FFmpeg
vf_deshake_opencl.c
Go to the documentation of this file.
1 /*
2  * This file is part of FFmpeg.
3  *
4  * FFmpeg is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU Lesser General Public
6  * License as published by the Free Software Foundation; either
7  * version 2.1 of the License, or (at your option) any later version.
8  *
9  * FFmpeg is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * Lesser General Public License for more details.
13  *
14  * You should have received a copy of the GNU Lesser General Public
15  * License along with FFmpeg; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17  *
18  * Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
19  * Copyright (C) 2009, Willow Garage Inc., all rights reserved.
20  * Copyright (C) 2013, OpenCV Foundation, all rights reserved.
21  * Third party copyrights are property of their respective owners.
22  *
23  * Redistribution and use in source and binary forms, with or without modification,
24  * are permitted provided that the following conditions are met:
25  *
26  * * Redistribution's of source code must retain the above copyright notice,
27  * this list of conditions and the following disclaimer.
28  *
29  * * Redistribution's in binary form must reproduce the above copyright notice,
30  * this list of conditions and the following disclaimer in the documentation
31  * and/or other materials provided with the distribution.
32  *
33  * * The name of the copyright holders may not be used to endorse or promote products
34  * derived from this software without specific prior written permission.
35  *
36  * This software is provided by the copyright holders and contributors "as is" and
37  * any express or implied warranties, including, but not limited to, the implied
38  * warranties of merchantability and fitness for a particular purpose are disclaimed.
39  * In no event shall the Intel Corporation or contributors be liable for any direct,
40  * indirect, incidental, special, exemplary, or consequential damages
41  * (including, but not limited to, procurement of substitute goods or services;
42  * loss of use, data, or profits; or business interruption) however caused
43  * and on any theory of liability, whether in contract, strict liability,
44  * or tort (including negligence or otherwise) arising in any way out of
45  * the use of this software, even if advised of the possibility of such damage.
46  */
47 
48 #include <stdbool.h>
49 #include <float.h>
50 #include <libavutil/lfg.h>
51 #include "libavutil/opt.h"
52 #include "libavutil/imgutils.h"
53 #include "libavutil/mem.h"
54 #include "libavutil/fifo.h"
55 #include "libavutil/common.h"
56 #include "libavutil/avassert.h"
57 #include "libavutil/pixfmt.h"
58 #include "avfilter.h"
59 #include "framequeue.h"
60 #include "filters.h"
61 #include "transform.h"
62 #include "formats.h"
63 #include "internal.h"
64 #include "opencl.h"
65 #include "opencl_source.h"
66 #include "video.h"
67 
68 /*
69 This filter matches feature points between frames (dealing with outliers) and then
70 uses the matches to estimate an affine transform between frames. This transform is
71 decomposed into various values (translation, scale, rotation) and the values are
72 summed relative to the start of the video to obtain on absolute camera position
73 for each frame. This "camera path" is then smoothed via a gaussian filter, resulting
74 in a new path that is turned back into an affine transform and applied to each
75 frame to render it.
76 
77 High-level overview:
78 
79 All of the work to extract motion data from frames occurs in queue_frame. Motion data
80 is buffered in a smoothing window, so queue_frame simply computes the absolute camera
81 positions and places them in ringbuffers.
82 
83 filter_frame is responsible for looking at the absolute camera positions currently
84 in the ringbuffers, applying the gaussian filter, and then transforming the frames.
85 */
86 
87 // Number of bits for BRIEF descriptors
88 #define BREIFN 512
89 // Size of the patch from which a BRIEF descriptor is extracted
90 // This is the size used in OpenCV
91 #define BRIEF_PATCH_SIZE 31
92 #define BRIEF_PATCH_SIZE_HALF (BRIEF_PATCH_SIZE / 2)
93 
94 #define MATCHES_CONTIG_SIZE 2000
95 
96 #define ROUNDED_UP_DIV(a, b) ((a + (b - 1)) / b)
97 
98 typedef struct PointPair {
99  // Previous frame
100  cl_float2 p1;
101  // Current frame
102  cl_float2 p2;
103 } PointPair;
104 
105 typedef struct MotionVector {
107  // Used to mark vectors as potential outliers
109 } MotionVector;
110 
111 // Denotes the indices for the different types of motion in the ringbuffers array
118 
119  // Should always be last
121 };
122 
123 // Struct that holds data for drawing point match debug data
124 typedef struct DebugMatches {
126  // The points used to calculate the affine transform for a frame
127  MotionVector model_matches[3];
128 
130  // For cases where we couldn't calculate a model
132 } DebugMatches;
133 
134 // Groups together the ringbuffers that store absolute distortion / position values
135 // for each frame
136 typedef struct AbsoluteFrameMotion {
137  // Array with the various ringbuffers, indexed via the RingbufferIndices enum
138  AVFifoBuffer *ringbuffers[RingbufCount];
139 
140  // Offset to get to the current frame being processed
141  // (not in bytes)
143  // Keeps track of where the start and end of contiguous motion data is (to
144  // deal with cases where no motion data is found between two frames)
147 
150 
151 // Takes care of freeing the arrays within the DebugMatches inside of the
152 // debug_matches ringbuffer and then freeing the buffer itself.
154  DebugMatches dm;
155 
156  if (!afm->debug_matches) {
157  return;
158  }
159 
160  while (av_fifo_size(afm->debug_matches) > 0) {
162  afm->debug_matches,
163  &dm,
164  sizeof(DebugMatches),
165  NULL
166  );
167 
168  av_freep(&dm.matches);
169  }
170 
172 }
173 
174 // Stores the translation, scale, rotation, and skew deltas between two frames
175 typedef struct FrameDelta {
176  cl_float2 translation;
177  float rotation;
178  cl_float2 scale;
179  cl_float2 skew;
180 } FrameDelta;
181 
182 typedef struct SimilarityMatrix {
183  // The 2x3 similarity matrix
184  double matrix[6];
186 
187 typedef struct CropInfo {
188  // The top left corner of the bounding box for the crop
189  cl_float2 top_left;
190  // The bottom right corner of the bounding box for the crop
191  cl_float2 bottom_right;
192 } CropInfo;
193 
194 // Returned from function that determines start and end values for iteration
195 // around the current frame in a ringbuffer
196 typedef struct IterIndices {
197  int start;
198  int end;
199 } IterIndices;
200 
201 typedef struct DeshakeOpenCLContext {
203  // Whether or not the above `OpenCLFilterContext` has been initialized
205 
206  // These variables are used in the activate callback
207  int64_t duration;
208  bool eof;
209 
210  // State for random number generation
212 
213  // FIFO frame queue used to buffer future frames for processing
215  // Ringbuffers for frame positions
217 
218  // The number of frames' motion to consider before and after the frame we are
219  // smoothing
221  // The number of the frame we are currently processing
223 
224  // Stores a 1d array of normalised gaussian kernel values for convolution
225  float *gauss_kernel;
226 
227  // Buffer for error values used in RANSAC code
228  float *ransac_err;
229 
230  // Information regarding how to crop the smoothed luminance (or RGB) planes
232  // Information regarding how to crop the smoothed chroma planes
234 
235  // Whether or not we are processing YUV input (as oppposed to RGB)
236  bool is_yuv;
237  // The underlying format of the hardware surfaces
239 
240  // Buffer to copy `matches` into for the CPU to work with
243 
245 
246  cl_command_queue command_queue;
247  cl_kernel kernel_grayscale;
252  cl_kernel kernel_transform;
254 
255  // Stores a frame converted to grayscale
256  cl_mem grayscale;
257  // Stores the harris response for a frame (measure of "cornerness" for each pixel)
258  cl_mem harris_buf;
259 
260  // Detected features after non-maximum suppression and sub-pixel refinement
262  // Saved from the previous frame
264 
265  // BRIEF sampling pattern that is randomly initialized
267  // Feature point descriptors for the current frame
268  cl_mem descriptors;
269  // Feature point descriptors for the previous frame
271  // Vectors between points in current and previous frame
272  cl_mem matches;
274  // Holds the matrix to transform luminance (or RGB) with
275  cl_mem transform_y;
276  // Holds the matrix to transform chroma with
277  cl_mem transform_uv;
278 
279  // Configurable options
280 
282  int debug_on;
284 
285  // Whether or not feature points should be refined at a sub-pixel level
287  // If the user sets a value other than the default, 0, this percentage is
288  // translated into a sigma value ranging from 0.5 to 40.0
290  // This number is multiplied by the video frame rate to determine the size
291  // of the smooth window
293 
294  // Debug stuff
295 
299 
300  // These store the total time spent executing the different kernels in nanoseconds
301  unsigned long long grayscale_time;
302  unsigned long long harris_response_time;
303  unsigned long long refine_features_time;
304  unsigned long long brief_descriptors_time;
305  unsigned long long match_descriptors_time;
306  unsigned long long transform_time;
307  unsigned long long crop_upscale_time;
308 
309  // Time spent copying matched features from the device to the host
310  unsigned long long read_buf_time;
312 
313 // Returns a random uniformly-distributed number in [low, high]
314 static int rand_in(int low, int high, AVLFG *alfg) {
315  return (av_lfg_get(alfg) % (high - low)) + low;
316 }
317 
318 // Returns the average execution time for an event given the total time and the
319 // number of frames processed.
