracdec.c:1302
AVRational framerate
Definition: dirac.h:103
int pan_tilt[2]
Definition: diracdec.c:197
int interpolated[3]
Definition: diracdec.c:74
#define EDGE_WIDTH
Definition: mpegpicture.h:33
#define ROLLOFF(i)
#define U(x)
Definition: vp56_arith.h:37
av_cold int ff_dirac_golomb_reader_init(DiracGolombLUT **lut_ctx)
Definition: dirac_vlc.c:227
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:568
dirac_subband
Definition: diracdec.c:240
const int32_t ff_dirac_qoffset_intra_tab[120]
Definition: diractab.c:53
av_cold void ff_diracdsp_init(DiracDSPContext *c)
Definition: diracdsp.c:219
int width
width and height of the video frame
Definition: frame.h:236
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
unsigned length
Definition: diracdec.c:100
static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
Definition: diracdec.c:2188
void(* dirac_hpel_filter)(uint8_t *dsth, uint8_t *dstv, uint8_t *dstc, const uint8_t *src, int stride, int width, int height)
Definition: diracdsp.h:31
uint8_t * hpel[3][4]
Definition: diracdec.c:75
int slice_x
Definition: diracdec.c:127
static const uint16_t mask[17]
Definition: lzw.c:38
uint16_t * mctmp
Definition: diracdec.c:220
#define AVERROR(e)
Definition: error.h:43
#define DIRAC_REF_MASK_GLOBAL
Definition: diracdec.c:59
int width
Definition: dirac_dwt.h:38
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:153
static int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
Definition: diracdec.c:1272
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:176
static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
Definition: diracdec.c:272
static void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
Definition: diracdec.c:1335
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
const char * arg
Definition: jacosubdec.c:66
const uint8_t ff_dirac_default_qmat[7][4][4]
Definition: diractab.c:24
unsigned num_y
Definition: diracdec.c:172
static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
Definition: diracdec.c:1769
static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5], int x, int y, int ref, int plane)
For block x,y, determine which of the hpel planes to do bilinear interpolation from and set src[] to ...
Definition: diracdec.c:1586
unsigned wavelet_depth
Definition: diracdec.c:161
#define CTX_MV_DATA
Definition: dirac_arith.h:71
int stride
Definition: cfhd.h:46
GLsizei GLsizei * length
Definition: opengl_enc.c:115
const char * name
Name of the codec implementation.
Definition: avcodec.h:3566
DiracFrame * current_picture
Definition: diracdec.c:232
#define DIRAC_MAX_QUANT_INDEX
Definition: diractab.h:41
int slice_y
Definition: diracdec.c:128
unsigned old_delta_quant
schroedinger older than 1.0.8 doesn't store quant delta if only one codebook exists in a band ...
Definition: diracdec.c:168
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
Definition: diracdec.c:2053
DiracDSPContext diracdsp
Definition: diracdec.c:136
int orientation
Definition: cfhd.h:45
#define MAX_BLOCKSIZE
Definition: diracdec.c:52
static char * split(char *message, char delim)
Definition: af_channelmap.c:81
int bytes
Definition: diracdec.c:129
int slice_params_num_buf
Definition: diracdec.c:179
#define INTRA_DC_PRED(n, type)
Dirac Specification -> 13.3 intra_dc_prediction(band)
Definition: diracdec.c:560
static void init_planes(DiracContext *s)
Definition: diracdec.c:1012
int globalmc_flag
Definition: diracdec.c:157
AVCodec ff_dirac_decoder
Definition: diracdec.c:2284
static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block, int stride, int x, int y)
Definition: diracdec.c:1387
SubBand band[DWT_LEVELS][4]
Definition: cfhd.h:68
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:258
uint8_t * ibuf
Definition: cfhd.h:53
#define FFMIN(a, b)
Definition: common.h:96
int display_picture_number
picture number in display order
Definition: frame.h:289
#define CALC_PADDING(size, depth)
Definition: diracdec.c:67
static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: diracdec.c:884
DiracFrame * ref_pics[2]
Definition: diracdec.c:233
void(* avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdec.c:227
static void block_mc(DiracContext *s, DiracBlock *block, uint16_t *mctmp, uint8_t *obmc_weight, int plane, int dstx, int dsty)
Definition: diracdec.c:1697
enum AVColorSpace colorspace
Definition: dirac.h:110
static DiracFrame * remove_frame(DiracFrame *framelist[], int picnum)
Definition: diracdec.c:254
#define width
void ff_spatial_idwt_slice2(DWTContext *d, int y)
Definition: dirac_dwt.c:67
#define FFSIGN(a)
Definition: common.h:73
int width
picture width / height.
Definition: avcodec.h:1844
typedef void(APIENTRY *FF_PFNGLACTIVETEXTUREPROC)(GLenum texture)
int perspective[2]
Definition: diracdec.c:199
static int dirac_unpack_prediction_parameters(DiracContext *s)
Unpack the motion compensation parameters Dirac Specification -> 11.2 Picture prediction data...
