FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
opus.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012 Andrew D'Addesio
3  * Copyright (c) 2013-2014 Mozilla Corporation
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Opus decoder/parser shared code
25  */
26 
27 #include <stdint.h>
28 
29 #include "libavutil/error.h"
30 #include "libavutil/ffmath.h"
31 
32 #include "opus_celt.h"
33 #include "opustab.h"
34 #include "vorbis.h"
35 
36 static const uint16_t opus_frame_duration[32] = {
37  480, 960, 1920, 2880,
38  480, 960, 1920, 2880,
39  480, 960, 1920, 2880,
40  480, 960,
41  480, 960,
42  120, 240, 480, 960,
43  120, 240, 480, 960,
44  120, 240, 480, 960,
45  120, 240, 480, 960,
46 };
47 
48 /**
49  * Read a 1- or 2-byte frame length
50  */
51 static inline int xiph_lacing_16bit(const uint8_t **ptr, const uint8_t *end)
52 {
53  int val;
54 
55  if (*ptr >= end)
56  return AVERROR_INVALIDDATA;
57  val = *(*ptr)++;
58  if (val >= 252) {
59  if (*ptr >= end)
60  return AVERROR_INVALIDDATA;
61  val += 4 * *(*ptr)++;
62  }
63  return val;
64 }
65 
66 /**
67  * Read a multi-byte length (used for code 3 packet padding size)
68  */
69 static inline int xiph_lacing_full(const uint8_t **ptr, const uint8_t *end)
70 {
71  int val = 0;
72  int next;
73 
74  while (1) {
75  if (*ptr >= end || val > INT_MAX - 254)
76  return AVERROR_INVALIDDATA;
77  next = *(*ptr)++;
78  val += next;
79  if (next < 255)
80  break;
81  else
82  val--;
83  }
84  return val;
85 }
86 
87 /**
88  * Parse Opus packet info from raw packet data
89  */
90 int ff_opus_parse_packet(OpusPacket *pkt, const uint8_t *buf, int buf_size,
91  int self_delimiting)
92 {
93  const uint8_t *ptr = buf;
94  const uint8_t *end = buf + buf_size;
95  int padding = 0;
96  int frame_bytes, i;
97 
98  if (buf_size < 1)
99  goto fail;
100 
101  /* TOC byte */
102  i = *ptr++;
103  pkt->code = (i ) & 0x3;
104  pkt->stereo = (i >> 2) & 0x1;
105  pkt->config = (i >> 3) & 0x1F;
106 
107  /* code 2 and code 3 packets have at least 1 byte after the TOC */
108  if (pkt->code >= 2 && buf_size < 2)
109  goto fail;
110 
111  switch (pkt->code) {
112  case 0:
113  /* 1 frame */
114  pkt->frame_count = 1;
115  pkt->vbr = 0;
116 
117  if (self_delimiting) {
118  int len = xiph_lacing_16bit(&ptr, end);
119  if (len < 0 || len > end - ptr)
120  goto fail;
121  end = ptr + len;
122  buf_size = end - buf;
123  }
124 
125  frame_bytes = end - ptr;
126  if (frame_bytes > MAX_FRAME_SIZE)
127  goto fail;
128  pkt->frame_offset[0] = ptr - buf;
129  pkt->frame_size[0] = frame_bytes;
130  break;
131  case 1:
132  /* 2 frames, equal size */
133  pkt->frame_count = 2;
134  pkt->vbr = 0;
135 
136  if (self_delimiting) {
137  int len = xiph_lacing_16bit(&ptr, end);
138  if (len < 0 || 2 * len > end - ptr)
139  goto fail;
140  end = ptr + 2 * len;
141  buf_size = end - buf;
142  }
143 
144  frame_bytes = end - ptr;
145  if (frame_bytes & 1 || frame_bytes >> 1 > MAX_FRAME_SIZE)
146  goto fail;
147  pkt->frame_offset[0] = ptr - buf;
148  pkt->frame_size[0] = frame_bytes >> 1;
149  pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
150  pkt->frame_size[1] = frame_bytes >> 1;
151  break;
152  case 2:
153  /* 2 frames, different sizes */
154  pkt->frame_count = 2;
155  pkt->vbr = 1;
156 
157  /* read 1st frame size */
158  frame_bytes = xiph_lacing_16bit(&ptr, end);
159  if (frame_bytes < 0)
160  goto fail;
161 
162  if (self_delimiting) {
163  int len = xiph_lacing_16bit(&ptr, end);
164  if (len < 0 || len + frame_bytes > end - ptr)
165  goto fail;
166  end = ptr + frame_bytes + len;
167  buf_size = end - buf;
168  }
169 
170  pkt->frame_offset[0] = ptr - buf;
171  pkt->frame_size[0] = frame_bytes;
172 
173  /* calculate 2nd frame size */
174  frame_bytes = end - ptr - pkt->frame_size[0];
175  if (frame_bytes < 0 || frame_bytes > MAX_FRAME_SIZE)
176  goto fail;
177  pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
178  pkt->frame_size[1] = frame_bytes;
179  break;
180  case 3:
181  /* 1 to 48 frames, can be different sizes */
182  i = *ptr++;
183  pkt->frame_count = (i ) & 0x3F;
184  padding = (i >> 6) & 0x01;
185  pkt->vbr = (i >> 7) & 0x01;
186 