320 static double averaged_event_time_ms(unsigned long long total_time, int num_frames) {
321  return (double)total_time / (double)num_frames / 1000000.0;
322 }
323 
324 // The following code is loosely ported from OpenCV
325 
326 // Estimates affine transform from 3 point pairs
327 // model is a 2x3 matrix:
328 // a b c
329 // d e f
330 static void run_estimate_kernel(const MotionVector *point_pairs, double *model)
331 {
332  // src points
333  double x1 = point_pairs[0].p.p1.s[0];
334  double y1 = point_pairs[0].p.p1.s[1];
335  double x2 = point_pairs[1].p.p1.s[0];
336  double y2 = point_pairs[1].p.p1.s[1];
337  double x3 = point_pairs[2].p.p1.s[0];
338  double y3 = point_pairs[2].p.p1.s[1];
339 
340  // dest points
341  double X1 = point_pairs[0].p.p2.s[0];
342  double Y1 = point_pairs[0].p.p2.s[1];
343  double X2 = point_pairs[1].p.p2.s[0];
344  double Y2 = point_pairs[1].p.p2.s[1];
345  double X3 = point_pairs[2].p.p2.s[0];
346  double Y3 = point_pairs[2].p.p2.s[1];
347 
348  double d = 1.0 / ( x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2) );
349 
350  model[0] = d * ( X1*(y2-y3) + X2*(y3-y1) + X3*(y1-y2) );
351  model[1] = d * ( X1*(x3-x2) + X2*(x1-x3) + X3*(x2-x1) );
352  model[2] = d * ( X1*(x2*y3 - x3*y2) + X2*(x3*y1 - x1*y3) + X3*(x1*y2 - x2*y1) );
353 
354  model[3] = d * ( Y1*(y2-y3) + Y2*(y3-y1) + Y3*(y1-y2) );
355  model[4] = d * ( Y1*(x3-x2) + Y2*(x1-x3) + Y3*(x2-x1) );
356  model[5] = d * ( Y1*(x2*y3 - x3*y2) + Y2*(x3*y1 - x1*y3) + Y3*(x1*y2 - x2*y1) );
357 }
358 
359 // Checks that the 3 points in the given array are not collinear
360 static bool points_not_collinear(const cl_float2 **points)
361 {
362  int j, k, i = 2;
363 
364  for (j = 0; j < i; j++) {
365  double dx1 = points[j]->s[0] - points[i]->s[0];
366  double dy1 = points[j]->s[1] - points[i]->s[1];
367 
368  for (k = 0; k < j; k++) {
369  double dx2 = points[k]->s[0] - points[i]->s[0];
370  double dy2 = points[k]->s[1] - points[i]->s[1];
371 
372  // Assuming a 3840 x 2160 video with a point at (0, 0) and one at
373  // (3839, 2159), this prevents a third point from being within roughly
374  // 0.5 of a pixel of the line connecting the two on both axes
375  if (fabs(dx2*dy1 - dy2*dx1) <= 1.0) {
376  return false;
377  }
378  }
379  }
380 
381  return true;
382 }
383 
384 // Checks a subset of 3 point pairs to make sure that the points are not collinear
385 // and not too close to each other
386 static bool check_subset(const MotionVector *pairs_subset)
387 {
388  const cl_float2 *prev_points[] = {
389  &pairs_subset[0].p.p1,
390  &pairs_subset[1].p.p1,
391  &pairs_subset[2].p.p1
392  };
393 
394  const cl_float2 *curr_points[] = {
395  &pairs_subset[0].p.p2,
396  &pairs_subset[1].p.p2,
397  &pairs_subset[2].p.p2
398  };
399 
400  return points_not_collinear(prev_points) && points_not_collinear(curr_points);
401 }
402 
403 // Selects a random subset of 3 points from point_pairs and places them in pairs_subset
404 static bool get_subset(
405  AVLFG *alfg,
406  const MotionVector *point_pairs,
407  const int num_point_pairs,
408  MotionVector *pairs_subset,
409  int max_attempts
410 ) {
411  int idx[3];
412  int i = 0, j, iters = 0;
413 
414  for (; iters < max_attempts; iters++) {
415  for (i = 0; i < 3 && iters < max_attempts;) {
416  int idx_i = 0;
417 
418  for (;;) {
419  idx_i = idx[i] = rand_in(0, num_point_pairs, alfg);
420 
421  for (j = 0; j < i; j++) {
422  if (idx_i == idx[j]) {
423  break;
424  }
425  }
426 
427  if (j == i) {
428  break;
429  }
430  }
431 
432  pairs_subset[i] = point_pairs[idx[i]];
433  i++;
434  }
435 
436  if (i == 3 && !check_subset(pairs_subset)) {
437  continue;
438  }
439  break;
440  }
441 
442  return i == 3 && iters < max_attempts;
443 }
444 
445 // Computes the error for each of the given points based on the given model.
446 static void compute_error(
447  const MotionVector *point_pairs,
448  const int num_point_pairs,
449  const double *model,
450  float *err
451 ) {
452  double F0 = model[0], F1 = model[1], F2 = model[2];
453  double F3 = model[3], F4 = model[4], F5 = model[5];
454 
455  for (int i = 0; i < num_point_pairs; i++) {
456  const cl_float2 *f = &point_pairs[i].p.p1;
457  const cl_float2 *t = &point_pairs[i].p.p2;
458 
459  double a = F0*f->s[0] + F1*f->s[1] + F2 - t->s[0];
460  double b = F3*f->s[0] + F4*f->s[1] + F5 - t->s[1];
461 
462  err[i] = a*a + b*b;
463  }
464 }
465 
466 // Determines which of the given point matches are inliers for the given model
467 // based on the specified threshold.
468 //
469 // err must be an array of num_point_pairs length
470 static int find_inliers(
471  MotionVector *point_pairs,
472  const int num_point_pairs,
473  const double *model,
474  float *err,
475  double thresh
476 ) {
477  float t = (float)(thresh * thresh);
478  int i, n = num_point_pairs, num_inliers = 0;
479 
480  compute_error(point_pairs, num_point_pairs, model, err);
481 
482  for (i = 0; i < n; i++) {
483  if (err[i] <= t) {
484  // This is an inlier
485  point_pairs[i].should_consider = true;
486  num_inliers += 1;
487  } else {
488  point_pairs[i].should_consider = false;
489  }
490  }
491 
492  return num_inliers;
493 }
494 
495 // Determines the number of iterations required to achieve the desired confidence level.
496 //
497 // The equation used to determine the number of iterations to do is:
498 // 1 - confidence = (1 - inlier_probability^num_points)^num_iters
499 //
500 // Solving for num_iters:
501 //
502 // num_iters = log(1 - confidence) / log(1 - inlier_probability^num_points)
503 //
504 // A more in-depth explanation can be found at https://en.wikipedia.org/wiki/Random_sample_consensus
505 // under the 'Parameters' heading
506 static int ransac_update_num_iters(double confidence, double num_outliers, int max_iters)
507 {
508  double num, denom;
509 
510  confidence = av_clipd(confidence, 0.0, 1.0);
511  num_outliers = av_clipd(num_outliers, 0.0, 1.0);
512 
513  // avoid inf's & nan's
514  num = FFMAX(1.0 - confidence, DBL_MIN);
515  denom = 1.0 - pow(1.0 - num_outliers, 3);
516  if (denom < DBL_MIN) {
517  return 0;
518  }
519 
520  num = log(num);
521  denom = log(denom);
522 
523  return denom >= 0 || -num >= max_iters * (-denom) ? max_iters : (int)round(num / denom);
524 }
525 
526 // Estimates an affine transform between the given pairs of points using RANdom
527 // SAmple Consensus
528 static bool estimate_affine_2d(
529  DeshakeOpenCLContext *deshake_ctx,
530  MotionVector *point_pairs,
531  DebugMatches *debug_matches,
532  const int num_point_pairs,
533  double *model_out,
534  const double threshold,
535  const int max_iters,
536  const double confidence
537 ) {
538  bool result = false;
539  double best_model[6], model[6];
540  MotionVector pairs_subset[3], best_pairs[3];
541 
542  int iter, niters = FFMAX(max_iters, 1);
543  int good_count, max_good_count = 0;
544 
545  // We need at least 3 points to build a model from
546  if (num_point_pairs < 3) {
547  return false;
548  } else if (num_point_pairs == 3) {
549  // There are only 3 points, so RANSAC doesn't apply here
550  run_estimate_kernel(point_pairs, model_out);
551 
552  for (int i = 0; i < 3; ++i) {
553  point_pairs[i].should_consider = true;
554  }
555 
556  return true;
557  }
558 
559  for (iter = 0; iter < niters; ++iter) {
560  bool found = get_subset(&deshake_ctx->alfg, point_pairs, num_point_pairs, pairs_subset, 10000);
561 
562  if (!found) {
563  if (iter == 0) {
564  return false;
565  }
566 
567  break;
568  }
569 
570  run_estimate_kernel(pairs_subset, model);
571  good_count = find_inliers(point_pairs, num_point_pairs, model, deshake_ctx->ransac_err, threshold);
572 
573  if (good_count > FFMAX(max_good_count, 2)) {
574  for (int mi = 0; mi < 6; ++mi) {
575  best_model[mi] = model[mi];
576  }
577 
578  for (int pi = 0; pi < 3; pi++) {
579  best_pairs[pi] = pairs_subset[pi];
580  }
581 
582  max_good_count = good_count;
583  niters = ransac_update_num_iters(
584  confidence,
585  (double)(num_point_pairs - good_count) / num_point_pairs,
586  niters
587  );
588  }
589  }
590 
591  if (max_good_count > 0) {
592  for (int mi = 0; mi < 6; ++mi) {
593  model_out[mi] = best_model[mi];
594  }
595 
596  for (int pi = 0; pi < 3; ++pi) {
597  debug_matches->model_matches[pi] = best_pairs[pi];
598  }
599  debug_matches->num_model_matches = 3;
600 
601  // Find the inliers again for the best model for debugging
602  find_inliers(point_pairs, num_point_pairs, best_model, deshake_ctx->ransac_err, threshold);
603  result = true;
604  }
605 
606  return result;
607 }
608 
609 // "Wiggles" the first point in best_pairs around a tiny bit in order to decrease the
610 // total error
611 static void optimize_model(
612  DeshakeOpenCLContext *deshake_ctx,
613  MotionVector *best_pairs,
614  MotionVector *inliers,
615  const int num_inliers,
616  float best_err,
617  double *model_out
618 ) {
619  float move_x_val = 0.01;
620  float move_y_val = 0.01;
621  bool move_x = true;
622  float old_move_x_val = 0;
623  double model[6];
624  int last_changed = 0;
625 
626  for (int iters = 0; iters < 200; iters++) {
627  float total_err = 0;
628 
629  if (move_x) {
630  best_pairs[0].p.p2.s[0] += move_x_val;
631  } else {
632  best_pairs[0].p.p2.s[0] += move_y_val;
633  }
634 
635  run_estimate_kernel(best_pairs, model);
636  compute_error(inliers, num_inliers, model, deshake_ctx->ransac_err);
637 
638  for (int j = 0; j < num_inliers; j++) {
639  total_err += deshake_ctx->ransac_err[j];
640  }
641 
642  if (total_err < best_err) {
643  for (int mi = 0; mi < 6; ++mi) {
644  model_out[mi] = model[mi];
645  }
646 
647  best_err = total_err;
648  last_changed = iters;
649  } else {
650  // Undo the change
651  if (move_x) {
652  best_pairs[0].p.p2.s[0] -= move_x_val;
653  } else {
654  best_pairs[0].p.p2.s[0] -= move_y_val;
655  }
656 
657  if (iters - last_changed > 4) {
658  // We've already improved the model as much as we can
659  break;
660  }
661 
662  old_move_x_val = move_x_val;
663 
664  if (move_x) {
665  move_x_val *= -1;
666  } else {
667  move_y_val *= -1;
668  }
669 
670  if (old_move_x_val < 0) {
671  move_x = false;
672  } else {
673  move_x = true;
674  }
675  }
676  }
677 }
678 
679 // Uses a process similar to that of RANSAC to find a transform that minimizes
680 // the total error for a set of point matches determined to be inliers
681 //
682 // (Pick random subsets, compute model, find total error, iterate until error
683 // is minimized.)