Definition: diracdec.c:1066
int32_t
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:2372
av_cold void ff_dirac_golomb_reader_end(DiracGolombLUT **lut_ctx)
Definition: dirac_vlc.c:244
MpegvideoEncDSPContext mpvencdsp
Definition: diracdec.c:134
static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
Definition: diracdec.c:1733
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
int level
level
Definition: avcodec.h:3259
unsigned perspective_exp
Definition: diracdec.c:201
int chroma_y_shift
Definition: diracdec.c:145
static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
Definition: diracdec.c:1749
int n
Definition: avisynth_c.h:547
int16_t dc[3]
Definition: diracdec.c:83
#define src
Definition: vp9dsp.c:530
void avcodec_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: imgconvert.c:38
uint8_t * edge_emu_buffer_base
Definition: diracdec.c:218
static void decode_component(DiracContext *s, int comp)
Dirac Specification -> [DIRAC_STD] 13.4.1 core_transform_data()
Definition: diracdec.c:645
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:3087
static void init_obmc_weights(DiracContext *s, Plane *p, int by)
Definition: diracdec.c:1546
static const float pred[4]
Definition: siprdata.h:259
void(* add_dirac_obmc[3])(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
Definition: diracdsp.h:48
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
uint8_t * buf_base
Definition: dirac_dwt.h:42
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: avcodec.h:1023
static const int8_t mv[256][2]
Definition: 4xm.c:77
static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
Definition: diracdec.c:1905
VideoDSPContext vdsp
Definition: diracdec.c:135
uint8_t ybsep
Definition: diracdec.c:116
static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
Dirac Specification -> 13.4.2 Non-skipped subbands.
Definition: diracdec.c:588
Libavcodec external API header.
uint8_t * edge_emu_buffer[4]
Definition: diracdec.c:217
struct DiracContext::@44 codeblock[MAX_DWT_LEVELS+1]
int seen_sequence_header
Definition: diracdec.c:141
enum AVPixelFormat pix_fmt
Definition: dirac.h:106
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:215
const int ff_dirac_qoffset_inter_tab[122]
Definition: diractab.c:72
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:437
void(* dirac_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int h)
Definition: diracdsp.h:27
main external API structure.
Definition: avcodec.h:1657
int buffer_stride
Definition: diracdec.c:222
MPEG-1/2 tables.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: utils.c:928
DiracFrame all_frames[MAX_FRAMES]
Definition: diracdec.c:237
int reference
Definition: diracdec.c:77
Arithmetic decoder for Dirac.
struct SubBand * parent
Definition: diracdec.c:97
void * buf
Definition: avisynth_c.h:553
dirac_biweight_func biweight_dirac_pixels_tab[3]
Definition: diracdsp.h:54
#define MAX_DWT_LEVELS
The spec limits the number of wavelet decompositions to 4 for both level 1 (VC-2) and 128 (long-gop d...
Definition: dirac.h:45
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:299
static int decode_lowdelay(DiracContext *s)
Dirac Specification -> 13.5.1 low_delay_transform_data()
Definition: diracdec.c:899
int core_syntax
Definition: diracdec.c:152
int frame_number
Definition: diracdec.c:142
static int dirac_get_arith_bit(DiracArith *c, int ctx)
Definition: dirac_arith.h:129
AVCodecContext * avctx
Definition: diracdec.c:133
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:2386
rational number numerator/denominator
Definition: rational.h:43
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2379
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:406
union DiracBlock::@43 u
GetBitContext gb
Definition: diracdec.c:139
#define mid_pred
Definition: mathops.h:96
dirac_biweight_func biweight_func
Definition: diracdec.c:230
uint8_t xbsep
Definition: diracdec.c:115
int thread_buf_size
Definition: diracdec.c:176
#define u(width,...)
int chroma_x_shift
Definition: diracdec.c:144
AVRational bytes
Definition: diracdec.c:187
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:332
static int decode_subband_arith(AVCodecContext *avctx, void *b)
Definition: diracdec.c:626
static int weight(int i, int blen, int offset)
Definition: diracdec.c:1501
#define MAX_DELAY
Definition: diracdec.c:49
unsigned height
Definition: dirac.h:83
int zero_res
Definition: diracdec.c:150
const uint8_t * quant
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:484
#define MAX_FRAMES
Definition: diracdec.c:50
int pshift
Definition: cfhd.h:51
static int flags
Definition: cpu.c:47
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:198
uint8_t level
Definition: svq3.c:193
static int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
Definition: diracdec.c:1286
AVFrame * avframe
Definition: diracdec.c:73
DiracBlock * blmotion
Definition: diracdec.c:215
static int decode(AVCodecContext *avctx, void *data, int *got_sub, AVPacket *avpkt)
Definition: ccaption_dec.c:752
DiracGolombLUT * reader_ctx
Definition: diracdec.c:137
#define MAX_REFERENCE_FRAMES
The spec limits this to 3 for frame coding, but in practice can be as high as 6.
Definition: diracdec.c:48
GLint GLenum GLboolean GLsizei stride
Definition: opengl_enc.c:105
static int dirac_decode_picture_header(DiracContext *s)
Dirac Specification -> 11.1.1 Picture Header.