187  if (pkt->frame_count == 0 || pkt->frame_count > MAX_FRAMES)
188  goto fail;
189 
190  /* read padding size */
191  if (padding) {
192  padding = xiph_lacing_full(&ptr, end);
193  if (padding < 0)
194  goto fail;
195  }
196 
197  /* read frame sizes */
198  if (pkt->vbr) {
199  /* for VBR, all frames except the final one have their size coded
200  in the bitstream. the last frame size is implicit. */
201  int total_bytes = 0;
202  for (i = 0; i < pkt->frame_count - 1; i++) {
203  frame_bytes = xiph_lacing_16bit(&ptr, end);
204  if (frame_bytes < 0)
205  goto fail;
206  pkt->frame_size[i] = frame_bytes;
207  total_bytes += frame_bytes;
208  }
209 
210  if (self_delimiting) {
211  int len = xiph_lacing_16bit(&ptr, end);
212  if (len < 0 || len + total_bytes + padding > end - ptr)
213  goto fail;
214  end = ptr + total_bytes + len + padding;
215  buf_size = end - buf;
216  }
217 
218  frame_bytes = end - ptr - padding;
219  if (total_bytes > frame_bytes)
220  goto fail;
221  pkt->frame_offset[0] = ptr - buf;
222  for (i = 1; i < pkt->frame_count; i++)
223  pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
224  pkt->frame_size[pkt->frame_count-1] = frame_bytes - total_bytes;
225  } else {
226  /* for CBR, the remaining packet bytes are divided evenly between
227  the frames */
228  if (self_delimiting) {
229  frame_bytes = xiph_lacing_16bit(&ptr, end);
230  if (frame_bytes < 0 || pkt->frame_count * frame_bytes + padding > end - ptr)
231  goto fail;
232  end = ptr + pkt->frame_count * frame_bytes + padding;
233  buf_size = end - buf;
234  } else {
235  frame_bytes = end - ptr - padding;
236  if (frame_bytes % pkt->frame_count ||
237  frame_bytes / pkt->frame_count > MAX_FRAME_SIZE)
238  goto fail;
239  frame_bytes /= pkt->frame_count;
240  }
241 
242  pkt->frame_offset[0] = ptr - buf;
243  pkt->frame_size[0] = frame_bytes;
244  for (i = 1; i < pkt->frame_count; i++) {
245  pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
246  pkt->frame_size[i] = frame_bytes;
247  }
248  }
249  }
250 
251  pkt->packet_size = buf_size;
252  pkt->data_size = pkt->packet_size - padding;
253 
254  /* total packet duration cannot be larger than 120ms */
256  if (pkt->frame_duration * pkt->frame_count > MAX_PACKET_DUR)
257  goto fail;
258 
259  /* set mode and bandwidth */
260  if (pkt->config < 12) {
261  pkt->mode = OPUS_MODE_SILK;
262  pkt->bandwidth = pkt->config >> 2;
263  } else if (pkt->config < 16) {
264  pkt->mode = OPUS_MODE_HYBRID;
265  pkt->bandwidth = OPUS_BANDWIDTH_SUPERWIDEBAND + (pkt->config >= 14);
266  } else {
267  pkt->mode = OPUS_MODE_CELT;
268  pkt->bandwidth = (pkt->config - 16) >> 2;
269  /* skip medium band */
270  if (pkt->bandwidth)
271  pkt->bandwidth++;
272  }
273 
274  return 0;
275 
276 fail:
277  memset(pkt, 0, sizeof(*pkt));
278  return AVERROR_INVALIDDATA;
279 }
280 
281 static int channel_reorder_vorbis(int nb_channels, int channel_idx)
282 {
283  return ff_vorbis_channel_layout_offsets[nb_channels - 1][channel_idx];
284 }
285 
286 static int channel_reorder_unknown(int nb_channels, int channel_idx)
287 {
288  return channel_idx;
289 }
290 
292  OpusContext *s)
293 {
294  static const uint8_t default_channel_map[2] = { 0, 1 };
295 
296  int (*channel_reorder)(int, int) = channel_reorder_unknown;
297 
298  const uint8_t *extradata, *channel_map;
299  int extradata_size;
300  int version, channels, map_type, streams, stereo_streams, i, j;
301  uint64_t layout;
302 
303  if (!avctx->extradata) {
304  if (avctx->channels > 2) {
305  av_log(avctx, AV_LOG_ERROR,
306  "Multichannel configuration without extradata.\n");
307  return AVERROR(EINVAL);
308  }
309  extradata = opus_default_extradata;
310  extradata_size = sizeof(opus_default_extradata);
311  } else {
312  extradata = avctx->extradata;
313  extradata_size = avctx->extradata_size;
314  }
315 
316  if (extradata_size < 19) {
317  av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
318  extradata_size);
319  return AVERROR_INVALIDDATA;
320  }
321 
322  version = extradata[8];
323  if (version > 15) {
324  avpriv_request_sample(avctx, "Extradata version %d", version);
325  return AVERROR_PATCHWELCOME;
326  }
327 
328  avctx->delay = AV_RL16(extradata + 10);