684 static bool minimize_error(
685  DeshakeOpenCLContext *deshake_ctx,
686  MotionVector *inliers,
687  DebugMatches *debug_matches,
688  const int num_inliers,
689  double *model_out,
690  const int max_iters
691 ) {
692  bool result = false;
693  float best_err = FLT_MAX;
694  double best_model[6], model[6];
695  MotionVector pairs_subset[3], best_pairs[3];
696 
697  for (int i = 0; i < max_iters; i++) {
698  float total_err = 0;
699  bool found = get_subset(&deshake_ctx->alfg, inliers, num_inliers, pairs_subset, 10000);
700 
701  if (!found) {
702  if (i == 0) {
703  return false;
704  }
705 
706  break;
707  }
708 
709  run_estimate_kernel(pairs_subset, model);
710  compute_error(inliers, num_inliers, model, deshake_ctx->ransac_err);
711 
712  for (int j = 0; j < num_inliers; j++) {
713  total_err += deshake_ctx->ransac_err[j];
714  }
715 
716  if (total_err < best_err) {
717  for (int mi = 0; mi < 6; ++mi) {
718  best_model[mi] = model[mi];
719  }
720 
721  for (int pi = 0; pi < 3; pi++) {
722  best_pairs[pi] = pairs_subset[pi];
723  }
724 
725  best_err = total_err;
726  }
727  }
728 
729  for (int mi = 0; mi < 6; ++mi) {
730  model_out[mi] = best_model[mi];
731  }
732 
733  for (int pi = 0; pi < 3; ++pi) {
734  debug_matches->model_matches[pi] = best_pairs[pi];
735  }
736  debug_matches->num_model_matches = 3;
737  result = true;
738 
739  optimize_model(deshake_ctx, best_pairs, inliers, num_inliers, best_err, model_out);
740  return result;
741 }
742 
743 // End code from OpenCV
744 
745 // Decomposes a similarity matrix into translation, rotation, scale, and skew
746 //
747 // See http://frederic-wang.fr/decomposition-of-2d-transform-matrices.html
748 static FrameDelta decompose_transform(double *model)
749 {
750  FrameDelta ret;
751 
752  double a = model[0];
753  double c = model[1];
754  double e = model[2];
755  double b = model[3];
756  double d = model[4];
757  double f = model[5];
758  double delta = a * d - b * c;
759 
760  ret.translation.s[0] = e;
761  ret.translation.s[1] = f;
762 
763  // This is the QR method
764  if (a != 0 || b != 0) {
765  double r = hypot(a, b);
766 
767  ret.rotation = FFSIGN(b) * acos(a / r);
768  ret.scale.s[0] = r;
769  ret.scale.s[1] = delta / r;
770  ret.skew.s[0] = atan((a * c + b * d) / (r * r));
771  ret.skew.s[1] = 0;
772  } else if (c != 0 || d != 0) {
773  double s = sqrt(c * c + d * d);
774 
775  ret.rotation = M_PI / 2 - FFSIGN(d) * acos(-c / s);
776  ret.scale.s[0] = delta / s;
777  ret.scale.s[1] = s;
778  ret.skew.s[0] = 0;
779  ret.skew.s[1] = atan((a * c + b * d) / (s * s));
780  } // otherwise there is only translation
781 
782  return ret;
783 }
784 
785 // Move valid vectors from the 2d buffer into a 1d buffer where they are contiguous
787  DeshakeOpenCLContext *deshake_ctx,
788  int size_y,
789  int size_x
790 ) {
791  int num_vectors = 0;
792 
793  for (int i = 0; i < size_y; ++i) {
794  for (int j = 0; j < size_x; ++j) {
795  MotionVector v = deshake_ctx->matches_host[j + i * size_x];
796 
797  if (v.should_consider) {
798  deshake_ctx->matches_contig_host[num_vectors] = v;
799  ++num_vectors;
800  }
801 
802  // Make sure we do not exceed the amount of space we allocated for these vectors
803  if (num_vectors == MATCHES_CONTIG_SIZE - 1) {
804  return num_vectors;
805  }
806  }
807  }
808  return num_vectors;
809 }
810 
811 // Returns the gaussian kernel value for the given x coordinate and sigma value
812 static float gaussian_for(int x, float sigma) {
813  return 1.0f / expf(((float)x * (float)x) / (2.0f * sigma * sigma));
814 }
815 
816 // Makes a normalized gaussian kernel of the given length for the given sigma
817 // and places it in gauss_kernel
818 static void make_gauss_kernel(float *gauss_kernel, float length, float sigma)
819 {
820  float gauss_sum = 0;
821  int window_half = length / 2;
822 
823  for (int i = 0; i < length; ++i) {
824  float val = gaussian_for(i - window_half, sigma);
825 
826  gauss_sum += val;
827  gauss_kernel[i] = val;
828  }
829 
830  // Normalize the gaussian values
831  for (int i = 0; i < length; ++i) {
832  gauss_kernel[i] /= gauss_sum;
833  }
834 }
835 
836 // Returns indices to start and end iteration at in order to iterate over a window
837 // of length size centered at the current frame in a ringbuffer
838 //
839 // Always returns numbers that result in a window of length size, even if that
840 // means specifying negative indices or indices past the end of the values in the
841 // ringbuffers. Make sure you clip indices appropriately within your loop.
843  IterIndices indices;
844 
845  indices.start = deshake_ctx->abs_motion.curr_frame_offset - (length / 2);
846  indices.end = deshake_ctx->abs_motion.curr_frame_offset + (length / 2) + (length % 2);
847 
848  return indices;
849 }
850 
851 // Sets val to the value in the given ringbuffer at the given offset, taking care of
852 // clipping the offset into the appropriate range
853 static void ringbuf_float_at(
854  DeshakeOpenCLContext *deshake_ctx,
856  float *val,
857  int offset
858 ) {
859  int clip_start, clip_end, offset_clipped;
860  if (deshake_ctx->abs_motion.data_end_offset != -1) {
861  clip_end = deshake_ctx->abs_motion.data_end_offset;
862  } else {
863  // This expression represents the last valid index in the buffer,
864  // which we use repeatedly at the end of the video.
865  clip_end = deshake_ctx->smooth_window - (av_fifo_space(values) / sizeof(float)) - 1;
866  }
867 
868  if (deshake_ctx->abs_motion.data_start_offset != -1) {
869  clip_start = deshake_ctx->abs_motion.data_start_offset;
870  } else {
871  // Negative indices will occur at the start of the video, and we want
872  // them to be clipped to 0 in order to repeatedly use the position of
873  // the first frame.
874  clip_start = 0;
875  }
876 
877  offset_clipped = av_clip(
878  offset,
879  clip_start,
880  clip_end
881  );
882 
884  values,
885  val,
886  offset_clipped * sizeof(float),
887  sizeof(float),
888  NULL
889  );
890 }
891 
892 // Returns smoothed current frame value of the given buffer of floats based on the
893 // given Gaussian kernel and its length (also the window length, centered around the
894 // current frame) and the "maximum value" of the motion.
895 //
896 // This "maximum value" should be the width / height of the image in the case of
897 // translation and an empirically chosen constant for rotation / scale.
898 //
899 // The sigma chosen to generate the final gaussian kernel with used to smooth the
900 // camera path is either hardcoded (set by user, deshake_ctx->smooth_percent) or
901 // adaptively chosen.
902 static float smooth(
903  DeshakeOpenCLContext *deshake_ctx,
904  float *gauss_kernel,
905  int length,
906  float max_val,
908 ) {
909  float new_large_s = 0, new_small_s = 0, new_best = 0, old, diff_between,
910  percent_of_max, inverted_percent;
911  IterIndices indices = start_end_for(deshake_ctx, length);
912  float large_sigma = 40.0f;
913  float small_sigma = 2.0f;
914  float best_sigma;
915 
916  if (deshake_ctx->smooth_percent) {
917  best_sigma = (large_sigma - 0.5f) * deshake_ctx->smooth_percent + 0.5f;
918  } else {
919  // Strategy to adaptively smooth trajectory:
920  //
921  // 1. Smooth path with large and small sigma values
922  // 2. Take the absolute value of the difference between them
923  // 3. Get a percentage by putting the difference over the "max value"
924  // 4, Invert the percentage
925  // 5. Calculate a new sigma value weighted towards the larger sigma value
926  // 6. Determine final smoothed trajectory value using that sigma
927 
928  make_gauss_kernel(gauss_kernel, length, large_sigma);
929  for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
930  ringbuf_float_at(deshake_ctx, values, &old, i);
931  new_large_s += old * gauss_kernel[j];
932  }
933 
934  make_gauss_kernel(gauss_kernel, length, small_sigma);
935  for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
936  ringbuf_float_at(deshake_ctx, values, &old, i);
937  new_small_s += old * gauss_kernel[j];
938  }
939 
940  diff_between = fabsf(new_large_s - new_small_s);
941  percent_of_max = diff_between / max_val;
942  inverted_percent = 1 - percent_of_max;
943  best_sigma = large_sigma * powf(inverted_percent, 40);
944  }
945 
946  make_gauss_kernel(gauss_kernel, length, best_sigma);
947  for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
948  ringbuf_float_at(deshake_ctx, values, &old, i);
949  new_best += old * gauss_kernel[j];
950  }
951 
952  return new_best;
953 }
954 
955 // Returns the position of the given point after the transform is applied
956 static cl_float2 transformed_point(float x, float y, float *transform) {
957  cl_float2 ret;
958 
959  ret.s[0] = x * transform[0] + y * transform[1] + transform[2];
960  ret.s[1] = x * transform[3] + y * transform[4] + transform[5];
961 
962  return ret;
963 }
964 
965 // Creates an affine transform that scales from the center of a frame
967  float x_shift,
968  float y_shift,
969  float angle,
970  float scale_x,
971  float scale_y,
972  float center_w,
973  float center_h,
974  float *matrix
975 ) {
976  cl_float2 center_s;
977  float center_s_w, center_s_h;
978 
980  0,
981  0,
982  0,
983  scale_x,
984  scale_y,
985  matrix
986  );
987 
988  center_s = transformed_point(center_w, center_h, matrix);
989  center_s_w = center_w - center_s.s[0];
990  center_s_h = center_h - center_s.s[1];
991 
993  x_shift + center_s_w,
994  y_shift + center_s_h,
995  angle,
996  scale_x,
997  scale_y,
998  matrix
999  );
1000 }
1001 
1002 // Determines the crop necessary to eliminate black borders from a smoothed frame
1003 // and updates target crop accordingly
1005  CropInfo* crop,
1006  float *transform,
1007  float frame_width,
1008  float frame_height
1009 ) {
1010  float new_width, new_height, adjusted_width, adjusted_height, adjusted_x, adjusted_y;
1011 
1012  cl_float2 top_left = transformed_point(0, 0, transform);