Definition: diracdec.c:1932
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:282
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
AVDiracSeqHeader seq
Definition: diracdec.c:140
#define AV_WN32(p, v)
Definition: intreadwrite.h:376
ptrdiff_t stride
Definition: cfhd.h:59
static double c[64]
static void decode_subband(DiracContext *s, GetBitContext *gb, int quant, int slice_x, int slice_y, int bits_end, SubBand *b1, SubBand *b2)
Definition: diracdec.c:691
static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
Definition: diracdec.c:633
int16_t weight[2]
Definition: diracdec.c:206
int16_t mv[2][2]
Definition: diracdec.c:82
static int dirac_get_arith_int(DiracArith *c, int follow_ctx, int data_ctx)
Definition: dirac_arith.h:185
#define CTX_MV_F1
Definition: dirac_arith.h:70
int sbheight
Definition: diracdec.c:212
int den
denominator
Definition: rational.h:45
static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int wy)
Definition: diracdec.c:1513
Core video DSP helper functions.
void(* put_dirac_pixels_tab[3][4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
dirac_pixels_tab[width][subpel] width is 2 for 32, 1 for 16, 0 for 8 subpel is 0 for fpel and hpel (o...
Definition: diracdsp.h:42
#define CTX_DC_F1
Definition: dirac_arith.h:72
void * priv_data
Definition: avcodec.h:1699
DWTPlane idwt
Definition: diracdec.c:105
static int alloc_sequence_buffers(DiracContext *s)
Definition: diracdec.c:283
void(* put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdec.c:226
static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int top, int bottom)
Definition: diracdec.c:1527
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:3127
void(* dequant_subband[4])(uint8_t *src, uint8_t *dst, ptrdiff_t stride, const int qf, const int qs, int tot_v, int tot_h)
Definition: diracdsp.h:51
int threads_num_buf
Definition: diracdec.c:175
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:3147
void(* draw_edges)(uint8_t *buf, int wrap, int width, int height, int w, int h, int sides)
#define CTX_SB_F1
Definition: dirac_arith.h:65
static uint8_t tmp[8]
Definition: des.c:38
struct DiracContext::@46 highquality
void(* dirac_biweight_func)(uint8_t *dst, const uint8_t *src, int stride, int log2_denom, int weightd, int weights, int h)
Definition: diracdsp.h:28
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:253
int height
Definition: cfhd.h:50
static const double coeff[2][5]
Definition: vf_owdenoise.c:71
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:445
#define EDGE_BOTTOM
int width
Definition: cfhd.h:57
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> dc
static void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.h:229
int height
Definition: frame.h:236
FILE * out
Definition: movenc.c:54
uint8_t ref
Definition: diracdec.c:85
int is_arith
Definition: diracdec.c:151
#define av_freep(p)
static void comp(unsigned char *dst, int dst_stride, unsigned char *src, int src_stride, int add)
Definition: eamad.c:83
static void add_dc(uint16_t *dst, int dc, int stride, uint8_t *obmc_weight, int xblen, int yblen)
Definition: diracdec.c:1681
enum AVColorPrimaries color_primaries
Definition: dirac.h:108
void INT64 start
Definition: avisynth_c.h:553
#define AV_WN16(p, v)
Definition: intreadwrite.h:372
#define av_always_inline
Definition: attributes.h:39
struct DiracContext::@45 lowdelay
#define av_malloc_array(a, b)
uint8_t * hpel_base[3][4]
Definition: diracdec.c:76
unsigned width
Definition: dirac.h:82
#define FFSWAP(type, a, b)
Definition: common.h:99
static unsigned get_interleaved_ue_golomb(GetBitContext *gb)
Definition: golomb.h:115
#define stride
int stride
Definition: dirac_dwt.h:40
int height
Definition: cfhd.h:58
exp golomb vlc stuff
This structure stores compressed data.
Definition: avcodec.h:1565
void(* put_signed_rect_clamped[3])(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int width, int height)
Definition: diracdsp.h:45
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:1341
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:956
#define DIRAC_REF_MASK_REF1
DiracBlock->ref flags, if set then the block does MC from the given ref.
Definition: diracdec.c:57
uint64_t size_scaler
Definition: diracdec.c:193
unsigned zrs_exp
Definition: diracdec.c:200
#define FFMAX3(a, b, c)
Definition: common.h:95
uint8_t mv_precision
Definition: diracdec.c:205
static int dirac_unpack_block_motion_data(DiracContext *s)
Dirac Specification ->
Definition: diracdec.c:1446
Definition: cfhd.h:56
uint8_t obmc_weight[3][MAX_BLOCKSIZE *MAX_BLOCKSIZE]
Definition: diracdec.c:224
int ff_spatial_idwt_init(DWTContext *d, DWTPlane *p, enum dwt_type type, int decomposition_count, int bit_depth)
Definition: dirac_dwt.c:36
int level
Definition: cfhd.h:44
uint8_t yblen
Definition: diracdec.c:113
static int16_t block[64]
Definition: dct-test.c:112