329 
330  channels = avctx->extradata ? extradata[9] : (avctx->channels == 1) ? 1 : 2;
331  if (!channels) {
332  av_log(avctx, AV_LOG_ERROR, "Zero channel count specified in the extradata\n");
333  return AVERROR_INVALIDDATA;
334  }
335 
336  s->gain_i = AV_RL16(extradata + 16);
337  if (s->gain_i)
338  s->gain = ff_exp10(s->gain_i / (20.0 * 256));
339 
340  map_type = extradata[18];
341  if (!map_type) {
342  if (channels > 2) {
343  av_log(avctx, AV_LOG_ERROR,
344  "Channel mapping 0 is only specified for up to 2 channels\n");
345  return AVERROR_INVALIDDATA;
346  }
347  layout = (channels == 1) ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
348  streams = 1;
349  stereo_streams = channels - 1;
350  channel_map = default_channel_map;
351  } else if (map_type == 1 || map_type == 2 || map_type == 255) {
352  if (extradata_size < 21 + channels) {
353  av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
354  extradata_size);
355  return AVERROR_INVALIDDATA;
356  }
357 
358  streams = extradata[19];
359  stereo_streams = extradata[20];
360  if (!streams || stereo_streams > streams ||
361  streams + stereo_streams > 255) {
362  av_log(avctx, AV_LOG_ERROR,
363  "Invalid stream/stereo stream count: %d/%d\n", streams, stereo_streams);
364  return AVERROR_INVALIDDATA;
365  }
366 
367  if (map_type == 1) {
368  if (channels > 8) {
369  av_log(avctx, AV_LOG_ERROR,
370  "Channel mapping 1 is only specified for up to 8 channels\n");
371  return AVERROR_INVALIDDATA;
372  }
373  layout = ff_vorbis_channel_layouts[channels - 1];
374  channel_reorder = channel_reorder_vorbis;
375  } else if (map_type == 2) {
376  int ambisonic_order = ff_sqrt(channels) - 1;
377  if (channels != ((ambisonic_order + 1) * (ambisonic_order + 1)) &&
378  channels != ((ambisonic_order + 1) * (ambisonic_order + 1) + 2)) {
379  av_log(avctx, AV_LOG_ERROR,
380  "Channel mapping 2 is only specified for channel counts"
381  " which can be written as (n + 1)^2 or (n + 1)^2 + 2"
382  " for nonnegative integer n\n");
383  return AVERROR_INVALIDDATA;
384  }
385  if (channels > 227) {
386  av_log(avctx, AV_LOG_ERROR, "Too many channels\n");
387  return AVERROR_INVALIDDATA;
388  }
389  layout = 0;
390  } else
391  layout = 0;
392 
393  channel_map = extradata + 21;
394  } else {
395  avpriv_request_sample(avctx, "Mapping type %d", map_type);
396  return AVERROR_PATCHWELCOME;
397  }
398 
399  s->channel_maps = av_mallocz_array(channels, sizeof(*s->channel_maps));
400  if (!s->channel_maps)
401  return AVERROR(ENOMEM);
402 
403  for (i = 0; i < channels; i++) {
404  ChannelMap *map = &s->channel_maps[i];
405  uint8_t idx = channel_map[channel_reorder(channels, i)];
406 
407  if (idx == 255) {
408  map->silence = 1;
409  continue;
410  } else if (idx >= streams + stereo_streams) {
411  av_log(avctx, AV_LOG_ERROR,
412  "Invalid channel map for output channel %d: %d\n", i, idx);
413  av_freep(&s->channel_maps);
414  return AVERROR_INVALIDDATA;
415  }
416 
417  /* check that we did not see this index yet */
418  map->copy = 0;
419  for (j = 0; j < i; j++)
420  if (channel_map[channel_reorder(channels, j)] == idx) {
421  map->copy = 1;
422  map->copy_idx = j;
423  break;
424  }
425 
426  if (idx < 2 * stereo_streams) {
427  map->stream_idx = idx / 2;
428  map->channel_idx = idx & 1;
429  } else {
430  map->stream_idx = idx - stereo_streams;
431  map->channel_idx = 0;
432  }
433  }
434 
435  avctx->channels = channels;
436  avctx->channel_layout = layout;
437  s->nb_streams = streams;
438  s->nb_stereo_streams = stereo_streams;
439 
440  return 0;
441 }
442 
444 {
445  float lowband_scratch[8 * 22];
446  float norm1[2 * 8 * 100];
447  float *norm2 = norm1 + 8 * 100;
448 
449  int totalbits = (f->framebits << 3) - f->anticollapse_needed;
450 
451  int update_lowband = 1;
452  int lowband_offset = 0;
453 
454  int i, j;
455 
456  for (i = f->start_band; i < f->end_band; i++) {
457  uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
458  int band_offset = ff_celt_freq_bands[i] << f->size;
459  int band_size = ff_celt_freq_range[i] << f->size;
460  float *X = f->block[0].coeffs + band_offset;
461  float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