1013  cl_float2 top_right = transformed_point(frame_width, 0, transform);
1014  cl_float2 bottom_left = transformed_point(0, frame_height, transform);
1015  cl_float2 bottom_right = transformed_point(frame_width, frame_height, transform);
1016  float ar_h = frame_height / frame_width;
1017  float ar_w = frame_width / frame_height;
1018 
1019  if (crop->bottom_right.s[0] == 0) {
1020  // The crop hasn't been set to the original size of the plane
1021  crop->bottom_right.s[0] = frame_width;
1022  crop->bottom_right.s[1] = frame_height;
1023  }
1024 
1025  crop->top_left.s[0] = FFMAX3(
1026  crop->top_left.s[0],
1027  top_left.s[0],
1028  bottom_left.s[0]
1029  );
1030 
1031  crop->top_left.s[1] = FFMAX3(
1032  crop->top_left.s[1],
1033  top_left.s[1],
1034  top_right.s[1]
1035  );
1036 
1037  crop->bottom_right.s[0] = FFMIN3(
1038  crop->bottom_right.s[0],
1039  bottom_right.s[0],
1040  top_right.s[0]
1041  );
1042 
1043  crop->bottom_right.s[1] = FFMIN3(
1044  crop->bottom_right.s[1],
1045  bottom_right.s[1],
1046  bottom_left.s[1]
1047  );
1048 
1049  // Make sure our potentially new bounding box has the same aspect ratio
1050  new_height = crop->bottom_right.s[1] - crop->top_left.s[1];
1051  new_width = crop->bottom_right.s[0] - crop->top_left.s[0];
1052 
1053  adjusted_width = new_height * ar_w;
1054  adjusted_x = crop->bottom_right.s[0] - adjusted_width;
1055 
1056  if (adjusted_x >= crop->top_left.s[0]) {
1057  crop->top_left.s[0] = adjusted_x;
1058  } else {
1059  adjusted_height = new_width * ar_h;
1060  adjusted_y = crop->bottom_right.s[1] - adjusted_height;
1061  crop->top_left.s[1] = adjusted_y;
1062  }
1063 }
1064 
1066 {
1067  DeshakeOpenCLContext *ctx = avctx->priv;
1068  cl_int cle;
1069 
1070  for (int i = 0; i < RingbufCount; i++)
1072 
1073  if (ctx->debug_on)
1075 
1076  if (ctx->gauss_kernel)
1077  av_freep(&ctx->gauss_kernel);
1078 
1079  if (ctx->ransac_err)
1080  av_freep(&ctx->ransac_err);
1081 
1082  if (ctx->matches_host)
1083  av_freep(&ctx->matches_host);
1084 
1085  if (ctx->matches_contig_host)
1087 
1088  if (ctx->inliers)
1089  av_freep(&ctx->inliers);
1090 
1091  ff_framequeue_free(&ctx->fq);
1092 
1099  if (ctx->debug_on)
1101 
1103 
1104  if (!ctx->is_yuv)
1112  CL_RELEASE_MEMORY(ctx->matches);
1116  if (ctx->debug_on) {
1119  }
1120 
1121  ff_opencl_filter_uninit(avctx);
1122 }
1123 
1125 {
1126  DeshakeOpenCLContext *ctx = avctx->priv;
1127  AVFilterLink *outlink = avctx->outputs[0];
1128  AVFilterLink *inlink = avctx->inputs[0];
1129  // Pointer to the host-side pattern buffer to be initialized and then copied
1130  // to the GPU
1131  PointPair *pattern_host = NULL;
1132  cl_int cle;
1133  int err;
1134  cl_ulong8 zeroed_ulong8;
1135  FFFrameQueueGlobal fqg;
1136  cl_image_format grayscale_format;
1137  cl_image_desc grayscale_desc;
1138  cl_command_queue_properties queue_props;
1139 
1140  const enum AVPixelFormat disallowed_formats[14] = {
1155  };
1156 
1157  // Number of elements for an array
1158  const int image_grid_32 = ROUNDED_UP_DIV(outlink->h, 32) * ROUNDED_UP_DIV(outlink->w, 32);
1159 
1160  const int descriptor_buf_size = image_grid_32 * (BREIFN / 8);
1161  const int features_buf_size = image_grid_32 * sizeof(cl_float2);
1162 
1163  const AVHWFramesContext *hw_frames_ctx = (AVHWFramesContext*)inlink->hw_frames_ctx->data;
1164  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hw_frames_ctx->sw_format);
1165 
1166  av_assert0(hw_frames_ctx);
1167  av_assert0(desc);
1168 
1170  ff_framequeue_init(&ctx->fq, &fqg);
1171  ctx->eof = false;
1172  ctx->smooth_window = (int)(av_q2d(avctx->inputs[0]->frame_rate) * ctx->smooth_window_multiplier);
1173  ctx->curr_frame = 0;
1174 
1175  memset(&zeroed_ulong8, 0, sizeof(cl_ulong8));
1176 
1177  ctx->gauss_kernel = av_malloc_array(ctx->smooth_window, sizeof(float));
1178  if (!ctx->gauss_kernel) {
1179  err = AVERROR(ENOMEM);
1180  goto fail;
1181  }
1182 
1183  ctx->ransac_err = av_malloc_array(MATCHES_CONTIG_SIZE, sizeof(float));
1184  if (!ctx->ransac_err) {
1185  err = AVERROR(ENOMEM);
1186  goto fail;
1187  }
1188 
1189  for (int i = 0; i < RingbufCount; i++) {
1191  ctx->smooth_window,
1192  sizeof(float)
1193  );
1194 
1195  if (!ctx->abs_motion.ringbuffers[i]) {
1196  err = AVERROR(ENOMEM);
1197  goto fail;
1198  }
1199  }
1200 
1201  if (ctx->debug_on) {
1203  ctx->smooth_window / 2,
1204  sizeof(DebugMatches)
1205  );
1206 
1207  if (!ctx->abs_motion.debug_matches) {
1208  err = AVERROR(ENOMEM);
1209  goto fail;
1210  }
1211  }
1212 
1213  ctx->abs_motion.curr_frame_offset = 0;
1214  ctx->abs_motion.data_start_offset = -1;
1215  ctx->abs_motion.data_end_offset = -1;
1216 
1217  pattern_host = av_malloc_array(BREIFN, sizeof(PointPair));
1218  if (!pattern_host) {
1219  err = AVERROR(ENOMEM);
1220  goto fail;
1221  }
1222 
1223  ctx->matches_host = av_malloc_array(image_grid_32, sizeof(MotionVector));
1224  if (!ctx->matches_host) {
1225  err = AVERROR(ENOMEM);
1226  goto fail;
1227  }
1228 
1230  if (!ctx->matches_contig_host) {
1231  err = AVERROR(ENOMEM);
1232  goto fail;
1233  }
1234 
1236  if (!ctx->inliers) {
1237  err = AVERROR(ENOMEM);
1238  goto fail;
1239  }
1240 
1241  // Initializing the patch pattern for building BREIF descriptors with
1242  av_lfg_init(&ctx->alfg, 234342424);
1243  for (int i = 0; i < BREIFN; ++i) {
1244  PointPair pair;
1245 
1246  for (int j = 0; j < 2; ++j) {
1247  pair.p1.s[j] = rand_in(-BRIEF_PATCH_SIZE_HALF, BRIEF_PATCH_SIZE_HALF + 1, &ctx->alfg);
1248  pair.p2.s[j] = rand_in(-BRIEF_PATCH_SIZE_HALF, BRIEF_PATCH_SIZE_HALF + 1, &ctx->alfg);
1249  }
1250 
1251  pattern_host[i] = pair;
1252  }
1253 
1254  for (int i = 0; i < 14; i++) {
1255  if (ctx->sw_format == disallowed_formats[i]) {
1256  av_log(avctx, AV_LOG_ERROR, "unsupported format in deshake_opencl.\n");
1257  err = AVERROR(ENOSYS);
1258  goto fail;
1259  }
1260  }
1261 
1262  if (desc->flags & AV_PIX_FMT_FLAG_RGB) {
1263  ctx->is_yuv = false;
1264  } else {
1265  ctx->is_yuv = true;
1266  }
1267  ctx->sw_format = hw_frames_ctx->sw_format;
1268 
1270  if (err < 0)
1271  goto fail;
1272 
1273  if (ctx->debug_on) {
1274  queue_props = CL_QUEUE_PROFILING_ENABLE;
1275  } else {
1276  queue_props = 0;
1277  }
1278  ctx->command_queue = clCreateCommandQueue(
1279  ctx->ocf.hwctx->context,
1280  ctx->ocf.hwctx->device_id,
1281  queue_props,
1282  &cle
1283  );
1284  CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create OpenCL command queue %d.\n", cle);
1285 
1286  CL_CREATE_KERNEL(ctx, grayscale);
1287  CL_CREATE_KERNEL(ctx, harris_response);
1288  CL_CREATE_KERNEL(ctx, refine_features);
1289  CL_CREATE_KERNEL(ctx, brief_descriptors);
1290  CL_CREATE_KERNEL(ctx, match_descriptors);
1292  CL_CREATE_KERNEL(ctx, crop_upscale);
1293  if (ctx->debug_on)
1294  CL_CREATE_KERNEL(ctx, draw_debug_info);
1295 
1296  if (!ctx->is_yuv) {
1297  grayscale_format.image_channel_order = CL_R;
1298  grayscale_format.image_channel_data_type = CL_FLOAT;
1299 
1300  grayscale_desc = (cl_image_desc) {
1301  .image_type = CL_MEM_OBJECT_IMAGE2D,
1302  .image_width = outlink->w,
1303  .image_height = outlink->h,
1304  .image_depth = 0,
1305  .image_array_size = 0,
1306  .image_row_pitch = 0,
1307  .image_slice_pitch = 0,
1308  .num_mip_levels = 0,
1309  .num_samples = 0,
1310  .buffer = NULL,
1311  };
1312 
1313  ctx->grayscale = clCreateImage(
1314  ctx->ocf.hwctx->context,
1315  0,
1316  &grayscale_format,
1317  &grayscale_desc,
1318  NULL,
1319  &cle
1320  );
1321  CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create grayscale image: %d.\n", cle);
1322  }
1323 
1324  CL_CREATE_BUFFER(ctx, harris_buf, outlink->h * outlink->w * sizeof(float));
1325  CL_CREATE_BUFFER(ctx, refined_features, features_buf_size);
1326  CL_CREATE_BUFFER(ctx, prev_refined_features, features_buf_size);
1328  ctx,
1329  brief_pattern,
1330  CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
1331  BREIFN * sizeof(PointPair),
1332  pattern_host
1333  );
1334  CL_CREATE_BUFFER(ctx, descriptors, descriptor_buf_size);
1335  CL_CREATE_BUFFER(ctx, prev_descriptors, descriptor_buf_size);
1336  CL_CREATE_BUFFER(ctx, matches, image_grid_32 * sizeof(MotionVector));
1337  CL_CREATE_BUFFER(ctx, matches_contig, MATCHES_CONTIG_SIZE * sizeof(MotionVector));
1338  CL_CREATE_BUFFER(ctx, transform_y, 9 * sizeof(float));
1339  CL_CREATE_BUFFER(ctx, transform_uv, 9 * sizeof(float));
1340  if (ctx->debug_on) {
1341  CL_CREATE_BUFFER(ctx, debug_matches, MATCHES_CONTIG_SIZE * sizeof(MotionVector));
1342  CL_CREATE_BUFFER(ctx, debug_model_matches, 3 * sizeof(MotionVector));
1343  }
1344 
1345  ctx->initialized = 1;
1346  av_freep(&pattern_host);
1347 
1348  return 0;
1349 
1350 fail:
1351  av_freep(&pattern_host);
1352  return err;
1353 }
1354 
1355 // Logs debug information about the transform data
1356 static void transform_debug(AVFilterContext *avctx, float *new_vals, float *old_vals, int curr_frame) {
1357  av_log(avctx, AV_LOG_VERBOSE,
1358  "Frame %d:\n"
1359  "\tframe moved from: %f x, %f y\n"
1360  "\t to: %f x, %f y\n"
1361  "\t rotated from: %f degrees\n"
1362  "\t to: %f degrees\n"
1363  "\t scaled from: %f x, %f y\n"
1364  "\t to: %f x, %f y\n"
1365  "\n"
1366  "\tframe moved by: %f x, %f y\n"
1367  "\t rotated by: %f degrees\n"
1368  "\t scaled by: %f x, %f y\n",
1369  curr_frame,
1370  old_vals[RingbufX], old_vals[RingbufY],
1371  new_vals[RingbufX], new_vals[RingbufY],
1372  old_vals[RingbufRot] * (180.0 / M_PI),
1373  new_vals[RingbufRot] * (180.0 / M_PI),
1374  old_vals[RingbufScaleX], old_vals[RingbufScaleY],
1375  new_vals[RingbufScaleX], new_vals[RingbufScaleY],
1376  old_vals[RingbufX] - new_vals[RingbufX], old_vals[RingbufY] - new_vals[RingbufY],
1377  old_vals[RingbufRot] * (180.0 / M_PI) - new_vals[RingbufRot] * (180.0 / M_PI),
1378  new_vals[RingbufScaleX] / old_vals[RingbufScaleX], new_vals[RingbufScaleY] / old_vals[RingbufScaleY]
1379  );
1380 }
1381 