462  float *norm_loc1, *norm_loc2;
463 
464  int consumed = opus_rc_tell_frac(rc);
465  int effective_lowband = -1;
466  int b = 0;
467 
468  /* Compute how many bits we want to allocate to this band */
469  if (i != f->start_band)
470  f->remaining -= consumed;
471  f->remaining2 = totalbits - consumed - 1;
472  if (i <= f->coded_bands - 1) {
473  int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
474  b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
475  }
476 
478  i == f->start_band + 1) && (update_lowband || lowband_offset == 0))
479  lowband_offset = i;
480 
481  if (i == f->start_band + 1) {
482  /* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into
483  the second to ensure the second band never has to use the LCG. */
484  int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size;
485 
486  memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float));
487 
488  if (f->channels == 2)
489  memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float));
490  }
491 
492  /* Get a conservative estimate of the collapse_mask's for the bands we're
493  going to be folding from. */
494  if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
495  f->blocks > 1 || f->tf_change[i] < 0)) {
496  int foldstart, foldend;
497 
498  /* This ensures we never repeat spectral content within one band */
499  effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
500  ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
501  foldstart = lowband_offset;
502  while (ff_celt_freq_bands[--foldstart] > effective_lowband);
503  foldend = lowband_offset - 1;
504  while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]);
505 
506  cm[0] = cm[1] = 0;
507  for (j = foldstart; j < foldend; j++) {
508  cm[0] |= f->block[0].collapse_masks[j];
509  cm[1] |= f->block[f->channels - 1].collapse_masks[j];
510  }
511  }
512 
513  if (f->dual_stereo && i == f->intensity_stereo) {
514  /* Switch off dual stereo to do intensity */
515  f->dual_stereo = 0;
516  for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
517  norm1[j] = (norm1[j] + norm2[j]) / 2;
518  }
519 
520  norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL;
521  norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL;
522 
523  if (f->dual_stereo) {
524  cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1,
525  f->blocks, norm_loc1, f->size,
526  norm1 + band_offset, 0, 1.0f,
527  lowband_scratch, cm[0]);
528 
529  cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1,
530  f->blocks, norm_loc2, f->size,
531  norm2 + band_offset, 0, 1.0f,
532  lowband_scratch, cm[1]);
533  } else {
534  cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, Y, band_size, b >> 0,
535  f->blocks, norm_loc1, f->size,
536  norm1 + band_offset, 0, 1.0f,
537  lowband_scratch, cm[0] | cm[1]);
538  cm[1] = cm[0];
539  }
540 
541  f->block[0].collapse_masks[i] = (uint8_t)cm[0];
542  f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
543  f->remaining += f->pulses[i] + consumed;
544 
545  /* Update the folding position only as long as we have 1 bit/sample depth */
546  update_lowband = (b > band_size << 3);
547  }
548 }
549 
550 #define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2)
551 
553 {
554  int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
555  int skip_startband = f->start_band;
556  int skip_bit = 0;
557  int intensitystereo_bit = 0;
558  int dualstereo_bit = 0;
559  int dynalloc = 6;
560  int extrabits = 0;
561 
562  int boost[CELT_MAX_BANDS] = { 0 };
563  int trim_offset[CELT_MAX_BANDS];
564  int threshold[CELT_MAX_BANDS];
565  int bits1[CELT_MAX_BANDS];
566  int bits2[CELT_MAX_BANDS];
567 
568  /* Spread */
569  if (opus_rc_tell(rc) + 4 <= f->framebits) {
570  if (encode)
572  else
574  } else {
576  }
577 
578  /* Initialize static allocation caps */
579  for (i = 0; i < CELT_MAX_BANDS; i++)
580  f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]);
581 
582  /* Band boosts */
583  tbits_8ths = f->framebits << 3;
584  for (i = f->start_band; i < f->end_band; i++) {
585  int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
586  int b_dynalloc = dynalloc;
587  int boost_amount = f->alloc_boost[i];
588  quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
589 
590  while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) {
591  int is_boost;
592  if (encode) {
593  is_boost = boost_amount--;
594  ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
595  } else {
596  is_boost = ff_opus_rc_dec_log(rc, b_dynalloc);
597  }
598 
599  if (!is_boost)
600  break;
601 
602  boost[i] += quanta;
603  tbits_8ths -= quanta;
604 
605  b_dynalloc = 1;
606  }
607 
608  if (boost[i])
609  dynalloc = FFMAX(dynalloc - 1, 2);
610  }
611 
612  /* Allocation trim */
613  if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
614  if (encode)
616  else
618 
619  /* Anti-collapse bit reservation */
620  tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
621  f->anticollapse_needed = 0;
622  if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
623  f->anticollapse_needed = 1 << 3;
624  tbits_8ths -= f->anticollapse_needed;
625 
626  /* Band skip bit reservation */
627  if (tbits_8ths >= 1 << 3)
628  skip_bit = 1 << 3;
629  tbits_8ths -= skip_bit;
630 
631  /* Intensity/dual stereo bit reservation */
632  if (f->channels == 2) {
633  intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
634  if (intensitystereo_bit <= tbits_8ths) {
635  tbits_8ths -= intensitystereo_bit;
636  if (tbits_8ths >= 1 << 3) {
637  dualstereo_bit = 1 << 3;
638  tbits_8ths -= 1 << 3;
639  }
640  } else {
641  intensitystereo_bit = 0;
642  }
643  }
644 
645  /* Trim offsets */
646  for (i = f->start_band; i < f->end_band; i++) {
647  int trim = f->alloc_trim - 5 - f->size;
648  int band = ff_celt_freq_range[i] * (f->end_band - i - 1);
649  int duration = f->size + 3;
650  int scale = duration + f->channels - 1;
651 
652  /* PVQ minimum allocation threshold, below this value the band is
653  * skipped */
654  threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
655  f->channels << 3);
656 
657  trim_offset[i] = trim * (band << scale) >> 6;
658 
659  if (ff_celt_freq_range[i] << f->size == 1)
660  trim_offset[i] -= f->channels << 3;
661  }
662 
663  /* Bisection */
664  low = 1;
665  high = CELT_VECTORS - 1;
666  while (low <= high) {
667  int center = (low + high) >> 1;
668  done = total = 0;
669 
670  for (i = f->end_band - 1; i >= f->start_band; i--) {
671  bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]);
672 
673  if (bandbits)
674  bandbits = FFMAX(bandbits + trim_offset[i], 0);
675  bandbits += boost[i];
676 
677  if (bandbits >= threshold[i] || done) {
678  done = 1;
679  total += FFMIN(bandbits, f->caps[i]);
680  } else if (bandbits >= f->channels << 3) {
681  total += f->channels << 3;
682  }
683  }
684 
685  if (total > tbits_8ths)
686  high = center - 1;
687  else
688  low = center + 1;
689  }
690  high = low--;
691 
692  /* Bisection */
693  for (i = f->start_band; i < f->end_band; i++) {
694  bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]);
695  bits2[i] = high >= CELT_VECTORS ? f->caps[i] :
697 
698  if (bits1[i])
699  bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0);
700  if (bits2[i])
701  bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0);
702 
703  if (low)
704  bits1[i] += boost[i];
705  bits2[i] += boost[i];
706 
707  if (boost[i])
708  skip_startband = i;
709  bits2[i] = FFMAX(bits2[i] - bits1[i], 0);
710  }
711 
712  /* Bisection */
713  low = 0;
714  high = 1 << CELT_ALLOC_STEPS;
715  for (i = 0; i < CELT_ALLOC_STEPS; i++) {
716  int center = (low + high) >> 1;
717  done = total = 0;
718 
719  for (j = f->end_band - 1; j >= f->start_band; j--) {
720  bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
721 
722  if (bandbits >= threshold[j] || done) {
723  done = 1;
724  total += FFMIN(bandbits, f->caps[j]);
725  } else if (bandbits >= f->channels << 3)
726  total += f->channels << 3;
727  }
728  if (total > tbits_8ths)
729  high = center;
730  else
731  low = center;
732  }
733 
734  /* Bisection */
735  done = total = 0;
736  for (i = f->end_band - 1; i >= f->start_band; i--) {
737  bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
738 
739  if (bandbits >= threshold[i] || done)
740  done = 1;
741  else
742  bandbits = (bandbits >= f->channels << 3) ?