1382 // Uses the buffered motion information to determine a transform that smooths the
1383 // given frame and applies it
1384 static int filter_frame(AVFilterLink *link, AVFrame *input_frame)
1385 {
1386  AVFilterContext *avctx = link->dst;
1387  AVFilterLink *outlink = avctx->outputs[0];
1388  DeshakeOpenCLContext *deshake_ctx = avctx->priv;
1389  AVFrame *cropped_frame = NULL, *transformed_frame = NULL;
1390  int err;
1391  cl_int cle;
1392  float new_vals[RingbufCount];
1393  float old_vals[RingbufCount];
1394  // Luma (in the case of YUV) transform, or just the transform in the case of RGB
1395  float transform_y[9];
1396  // Chroma transform
1397  float transform_uv[9];
1398  // Luma crop transform (or RGB)
1399  float transform_crop_y[9];
1400  // Chroma crop transform
1401  float transform_crop_uv[9];
1402  float transform_debug_rgb[9];
1403  size_t global_work[2];
1404  int64_t duration;
1405  cl_mem src, transformed, dst;
1406  cl_mem transforms[3];
1407  CropInfo crops[3];
1408  cl_event transform_event, crop_upscale_event;
1409  DebugMatches debug_matches;
1410  cl_int num_model_matches;
1411 
1412  const float center_w = (float)input_frame->width / 2;
1413  const float center_h = (float)input_frame->height / 2;
1414 
1415  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(deshake_ctx->sw_format);
1416  const int chroma_width = AV_CEIL_RSHIFT(input_frame->width, desc->log2_chroma_w);
1417  const int chroma_height = AV_CEIL_RSHIFT(input_frame->height, desc->log2_chroma_h);
1418 
1419  const float center_w_chroma = (float)chroma_width / 2;
1420  const float center_h_chroma = (float)chroma_height / 2;
1421 
1422  const float luma_w_over_chroma_w = ((float)input_frame->width / (float)chroma_width);
1423  const float luma_h_over_chroma_h = ((float)input_frame->height / (float)chroma_height);
1424 
1425  if (deshake_ctx->debug_on) {
1427  deshake_ctx->abs_motion.debug_matches,
1428  &debug_matches,
1429  sizeof(DebugMatches),
1430  NULL
1431  );
1432  }
1433 
1434  if (input_frame->pkt_duration) {
1435  duration = input_frame->pkt_duration;
1436  } else {
1437  duration = av_rescale_q(1, av_inv_q(outlink->frame_rate), outlink->time_base);
1438  }
1439  deshake_ctx->duration = input_frame->pts + duration;
1440 
1441  // Get the absolute transform data for this frame
1442  for (int i = 0; i < RingbufCount; i++) {
1444  deshake_ctx->abs_motion.ringbuffers[i],
1445  &old_vals[i],
1446  deshake_ctx->abs_motion.curr_frame_offset * sizeof(float),
1447  sizeof(float),
1448  NULL
1449  );
1450  }
1451 
1452  if (deshake_ctx->tripod_mode) {
1453  // If tripod mode is turned on we simply undo all motion relative to the
1454  // first frame
1455 
1456  new_vals[RingbufX] = 0.0f;
1457  new_vals[RingbufY] = 0.0f;
1458  new_vals[RingbufRot] = 0.0f;
1459  new_vals[RingbufScaleX] = 1.0f;
1460  new_vals[RingbufScaleY] = 1.0f;
1461  } else {
1462  // Tripod mode is off and we need to smooth a moving camera
1463 
1464  new_vals[RingbufX] = smooth(
1465  deshake_ctx,
1466  deshake_ctx->gauss_kernel,
1467  deshake_ctx->smooth_window,
1468  input_frame->width,
1469  deshake_ctx->abs_motion.ringbuffers[RingbufX]
1470  );
1471  new_vals[RingbufY] = smooth(
1472  deshake_ctx,
1473  deshake_ctx->gauss_kernel,
1474  deshake_ctx->smooth_window,
1475  input_frame->height,
1476  deshake_ctx->abs_motion.ringbuffers[RingbufY]
1477  );
1478  new_vals[RingbufRot] = smooth(
1479  deshake_ctx,
1480  deshake_ctx->gauss_kernel,
1481  deshake_ctx->smooth_window,
1482  M_PI / 4,
1483  deshake_ctx->abs_motion.ringbuffers[RingbufRot]
1484  );
1485  new_vals[RingbufScaleX] = smooth(
1486  deshake_ctx,
1487  deshake_ctx->gauss_kernel,
1488  deshake_ctx->smooth_window,
1489  2.0f,
1490  deshake_ctx->abs_motion.ringbuffers[RingbufScaleX]
1491  );
1492  new_vals[RingbufScaleY] = smooth(
1493  deshake_ctx,
1494  deshake_ctx->gauss_kernel,
1495  deshake_ctx->smooth_window,
1496  2.0f,
1497  deshake_ctx->abs_motion.ringbuffers[RingbufScaleY]
1498  );
1499  }
1500 
1502  old_vals[RingbufX] - new_vals[RingbufX],
1503  old_vals[RingbufY] - new_vals[RingbufY],
1504  old_vals[RingbufRot] - new_vals[RingbufRot],
1505  new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
1506  new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
1507  center_w,
1508  center_h,
1509  transform_y
1510  );
1511 
1513  (old_vals[RingbufX] - new_vals[RingbufX]) / luma_w_over_chroma_w,
1514  (old_vals[RingbufY] - new_vals[RingbufY]) / luma_h_over_chroma_h,
1515  old_vals[RingbufRot] - new_vals[RingbufRot],
1516  new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
1517  new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
1518  center_w_chroma,
1519  center_h_chroma,
1520  transform_uv
1521  );
1522 
1523  CL_BLOCKING_WRITE_BUFFER(deshake_ctx->command_queue, deshake_ctx->transform_y, 9 * sizeof(float), transform_y, NULL);
1524  CL_BLOCKING_WRITE_BUFFER(deshake_ctx->command_queue, deshake_ctx->transform_uv, 9 * sizeof(float), transform_uv, NULL);
1525 
1526  if (deshake_ctx->debug_on)
1527  transform_debug(avctx, new_vals, old_vals, deshake_ctx->curr_frame);
1528 
1529  cropped_frame = ff_get_video_buffer(outlink, outlink->w, outlink->h);
1530  if (!cropped_frame) {
1531  err = AVERROR(ENOMEM);
1532  goto fail;
1533  }
1534 
1535  transformed_frame = ff_get_video_buffer(outlink, outlink->w, outlink->h);
1536  if (!transformed_frame) {
1537  err = AVERROR(ENOMEM);
1538  goto fail;
1539  }
1540 
1541  transforms[0] = deshake_ctx->transform_y;
1542  transforms[1] = transforms[2] = deshake_ctx->transform_uv;
1543 
1544  for (int p = 0; p < FF_ARRAY_ELEMS(transformed_frame->data); p++) {
1545  // Transform all of the planes appropriately
1546  src = (cl_mem)input_frame->data[p];
1547  transformed = (cl_mem)transformed_frame->data[p];
1548 
1549  if (!transformed)
1550  break;
1551 
1552  err = ff_opencl_filter_work_size_from_image(avctx, global_work, input_frame, p, 0);
1553  if (err < 0)
1554  goto fail;
1555 
1557  deshake_ctx->command_queue,
1558  deshake_ctx->kernel_transform,
1559  global_work,
1560  NULL,
1561  &transform_event,
1562  { sizeof(cl_mem), &src },
1563  { sizeof(cl_mem), &transformed },
1564  { sizeof(cl_mem), &transforms[p] },
1565  );
1566  }
1567 
1568  if (deshake_ctx->debug_on && !deshake_ctx->is_yuv && debug_matches.num_matches > 0) {
1570  deshake_ctx->command_queue,
1571  deshake_ctx->debug_matches,
1572  debug_matches.num_matches * sizeof(MotionVector),
1573  debug_matches.matches,
1574  NULL
1575  );
1576 
1578  deshake_ctx->command_queue,
1579  deshake_ctx->debug_model_matches,
1580  debug_matches.num_model_matches * sizeof(MotionVector),
1581  debug_matches.model_matches,
1582  NULL
1583  );
1584 
1585  num_model_matches = debug_matches.num_model_matches;
1586 
1587  // Invert the transform
1589  new_vals[RingbufX] - old_vals[RingbufX],
1590  new_vals[RingbufY] - old_vals[RingbufY],
1591  new_vals[RingbufRot] - old_vals[RingbufRot],
1592  old_vals[RingbufScaleX] / new_vals[RingbufScaleX],
1593  old_vals[RingbufScaleY] / new_vals[RingbufScaleY],
1594  center_w,
1595  center_h,
1596  transform_debug_rgb
1597  );
1598 
1599  CL_BLOCKING_WRITE_BUFFER(deshake_ctx->command_queue, deshake_ctx->transform_y, 9 * sizeof(float), transform_debug_rgb, NULL);
1600 
1601  transformed = (cl_mem)transformed_frame->data[0];
1603  deshake_ctx->command_queue,
1604  deshake_ctx->kernel_draw_debug_info,
1605  (size_t[]){ debug_matches.num_matches },
1606  NULL,
1607  NULL,
1608  { sizeof(cl_mem), &transformed },
1609  { sizeof(cl_mem), &deshake_ctx->debug_matches },
1610  { sizeof(cl_mem), &deshake_ctx->debug_model_matches },
1611  { sizeof(cl_int), &num_model_matches },
1612  { sizeof(cl_mem), &deshake_ctx->transform_y }
1613  );
1614  }
1615 
1616  if (deshake_ctx->should_crop) {
1617  // Generate transforms for cropping
1619  (old_vals[RingbufX] - new_vals[RingbufX]) / 5,
1620  (old_vals[RingbufY] - new_vals[RingbufY]) / 5,
1621  (old_vals[RingbufRot] - new_vals[RingbufRot]) / 5,
1622  new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
1623  new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
1624  center_w,
1625  center_h,
1626  transform_crop_y
1627  );
1628  update_needed_crop(&deshake_ctx->crop_y, transform_crop_y, input_frame->width, input_frame->height);
1629 
1631  (old_vals[RingbufX] - new_vals[RingbufX]) / (5 * luma_w_over_chroma_w),
1632  (old_vals[RingbufY] - new_vals[RingbufY]) / (5 * luma_h_over_chroma_h),
1633  (old_vals[RingbufRot] - new_vals[RingbufRot]) / 5,
1634  new_vals[RingbufScaleX] / old_vals[RingbufScaleX],
1635  new_vals[RingbufScaleY] / old_vals[RingbufScaleY],
1636  center_w_chroma,
1637  center_h_chroma,
1638  transform_crop_uv
1639  );
1640  update_needed_crop(&deshake_ctx->crop_uv, transform_crop_uv, chroma_width, chroma_height);
1641 
1642  crops[0] = deshake_ctx->crop_y;
1643  crops[1] = crops[2] = deshake_ctx->crop_uv;
1644 
1645  for (int p = 0; p < FF_ARRAY_ELEMS(cropped_frame->data); p++) {
1646  // Crop all of the planes appropriately
1647  dst = (cl_mem)cropped_frame->data[p];
1648  transformed = (cl_mem)transformed_frame->data[p];
1649 
1650  if (!dst)
1651  break;
1652 
1653  err = ff_opencl_filter_work_size_from_image(avctx, global_work, input_frame, p, 0);
1654  if (err < 0)
1655  goto fail;
1656 
1658  deshake_ctx->command_queue,
1659  deshake_ctx->kernel_crop_upscale,
1660  global_work,
1661  NULL,
1662  &crop_upscale_event,
1663  { sizeof(cl_mem), &transformed },
1664  { sizeof(cl_mem), &dst },
1665  { sizeof(cl_float2), &crops[p].top_left },
1666  { sizeof(cl_float2), &crops[p].bottom_right },
1667  );
1668  }
1669  }
1670 
1671  if (deshake_ctx->curr_frame < deshake_ctx->smooth_window / 2) {
1672  // This means we are somewhere at the start of the video. We need to
1673  // increment the current frame offset until it reaches the center of
1674  // the ringbuffers (as the current frame will be located there for
1675  // the rest of the video).