743  f->channels << 3 : 0;
744 
745  bandbits = FFMIN(bandbits, f->caps[i]);
746  f->pulses[i] = bandbits;
747  total += bandbits;
748  }
749 
750  /* Band skipping */
751  for (f->coded_bands = f->end_band; ; f->coded_bands--) {
752  int allocation;
753  j = f->coded_bands - 1;
754 
755  if (j == skip_startband) {
756  /* all remaining bands are not skipped */
757  tbits_8ths += skip_bit;
758  break;
759  }
760 
761  /* determine the number of bits available for coding "do not skip" markers */
762  remaining = tbits_8ths - total;
763  bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
764  remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
765  allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j];
766  allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0);
767 
768  /* a "do not skip" marker is only coded if the allocation is
769  * above the chosen threshold */
770  if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
771  int do_not_skip;
772  if (encode) {
773  do_not_skip = f->coded_bands <= f->skip_band_floor;
774  ff_opus_rc_enc_log(rc, do_not_skip, 1);
775  } else {
776  do_not_skip = ff_opus_rc_dec_log(rc, 1);
777  }
778 
779  if (do_not_skip)
780  break;
781 
782  total += 1 << 3;
783  allocation -= 1 << 3;
784  }
785 
786  /* the band is skipped, so reclaim its bits */
787  total -= f->pulses[j];
788  if (intensitystereo_bit) {
789  total -= intensitystereo_bit;
790  intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
791  total += intensitystereo_bit;
792  }
793 
794  total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
795  }
796 
797  /* IS start band */
798  if (encode) {
799  if (intensitystereo_bit) {
802  }
803  } else {
804  f->intensity_stereo = f->dual_stereo = 0;
805  if (intensitystereo_bit)
807  }
808 
809  /* DS flag */
810  if (f->intensity_stereo <= f->start_band)
811  tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
812  else if (dualstereo_bit)
813  if (encode)
814  ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
815  else
816  f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
817 
818  /* Supply the remaining bits in this frame to lower bands */
819  remaining = tbits_8ths - total;
820  bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
821  remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
822  for (i = f->start_band; i < f->coded_bands; i++) {
823  const int bits = FFMIN(remaining, ff_celt_freq_range[i]);
824  f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
825  remaining -= bits;
826  }
827 
828  /* Finally determine the allocation */
829  for (i = f->start_band; i < f->coded_bands; i++) {
830  int N = ff_celt_freq_range[i] << f->size;
831  int prev_extra = extrabits;
832  f->pulses[i] += extrabits;
833 
834  if (N > 1) {
835  int dof; /* degrees of freedom */
836  int temp; /* dof * channels * log(dof) */
837  int fine_bits;
838  int max_bits;
839  int offset; /* fine energy quantization offset, i.e.
840  * extra bits assigned over the standard
841  * totalbits/dof */
842 
843  extrabits = FFMAX(f->pulses[i] - f->caps[i], 0);
844  f->pulses[i] -= extrabits;
845 
846  /* intensity stereo makes use of an extra degree of freedom */
847  dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
848  temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
849  offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
850  if (N == 2) /* dof=2 is the only case that doesn't fit the model */
851  offset += dof << 1;
852 
853  /* grant an additional bias for the first and second pulses */
854  if (f->pulses[i] + offset < 2 * (dof << 3))
855  offset += temp >> 2;
856  else if (f->pulses[i] + offset < 3 * (dof << 3))
857  offset += temp >> 3;
858 
859  fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
860  max_bits = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
861  max_bits = FFMAX(max_bits, 0);
862  f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
863 
864  /* If fine_bits was rounded down or capped,
865  * give priority for the final fine energy pass */
866  f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);
867 
868  /* the remaining bits are assigned to PVQ */
869  f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
870  } else {
871  /* all bits go to fine energy except for the sign bit */
872  extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0);
873  f->pulses[i] -= extrabits;
874  f->fine_bits[i] = 0;
875  f->fine_priority[i] = 1;
876  }
877 
878  /* hand back a limited number of extra fine energy bits to this band */
879  if (extrabits > 0) {
880  int fineextra = FFMIN(extrabits >> (f->channels + 2),
881  CELT_MAX_FINE_BITS - f->fine_bits[i]);
882  f->fine_bits[i] += fineextra;
883 
884  fineextra <<= f->channels + 2;
885  f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
886  extrabits -= fineextra;
887  }
888  }
889  f->remaining = extrabits;
890 
891  /* skipped bands dedicate all of their bits for fine energy */
892  for (; i < f->end_band; i++) {
893  f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3;
894  f->pulses[i] = 0;
895  f->fine_priority[i] = f->fine_bits[i] < 1;
896  }
897 }
int channels
Definition: opus_celt.h:99
int ff_opus_parse_packet(OpusPacket *pkt, const uint8_t *buf, int buf_size, int self_delimiting)
Parse Opus packet info from raw packet data.
Definition: opus.c:90
static int channel_reorder_vorbis(int nb_channels, int channel_idx)
Definition: opus.c:281
#define NULL
Definition: coverity.c:32
const char const char void * val
Definition: avisynth_c.h:771
const char * s
Definition: avisynth_c.h:768
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define MAX_FRAME_SIZE
Definition: 8svx.c:60
int framebits
Definition: opus_celt.h:131
int frame_count
frame count
Definition: opus.h:92
int nb_stereo_streams
Definition: opus.h:167
const uint8_t ff_celt_log_freq_range[]
Definition: opustab.c:771
static int channel_reorder_unknown(int nb_channels, int channel_idx)
Definition: opus.c:286
int remaining2
Definition: opus_celt.h:133
float coeffs[CELT_MAX_FRAME_SIZE]
Definition: opus_celt.h:75
else temp
Definition: vf_mcdeint.c:256
channels
Definition: aptx.c:30
const uint8_t ff_celt_freq_bands[]
Definition: opustab.c:763
float gain
Definition: opus.h:171
const char * b
Definition: vf_curves.c:113
void ff_opus_rc_enc_log(OpusRangeCoder *rc, int val, uint32_t bits)
Definition: opus_rc.c:131
uint32_t ff_opus_rc_dec_log(OpusRangeCoder *rc, uint32_t bits)
Definition: opus_rc.c:114
int version
Definition: avisynth_c.h:766
static AVPacket pkt
#define AV_CH_LAYOUT_STEREO
uint64_t_TMPL AV_WL64 unsigned int_TMPL AV_WL32 unsigned int_TMPL AV_WL24 unsigned int_TMPL AV_RL16
Definition: bytestream.h:87
int vbr
vbr flag
Definition: opus.h:89
#define MAX_PACKET_DUR
Definition: opus.h:39
#define N
Definition: af_mcompand.c:54
const int * channel_map
channel index (or -1 if muted channel) map
int16_t gain_i
Definition: opus.h:170
void ff_opus_rc_enc_uint(OpusRangeCoder *rc, uint32_t val, uint32_t size)
CELT: write a uniformly distributed integer.
Definition: opus_rc.c:204
int fine_priority[CELT_MAX_BANDS]
Definition: opus_celt.h:136
CeltBlock block[2]
Definition: opus_celt.h:97
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
uint8_t
#define av_cold
Definition: attributes.h:82
#define Y
Definition: vf_boxblur.c:76
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
#define CELT_VECTORS
Definition: opus_celt.h:36
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1603
int copy
Definition: opus.h:144
int64_t duration
Definition: movenc.c:63
int dual_stereo
Definition: opus_celt.h:119
static const uint8_t bits2[81]
Definition: aactab.c:140
int coded_bands
Definition: opus_celt.h:106
int skip_band_floor
Definition: opus_celt.h:109
#define av_log(a,...)
#define cm
Definition: dvbsubdec.c:37
#define ff_sqrt
Definition: mathops.h:206
int end_band
Definition: opus_celt.h:105
ChannelMap * channel_maps
Definition: opus.h:173
int nb_streams
Definition: opus.h:166
static const uint8_t opus_default_extradata[30]
Definition: opus.h:56
const uint8_t ff_celt_log2_frac[]
Definition: opustab.c:925
int alloc_boost[CELT_MAX_BANDS]
Definition: opus_celt.h:112
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
Definition: ffmath.h:42
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
error code definitions
#define AVERROR(e)
Definition: error.h:43
int start_band
Definition: opus_celt.h:104
int tf_change[CELT_MAX_BANDS]
Definition: opus_celt.h:138
int pulses[CELT_MAX_BANDS]
Definition: opus_celt.h:137
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
GLsizei count
Definition: opengl_enc.c:109
#define FFMAX(a, b)
Definition: common.h:94
int anticollapse_needed
Definition: opus_celt.h:116
int fine_bits[CELT_MAX_BANDS]
Definition: opus_celt.h:135
#define fail()
Definition: checkasm.h:114
uint32_t ff_opus_rc_dec_cdf(OpusRangeCoder *rc, const uint16_t *cdf)
Definition: opus_rc.c:90
uint64_t channel_layout
Audio channel layout.