1676  //
1677  // The end of the video is taken care of by draining motion data
1678  // one-by-one out of the buffer, causing the (at that point fixed)
1679  // offset to move towards later frames' data.
1680  ++deshake_ctx->abs_motion.curr_frame_offset;
1681  }
1682 
1683  if (deshake_ctx->abs_motion.data_end_offset != -1) {
1684  // Keep the end offset in sync with the frame it's supposed to be
1685  // positioned at
1686  --deshake_ctx->abs_motion.data_end_offset;
1687 
1688  if (deshake_ctx->abs_motion.data_end_offset == deshake_ctx->abs_motion.curr_frame_offset - 1) {
1689  // The end offset would be the start of the new video sequence; flip to
1690  // start offset
1691  deshake_ctx->abs_motion.data_end_offset = -1;
1692  deshake_ctx->abs_motion.data_start_offset = deshake_ctx->abs_motion.curr_frame_offset;
1693  }
1694  } else if (deshake_ctx->abs_motion.data_start_offset != -1) {
1695  // Keep the start offset in sync with the frame it's supposed to be
1696  // positioned at
1697  --deshake_ctx->abs_motion.data_start_offset;
1698  }
1699 
1700  if (deshake_ctx->debug_on) {
1701  deshake_ctx->transform_time += ff_opencl_get_event_time(transform_event);
1702  if (deshake_ctx->should_crop) {
1703  deshake_ctx->crop_upscale_time += ff_opencl_get_event_time(crop_upscale_event);
1704  }
1705  }
1706 
1707  ++deshake_ctx->curr_frame;
1708 
1709  if (deshake_ctx->debug_on)
1710  av_freep(&debug_matches.matches);
1711 
1712  if (deshake_ctx->should_crop) {
1713  err = av_frame_copy_props(cropped_frame, input_frame);
1714  if (err < 0)
1715  goto fail;
1716 
1717  av_frame_free(&transformed_frame);
1718  av_frame_free(&input_frame);
1719  return ff_filter_frame(outlink, cropped_frame);
1720 
1721  } else {
1722  err = av_frame_copy_props(transformed_frame, input_frame);
1723  if (err < 0)
1724  goto fail;
1725 
1726  av_frame_free(&cropped_frame);
1727  av_frame_free(&input_frame);
1728  return ff_filter_frame(outlink, transformed_frame);
1729  }
1730 
1731 fail:
1732  clFinish(deshake_ctx->command_queue);
1733 
1734  if (deshake_ctx->debug_on)
1735  if (debug_matches.matches)
1736  av_freep(&debug_matches.matches);
1737 
1738  av_frame_free(&input_frame);
1739  av_frame_free(&transformed_frame);
1740  av_frame_free(&cropped_frame);
1741  return err;
1742 }
1743 
1744 // Add the given frame to the frame queue to eventually be processed.
1745 //
1746 // Also determines the motion from the previous frame and updates the stored
1747 // motion information accordingly.
1748 static int queue_frame(AVFilterLink *link, AVFrame *input_frame)
1749 {
1750  AVFilterContext *avctx = link->dst;
1751  DeshakeOpenCLContext *deshake_ctx = avctx->priv;
1752  int err;
1753  int num_vectors;
1754  int num_inliers = 0;
1755  cl_int cle;
1756  FrameDelta relative;
1757  SimilarityMatrix model;
1758  size_t global_work[2];
1759  size_t harris_global_work[2];
1760  size_t grid_32_global_work[2];
1761  int grid_32_h, grid_32_w;
1762  size_t local_work[2];
1763  cl_mem src, temp;
1764  float prev_vals[5];
1765  float new_vals[5];
1766  cl_event grayscale_event, harris_response_event, refine_features_event,
1767  brief_event, match_descriptors_event, read_buf_event;
1768  DebugMatches debug_matches;
1769 
1770  num_vectors = 0;
1771 
1772  local_work[0] = 8;
1773  local_work[1] = 8;
1774 
1775  err = ff_opencl_filter_work_size_from_image(avctx, global_work, input_frame, 0, 0);
1776  if (err < 0)
1777  goto fail;
1778 
1779  err = ff_opencl_filter_work_size_from_image(avctx, harris_global_work, input_frame, 0, 8);
1780  if (err < 0)
1781  goto fail;
1782 
1783  err = ff_opencl_filter_work_size_from_image(avctx, grid_32_global_work, input_frame, 0, 32);
1784  if (err < 0)
1785  goto fail;
1786 
1787  // We want a single work-item for each 32x32 block of pixels in the input frame
1788  grid_32_global_work[0] /= 32;
1789  grid_32_global_work[1] /= 32;
1790 
1791  grid_32_h = ROUNDED_UP_DIV(input_frame->height, 32);
1792  grid_32_w = ROUNDED_UP_DIV(input_frame->width, 32);
1793 
1794  if (deshake_ctx->is_yuv) {
1795  deshake_ctx->grayscale = (cl_mem)input_frame->data[0];
1796  } else {
1797  src = (cl_mem)input_frame->data[0];
1798 
1800  deshake_ctx->command_queue,
1801  deshake_ctx->kernel_grayscale,
1802  global_work,
1803  NULL,
1804  &grayscale_event,
1805  { sizeof(cl_mem), &src },
1806  { sizeof(cl_mem), &deshake_ctx->grayscale }
1807  );
1808  }
1809 
1811  deshake_ctx->command_queue,
1812  deshake_ctx->kernel_harris_response,
1813  harris_global_work,
1814  local_work,
1815  &harris_response_event,
1816  { sizeof(cl_mem), &deshake_ctx->grayscale },
1817  { sizeof(cl_mem), &deshake_ctx->harris_buf }
1818  );
1819 
1821  deshake_ctx->command_queue,
1822  deshake_ctx->kernel_refine_features,
1823  grid_32_global_work,
1824  NULL,
1825  &refine_features_event,
1826  { sizeof(cl_mem), &deshake_ctx->grayscale },
1827  { sizeof(cl_mem), &deshake_ctx->harris_buf },
1828  { sizeof(cl_mem), &deshake_ctx->refined_features },
1829  { sizeof(cl_int), &deshake_ctx->refine_features }
1830  );
1831 
1833  deshake_ctx->command_queue,
1834  deshake_ctx->kernel_brief_descriptors,
1835  grid_32_global_work,
1836  NULL,
1837  &brief_event,
1838  { sizeof(cl_mem), &deshake_ctx->grayscale },
1839  { sizeof(cl_mem), &deshake_ctx->refined_features },
1840  { sizeof(cl_mem), &deshake_ctx->descriptors },
1841  { sizeof(cl_mem), &deshake_ctx->brief_pattern}
1842  );
1843 
1844  if (av_fifo_size(deshake_ctx->abs_motion.ringbuffers[RingbufX]) == 0) {
1845  // This is the first frame we've been given to queue, meaning there is
1846  // no previous frame to match descriptors to
1847 
1848  goto no_motion_data;
1849  }
1850 
1852  deshake_ctx->command_queue,
1853  deshake_ctx->kernel_match_descriptors,
1854  grid_32_global_work,
1855  NULL,
1856  &match_descriptors_event,
1857  { sizeof(cl_mem), &deshake_ctx->prev_refined_features },
1858  { sizeof(cl_mem), &deshake_ctx->refined_features },
1859  { sizeof(cl_mem), &deshake_ctx->descriptors },
1860  { sizeof(cl_mem), &deshake_ctx->prev_descriptors },
1861  { sizeof(cl_mem), &deshake_ctx->matches }
1862  );
1863 
1864  cle = clEnqueueReadBuffer(
1865  deshake_ctx->command_queue,
1866  deshake_ctx->matches,
1867  CL_TRUE,
1868  0,
1869  grid_32_h * grid_32_w * sizeof(MotionVector),
1870  deshake_ctx->matches_host,
1871  0,
1872  NULL,
1873  &read_buf_event
1874  );
1875  CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to read matches to host: %d.\n", cle);
1876 
1877  num_vectors = make_vectors_contig(deshake_ctx, grid_32_h, grid_32_w);
1878 
1879  if (num_vectors < 10) {
1880  // Not enough matches to get reliable motion data for this frame
1881  //
1882  // From this point on all data is relative to this frame rather than the
1883  // original frame. We have to make sure that we don't mix values that were
1884  // relative to the original frame with the new values relative to this
1885  // frame when doing the gaussian smoothing. We keep track of where the old
1886  // values end using this data_end_offset field in order to accomplish
1887  // that goal.