Definition: avcodec.h:2209
int caps[CELT_MAX_BANDS]
Definition: opus_celt.h:134
QUANT_FN * quant_band
Definition: opus_pvq.h:40
int frame_size[MAX_FRAMES]
frame sizes
Definition: opus.h:94
#define FFMIN(a, b)
Definition: common.h:96
int frame_duration
frame duration, in samples @ 48kHz
Definition: opus.h:95
int blocks
Definition: opus_celt.h:113
int transient
Definition: opus_celt.h:107
#define CELT_FINE_OFFSET
Definition: opus_celt.h:38
const uint8_t ff_celt_freq_range[]
Definition: opustab.c:767
void ff_opus_rc_enc_cdf(OpusRangeCoder *rc, int val, const uint16_t *cdf)
Definition: opus_rc.c:109
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int silence
Definition: opus.h:149
const uint8_t ff_celt_static_caps[4][2][21]
Definition: opustab.c:861
static int xiph_lacing_16bit(const uint8_t **ptr, const uint8_t *end)
Read a 1- or 2-byte frame length.
Definition: opus.c:51
#define CELT_MAX_BANDS
Definition: opus.h:45
static int xiph_lacing_full(const uint8_t **ptr, const uint8_t *end)
Read a multi-byte length (used for code 3 packet padding size)
Definition: opus.c:69
const uint16_t ff_celt_model_spread[]
Definition: opustab.c:755
main external API structure.
Definition: avcodec.h:1503
const uint64_t ff_vorbis_channel_layouts[9]
Definition: vorbis_data.c:47
static av_always_inline uint32_t opus_rc_tell(const OpusRangeCoder *rc)
CELT: estimate bits of entropy that have thus far been consumed for the current CELT frame...
Definition: opus_rc.h:61
#define CELT_MAX_FINE_BITS
Definition: opus_celt.h:39
static void encode(AVCodecContext *ctx, AVFrame *frame, AVPacket *pkt, FILE *output)
Definition: encode_audio.c:95
void * buf
Definition: avisynth_c.h:690
int extradata_size
Definition: avcodec.h:1604
int config
configuration: tells the audio mode, bandwidth, and frame duration
Definition: opus.h:90
enum OpusMode mode
mode
Definition: opus.h:96
const uint8_t ff_celt_static_alloc[11][21]
Definition: opustab.c:847
#define NORMC(bits)
Definition: opus.c:550
int copy_idx
Definition: opus.h:146
void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode)
Definition: opus.c:552
CeltPVQ * pvq
Definition: opus_celt.h:98
const VDPAUPixFmtMap * map
int stereo
whether this packet is mono or stereo
Definition: opus.h:88
int data_size
size of the useful data – packet size - padding
Definition: opus.h:86
int channel_idx
Definition: opus.h:139
#define MAX_FRAMES
Definition: diracdec.c:52
const uint16_t ff_celt_model_alloc_trim[]
Definition: opustab.c:757
int remaining
Definition: opus_celt.h:132
internal math functions header
int
int stream_idx
Definition: opus.h:138
if(ret< 0)
Definition: vf_mcdeint.c:279
static const uint16_t opus_frame_duration[32]
Definition: opus.c:36
#define CELT_ALLOC_STEPS
Definition: opus_celt.h:37
enum CeltSpread spread
Definition: opus_celt.h:122
int packet_size
packet size
Definition: opus.h:85
int len
int channels
number of audio channels
Definition: avcodec.h:2159
int frame_offset[MAX_FRAMES]
frame offsets
Definition: opus.h:93
enum OpusBandwidth bandwidth
bandwidth
Definition: opus.h:97
uint64_t layout
uint32_t ff_opus_rc_dec_uint(OpusRangeCoder *rc, uint32_t size)
CELT: read a uniform distribution.
Definition: opus_rc.c:182
av_cold int ff_opus_parse_extradata(AVCodecContext *avctx, OpusContext *s)
Definition: opus.c:291
#define av_freep(p)
enum CeltBlockSize size
Definition: opus_celt.h:103
int alloc_trim
Definition: opus_celt.h:111
int nb_channels
const uint8_t ff_vorbis_channel_layout_offsets[8][8]
Definition: vorbis_data.c:25
int code
packet code: specifies the frame layout
Definition: opus.h:87
#define AV_CH_LAYOUT_MONO
uint8_t collapse_masks[CELT_MAX_BANDS]
Definition: opus_celt.h:71
int delay
Codec delay.
Definition: avcodec.h:1658
for(j=16;j >0;--j)
int intensity_stereo
Definition: opus_celt.h:118
void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc)
Definition: opus.c:443
static const uint8_t bits1[81]
Definition: aactab.c:117
void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.c:191
static av_always_inline uint32_t opus_rc_tell_frac(const OpusRangeCoder *rc)
Definition: opus_rc.h:66