1888  //
1889  // If no motion data is present for multiple frames in a short window of
1890  // time, we leave the end where it was to avoid mixing 0s in with the
1891  // old data (and just treat them all as part of the new values)
1892  if (deshake_ctx->abs_motion.data_end_offset == -1) {
1893  deshake_ctx->abs_motion.data_end_offset =
1894  av_fifo_size(deshake_ctx->abs_motion.ringbuffers[RingbufX]) / sizeof(float) - 1;
1895  }
1896 
1897  goto no_motion_data;
1898  }
1899 
1900  if (!estimate_affine_2d(
1901  deshake_ctx,
1902  deshake_ctx->matches_contig_host,
1903  &debug_matches,
1904  num_vectors,
1905  model.matrix,
1906  10.0,
1907  3000,
1908  0.999999999999
1909  )) {
1910  goto no_motion_data;
1911  }
1912 
1913  for (int i = 0; i < num_vectors; i++) {
1914  if (deshake_ctx->matches_contig_host[i].should_consider) {
1915  deshake_ctx->inliers[num_inliers] = deshake_ctx->matches_contig_host[i];
1916  num_inliers++;
1917  }
1918  }
1919 
1920  if (!minimize_error(
1921  deshake_ctx,
1922  deshake_ctx->inliers,
1923  &debug_matches,
1924  num_inliers,
1925  model.matrix,
1926  400
1927  )) {
1928  goto no_motion_data;
1929  }
1930 
1931 
1932  relative = decompose_transform(model.matrix);
1933 
1934  // Get the absolute transform data for the previous frame
1935  for (int i = 0; i < RingbufCount; i++) {
1937  deshake_ctx->abs_motion.ringbuffers[i],
1938  &prev_vals[i],
1939  av_fifo_size(deshake_ctx->abs_motion.ringbuffers[i]) - sizeof(float),
1940  sizeof(float),
1941  NULL
1942  );
1943  }
1944 
1945  new_vals[RingbufX] = prev_vals[RingbufX] + relative.translation.s[0];
1946  new_vals[RingbufY] = prev_vals[RingbufY] + relative.translation.s[1];
1947  new_vals[RingbufRot] = prev_vals[RingbufRot] + relative.rotation;
1948  new_vals[RingbufScaleX] = prev_vals[RingbufScaleX] / relative.scale.s[0];
1949  new_vals[RingbufScaleY] = prev_vals[RingbufScaleY] / relative.scale.s[1];
1950 
1951  if (deshake_ctx->debug_on) {
1952  if (!deshake_ctx->is_yuv) {
1953  deshake_ctx->grayscale_time += ff_opencl_get_event_time(grayscale_event);
1954  }
1955  deshake_ctx->harris_response_time += ff_opencl_get_event_time(harris_response_event);
1956  deshake_ctx->refine_features_time += ff_opencl_get_event_time(refine_features_event);
1957  deshake_ctx->brief_descriptors_time += ff_opencl_get_event_time(brief_event);
1958  deshake_ctx->match_descriptors_time += ff_opencl_get_event_time(match_descriptors_event);
1959  deshake_ctx->read_buf_time += ff_opencl_get_event_time(read_buf_event);
1960  }
1961 
1962  goto end;
1963 
1964 no_motion_data:
1965  new_vals[RingbufX] = 0.0f;
1966  new_vals[RingbufY] = 0.0f;
1967  new_vals[RingbufRot] = 0.0f;
1968  new_vals[RingbufScaleX] = 1.0f;
1969  new_vals[RingbufScaleY] = 1.0f;
1970 
1971  for (int i = 0; i < num_vectors; i++) {
1972  deshake_ctx->matches_contig_host[i].should_consider = false;
1973  }
1974  debug_matches.num_model_matches = 0;
1975 
1976  if (deshake_ctx->debug_on) {
1977  av_log(avctx, AV_LOG_VERBOSE,
1978  "\n[ALERT] No motion data found in queue_frame, motion reset to 0\n\n"
1979  );
1980  }
1981 
1982  goto end;
1983 
1984 end:
1985  // Swap the descriptor buffers (we don't need the previous frame's descriptors
1986  // again so we will use that space for the next frame's descriptors)
1987  temp = deshake_ctx->prev_descriptors;
1988  deshake_ctx->prev_descriptors = deshake_ctx->descriptors;
1989  deshake_ctx->descriptors = temp;
1990 
1991  // Same for the refined features
1992  temp = deshake_ctx->prev_refined_features;
1993  deshake_ctx->prev_refined_features = deshake_ctx->refined_features;
1994  deshake_ctx->refined_features = temp;
1995 
1996  if (deshake_ctx->debug_on) {
1997  if (num_vectors == 0) {
1998  debug_matches.matches = NULL;
1999  } else {
2000  debug_matches.matches = av_malloc_array(num_vectors, sizeof(MotionVector));
2001 
2002  if (!debug_matches.matches) {
2003  err = AVERROR(ENOMEM);
2004  goto fail;
2005  }
2006  }
2007 
2008  for (int i = 0; i < num_vectors; i++) {
2009  debug_matches.matches[i] = deshake_ctx->matches_contig_host[i];
2010  }
2011  debug_matches.num_matches = num_vectors;
2012 
2014  deshake_ctx->abs_motion.debug_matches,
2015  &debug_matches,
2016  sizeof(DebugMatches),
2017  NULL
2018  );
2019  }
2020 
2021  for (int i = 0; i < RingbufCount; i++) {
2023  deshake_ctx->abs_motion.ringbuffers[i],
2024  &new_vals[i],
2025  sizeof(float),
2026  NULL
2027  );
2028  }
2029 
2030  return ff_framequeue_add(&deshake_ctx->fq, input_frame);
2031 
2032 fail:
2033  clFinish(deshake_ctx->command_queue);
2034  av_frame_free(&input_frame);
2035  return err;
2036 }
2037 
2039 {
2040  AVFilterLink *inlink = ctx->inputs[0];
2041  AVFilterLink *outlink = ctx->outputs[0];
2042  DeshakeOpenCLContext *deshake_ctx = ctx->priv;
2043  AVFrame *frame = NULL;
2044  int ret, status;
2045  int64_t pts;
2046 
2047  FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
2048 
2049  if (!deshake_ctx->eof) {
2050  ret = ff_inlink_consume_frame(inlink, &frame);
2051  if (ret < 0)
2052  return ret;
2053  if (ret > 0) {
2054  if (!frame->hw_frames_ctx)
2055  return AVERROR(EINVAL);
2056 
2057  if (!deshake_ctx->initialized) {
2058  ret = deshake_opencl_init(ctx);
2059  if (ret < 0)
2060  return ret;
2061  }
2062 
2063  // If there is no more space in the ringbuffers, remove the oldest
2064  // values to make room for the new ones
2065  if (av_fifo_space(deshake_ctx->abs_motion.ringbuffers[RingbufX]) == 0) {
2066  for (int i = 0; i < RingbufCount; i++) {
2067  av_fifo_drain(deshake_ctx->abs_motion.ringbuffers[i], sizeof(float));
2068  }
2069  }
2070  ret = queue_frame(inlink, frame);
2071  if (ret < 0)
2072  return ret;
2073  if (ret >= 0) {
2074  // See if we have enough buffered frames to process one
2075  //
2076  // "enough" is half the smooth window of queued frames into the future
2077  if (ff_framequeue_queued_frames(&deshake_ctx->fq) >= deshake_ctx->smooth_window / 2) {
2078  return filter_frame(inlink, ff_framequeue_take(&deshake_ctx->fq));
2079  }
2080  }
2081  }
2082  }
2083 
2084  if (!deshake_ctx->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) {
2085  if (status == AVERROR_EOF) {
2086  deshake_ctx->eof = true;
2087  }
2088  }
2089 
2090  if (deshake_ctx->eof) {
2091  // Finish processing the rest of the frames in the queue.
2092  while(ff_framequeue_queued_frames(&deshake_ctx->fq) != 0) {
2093  for (int i = 0; i < RingbufCount; i++) {
2094  av_fifo_drain(deshake_ctx->abs_motion.ringbuffers[i], sizeof(float));
2095  }
2096 
2097  ret = filter_frame(inlink, ff_framequeue_take(&deshake_ctx->fq));
2098  if (ret < 0) {
2099  return ret;
2100  }
2101  }
2102 
2103  if (deshake_ctx->debug_on) {
2104  av_log(ctx, AV_LOG_VERBOSE,
2105  "Average kernel execution times:\n"
2106  "\t grayscale: %0.3f ms\n"
2107  "\t harris_response: %0.3f ms\n"
2108  "\t refine_features: %0.3f ms\n"
2109  "\tbrief_descriptors: %0.3f ms\n"
2110  "\tmatch_descriptors: %0.3f ms\n"
2111  "\t transform: %0.3f ms\n"
2112  "\t crop_upscale: %0.3f ms\n"
2113  "Average buffer read times:\n"
2114  "\t features buf: %0.3f ms\n",
2115  averaged_event_time_ms(deshake_ctx->grayscale_time, deshake_ctx->curr_frame),
2116  averaged_event_time_ms(deshake_ctx->harris_response_time, deshake_ctx->curr_frame),
2117  averaged_event_time_ms(deshake_ctx->refine_features_time, deshake_ctx->curr_frame),
2118  averaged_event_time_ms(deshake_ctx->brief_descriptors_time, deshake_ctx->curr_frame),
2119  averaged_event_time_ms(deshake_ctx->match_descriptors_time, deshake_ctx->curr_frame),
2120  averaged_event_time_ms(deshake_ctx->transform_time, deshake_ctx->curr_frame),
2121  averaged_event_time_ms(deshake_ctx->crop_upscale_time, deshake_ctx->curr_frame),
2122  averaged_event_time_ms(deshake_ctx->read_buf_time, deshake_ctx->curr_frame)
2123  );
2124  }
2125 
2126  ff_outlink_set_status(outlink, AVERROR_EOF, deshake_ctx->duration);
2127  return 0;
2128  }
2129 
2130  if (!deshake_ctx->eof) {
2131  FF_FILTER_FORWARD_WANTED(outlink, inlink);
2132  }
2133 
2134  return FFERROR_NOT_READY;
2135 }
2136 
2138  {
2139  .name = "default",
2140  .type = AVMEDIA_TYPE_VIDEO,
2141  .config_props = &ff_opencl_filter_config_input,
2142  },
2143  { NULL }
2144 };
2145 
2147  {
2148  .name = "default",
2149  .type = AVMEDIA_TYPE_VIDEO,
2150  .config_props = &ff_opencl_filter_config_output,
2151  },
2152  { NULL }
2153 };
2154 
2155 #define OFFSET(x) offsetof(DeshakeOpenCLContext, x)
2156 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
2157 
2159  {
2160  "tripod", "simulates a tripod by preventing any camera movement whatsoever "
2161  "from the original frame",
2162  OFFSET(tripod_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS
2163  },
2164  {
2165  "debug", "turn on additional debugging information",
2166  OFFSET(debug_on), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS
2167  },
2168  {
2169  "adaptive_crop", "attempt to subtly crop borders to reduce mirrored content",
2170  OFFSET(should_crop), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS
2171  },
2172  {
2173  "refine_features", "refine feature point locations at a sub-pixel level",
2174  OFFSET(refine_features), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS
2175  },
2176  {
2177  "smooth_strength", "smoothing strength (0 attempts to adaptively determine optimal strength)",
2178  OFFSET(smooth_percent), AV_OPT_TYPE_FLOAT, {.dbl = 0.0f}, 0.0f, 1.0f, FLAGS
2179  },
2180  {
2181  "smooth_window_multiplier", "multiplier for number of frames to buffer for motion data",
2182  OFFSET(smooth_window_multiplier), AV_OPT_TYPE_FLOAT, {.dbl = 2.0}, 0.1, 10.0, FLAGS
2183  },
2184  { NULL }
2185 };
2186 
2187 AVFILTER_DEFINE_CLASS(deshake_opencl);
2188 
2190  .name = "deshake_opencl",
2191  .description = NULL_IF_CONFIG_SMALL("Feature-point based video stabilization filter"),
2192  .priv_size = sizeof(DeshakeOpenCLContext),
2193  .priv_class = &deshake_opencl_class,
2197  .activate = activate,
2198  .inputs = deshake_opencl_inputs,
2199  .outputs = deshake_opencl_outputs,
2200  .flags_internal = FF_FILTER_FLAG_HWFRAME_AWARE
2201 };
Context structure for the Lagged Fibonacci PRNG.
Definition: lfg.h:33
#define F1(l, r, i)
Definition: cast5.c:47
planar GBR 4:4:4:4 40bpp, little-endian
Definition: pixfmt.h:291
int ff_inlink_consume_frame(AVFilterLink *link, AVFrame **rframe)
Take a frame from the link&#39;s FIFO and update the link&#39;s stats.
Definition: avfilter.c:1476
#define NULL
Definition: coverity.c:32
unsigned long long crop_upscale_time
const char const char void * val
Definition: avisynth_c.h:863
#define FF_FILTER_FLAG_HWFRAME_AWARE
The filter is aware of hardware frames, and any hardware frame context should not be automatically pr...
Definition: internal.h:365
cl_kernel kernel_brief_descriptors
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2522
This structure describes decoded (raw) audio or video data.
Definition: frame.h:295
AbsoluteFrameMotion abs_motion
#define mi
#define F2(l, r, i)
Definition: cast5.c:40
AVOption.
Definition: opt.h:246
int ff_opencl_filter_work_size_from_image(AVFilterContext *avctx, size_t *work_size, AVFrame *frame, int plane, int block_alignment)
Find the work size needed needed for a given plane of an image.
Definition: opencl.c:278
int ff_opencl_filter_config_input(AVFilterLink *inlink)
Check that the input link contains a suitable hardware frames context and extract the device from it...
Definition: opencl.c:60
#define CL_CREATE_BUFFER(ctx, buffer_name, size)
Create a buffer with the given information.
Definition: opencl.h:237
int ff_opencl_filter_query_formats(AVFilterContext *avctx)
Return that all inputs and outputs support only AV_PIX_FMT_OPENCL.
Definition: opencl.c:28
misc image utilities
Main libavfilter public API header.
Memory handling functions.
else temp
Definition: vf_mcdeint.c:256
const char * desc
Definition: nvenc.c:68
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
Queue of AVFrame pointers.
Definition: framequeue.h:53
#define CL_RELEASE_MEMORY(m)
release an OpenCL Memory Object
Definition: opencl.h:114
static void free_debug_matches(AbsoluteFrameMotion *afm)
static void optimize_model(DeshakeOpenCLContext *deshake_ctx, MotionVector *best_pairs, MotionVector *inliers, const int num_inliers, float best_err, double *model_out)
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
static FrameDelta decompose_transform(double *model)
cl_float2 skew
static int deshake_opencl_init(AVFilterContext *avctx)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:36
#define OFFSET(x)
AVS_VideoFrame int int int int new_height
Definition: avisynth_c.h:913
#define MATCHES_CONTIG_SIZE
return FFERROR_NOT_READY
cl_ulong ff_opencl_get_event_time(cl_event event)
Gets the command start and end times for the given event and returns the difference (the time that th...
Definition: opencl.c:354
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:99
#define src
Definition: vp8dsp.c:254
int ff_opencl_filter_init(AVFilterContext *avctx)
Initialise an OpenCL filter context.
Definition: opencl.c:147
const char * ff_opencl_source_deshake
uint8_t log2_chroma_w
Amount to shift the luma width right to find the chroma width.
Definition: pixdesc.h:92
MotionVector * matches
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
Definition: filters.h:189
AVFifoBuffer * debug_matches
int av_fifo_generic_write(AVFifoBuffer *f, void *src, int size, int(*func)(void *, void *, int))
Feed data from a user-supplied callback to an AVFifoBuffer.
Definition: fifo.c:122
AVOpenCLDeviceContext * hwctx
Definition: opencl.h:41
AVBufferRef * hw_frames_ctx
For hwaccel-format frames, this should be a reference to the AVHWFramesContext describing the frame...
Definition: frame.h:634
unsigned long long refine_features_time
const char * name
Pad name.
Definition: internal.h:60
cl_command_queue command_queue
AVFilterLink ** inputs
array of pointers to input links
Definition: avfilter.h:346
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
planar GBRA 4:4:4:4 64bpp, big-endian
Definition: pixfmt.h:216
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1075
#define av_cold
Definition: attributes.h:82
static av_cold int uninit(AVCodecContext *avctx)
Definition: crystalhd.c:279
float delta
static av_cold void deshake_opencl_uninit(AVFilterContext *avctx)
AVOptions.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
#define f(width, name)
Definition: cbs_vp9.c:255
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
cl_device_id device_id
The primary device ID of the device.
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:388
int av_fifo_space(const AVFifoBuffer *f)
Return the amount of space in bytes in the AVFifoBuffer, that is the amount of data you can write int...
Definition: fifo.c:82
int64_t duration
Definition: movenc.c:63
#define BRIEF_PATCH_SIZE_HALF
cl_float2 bottom_right
static void update_needed_crop(CropInfo *crop, float *transform, float frame_width, float frame_height)
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:174
static double av_q2d(AVRational a)
Convert an AVRational to a double.
Definition: rational.h:104
cl_float2 top_left
#define FFMIN3(a, b, c)
Definition: common.h:97
#define AVERROR_EOF
End of file.
Definition: error.h:55
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int ff_opencl_filter_config_output(AVFilterLink *outlink)
Create a suitable hardware frames context for the output.
Definition: opencl.c:96
int ff_framequeue_add(FFFrameQueue *fq, AVFrame *frame)
Add a frame.
Definition: framequeue.c:63
#define av_log(a,...)
#define FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink)
Forward the status on an output link to an input link.
Definition: filters.h:199
RingbufferIndices
static const AVFilterPad deshake_opencl_outputs[]
AVFilter ff_vf_deshake_opencl
A filter pad used for either input or output.
Definition: internal.h:54
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
Definition: mathematics.c:142
#define expf(x)
Definition: libm.h:283
#define CL_RELEASE_QUEUE(q)
release an OpenCL Command Queue
Definition: opencl.h:127
int ff_inlink_acknowledge_status(AVFilterLink *link, int *rstatus, int64_t *rpts)
Test and acknowledge the change of status on the link.
Definition: avfilter.c:1431
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:170
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:259
int width
Definition: frame.h:353
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
uint8_t log2_chroma_h
Amount to shift the luma height right to find the chroma height.
Definition: pixdesc.h:101
#define AV_PIX_FMT_FLAG_RGB
The pixel format contains RGB-like data (as opposed to YUV/grayscale).
Definition: pixdesc.h:148
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:202
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
const char * r
Definition: vf_curves.c:114
void * priv
private data for use by the filter
Definition: avfilter.h:353
int av_fifo_generic_read(AVFifoBuffer *f, void *dest, int buf_size, void(*func)(void *, void *, int))
Feed data from an AVFifoBuffer to a user-supplied callback.
Definition: fifo.c:213
unsigned long long brief_descriptors_time
static bool estimate_affine_2d(DeshakeOpenCLContext *deshake_ctx, MotionVector *point_pairs, DebugMatches *debug_matches, const int num_point_pairs, double *model_out, const double threshold, const int max_iters, const double confidence)
simple assert() macros that are a bit more flexible than ISO C assert().
#define F3(l, r, i)
Definition: cast5.c:33
GLsizei GLsizei * length
Definition: opengl_enc.c:114
static av_always_inline av_const double round(double x)
Definition: libm.h:444
#define FFMAX(a, b)
Definition: common.h:94
static cl_float2 transformed_point(float x, float y, float *transform)
#define fail()
Definition: checkasm.h:122
static bool get_subset(AVLFG *alfg, const MotionVector *point_pairs, const int num_point_pairs, MotionVector *pairs_subset, int max_attempts)
#define CL_CREATE_KERNEL(ctx, kernel_name)
Create a kernel with the given name.
Definition: opencl.h:93
#define powf(x, y)
Definition: libm.h:50
void ff_framequeue_free(FFFrameQueue *fq)
Free the queue and all queued frames.
Definition: framequeue.c:53
AVFifoBuffer * ringbuffers[RingbufCount]
#define ROUNDED_UP_DIV(a, b)
planar GBR 4:4:4:4 48bpp, big-endian
Definition: pixfmt.h:287
static av_const double hypot(double x, double y)
Definition: libm.h:366
#define b
Definition: input.c:41
planar GBR 4:4:4:4 40bpp, big-endian
Definition: pixfmt.h:290
static int rand_in(int low, int high, AVLFG *alfg)
MotionVector model_matches[3]
#define FFSIGN(a)
Definition: common.h:73
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
MotionVector * matches_contig_host
static void transform_center_scale(float x_shift, float y_shift, float angle, float scale_x, float scale_y, float center_w, float center_h, float *matrix)
AVFrame * ff_framequeue_take(FFFrameQueue *fq)
Take the first frame in the queue.
Definition: framequeue.c:98
AVFormatContext * ctx
Definition: movenc.c:48
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define s(width, name)
Definition: cbs_vp9.c:257
static const struct @99 transforms[18]
static double averaged_event_time_ms(unsigned long long total_time, int num_frames)
int n
Definition: avisynth_c.h:760
static IterIndices start_end_for(DeshakeOpenCLContext *deshake_ctx, int length)
static void transform_debug(AVFilterContext *avctx, float *new_vals, float *old_vals, int curr_frame)
static int filter_frame(AVFilterLink *link, AVFrame *input_frame)
transform input video
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
#define FF_ARRAY_ELEMS(a)
static void make_gauss_kernel(float *gauss_kernel, float length, float sigma)
planar GBR 4:4:4:4 48bpp, little-endian
Definition: pixfmt.h:288
static const int8_t transform[32][32]
Definition: hevcdsp.c:27
static int queue_frame(AVFilterLink *link, AVFrame *input_frame)
static int activate(AVFilterContext *ctx)
int64_t pkt_duration
duration of the corresponding packet, expressed in AVStream->time_base units, 0 if unknown...
Definition: frame.h:574
static void compute_error(const MotionVector *point_pairs, const int num_point_pairs, const double *model, float *err)
int av_fifo_size(const AVFifoBuffer *f)
Return the amount of data in bytes in the AVFifoBuffer, that is the amount of data you can read from ...
Definition: fifo.c:77
int av_fifo_generic_peek_at(AVFifoBuffer *f, void *dest, int offset, int buf_size, void(*func)(void *, void *, int))
Feed data at specific position from an AVFifoBuffer to a user-supplied callback.
Definition: fifo.c:151
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:172
MotionVector * matches_host
uint8_t * data
The data buffer.
Definition: buffer.h:89
static float smooth(DeshakeOpenCLContext *deshake_ctx, float *gauss_kernel, int length, float max_val, AVFifoBuffer *values)
a very simple circular buffer FIFO implementation
static unsigned int av_lfg_get(AVLFG *c)
Get the next random unsigned 32-bit number using an ALFG.
Definition: lfg.h:53
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
static int ransac_update_num_iters(double confidence, double num_outliers, int max_iters)
#define CL_CREATE_BUFFER_FLAGS(ctx, buffer_name, flags, size, host_ptr)
Create a buffer with the given information.
Definition: opencl.h:197
Filter definition.
Definition: avfilter.h:144
they must not be accessed directly The fifo field contains the frames that are queued in the input for processing by the filter The status_in and status_out fields contains the queued status(EOF or error) of the link
This struct describes a set or pool of "hardware" frames (i.e.
Definition: hwcontext.h:123
cl_float2 p2
const char * name
Filter name.
Definition: avfilter.h:148
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
Definition: lfg.c:32
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a link
#define CL_RUN_KERNEL_WITH_ARGS(queue, kernel, global_work_size, local_work_size, event,...)
Uses the above macro to enqueue the given kernel and then additionally runs it to completion via clFi...
Definition: opencl.h:180
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:350
#define FLAGS
static float gaussian_for(int x, float sigma)
#define CL_FAIL_ON_ERROR(errcode,...)
A helper macro to handle OpenCL errors.
Definition: opencl.h:74
static void ringbuf_float_at(DeshakeOpenCLContext *deshake_ctx, AVFifoBuffer *values, float *val, int offset)
static int64_t pts
AVFifoBuffer * av_fifo_alloc_array(size_t nmemb, size_t size)
Initialize an AVFifoBuffer.
Definition: fifo.c:49
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:309
unsigned long long grayscale_time
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static av_always_inline AVRational av_inv_q(AVRational q)
Invert a rational.
Definition: rational.h:159
static const AVOption deshake_opencl_options[]
int
static int query_formats(AVFilterContext *ctx)
Definition: aeval.c:244
static size_t ff_framequeue_queued_frames(const FFFrameQueue *fq)
Get the number of queued frames.
Definition: framequeue.h:146
common internal and external API header
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:171
void ff_opencl_filter_uninit(AVFilterContext *avctx)
Uninitialise an OpenCL filter context.
Definition: opencl.c:156
unsigned long long match_descriptors_time
#define CL_RELEASE_KERNEL(k)
release an OpenCL Kernel
Definition: opencl.h:101
unsigned long long transform_time
#define CL_BLOCKING_WRITE_BUFFER(queue, buffer, size, host_ptr, event)
Perform a blocking write to a buffer.
Definition: opencl.h:214
static int make_vectors_contig(DeshakeOpenCLContext *deshake_ctx, int size_y, int size_x)
FF_FILTER_FORWARD_WANTED(outlink, inlink)
unsigned long long harris_response_time
static bool minimize_error(DeshakeOpenCLContext *deshake_ctx, MotionVector *inliers, DebugMatches *debug_matches, const int num_inliers, double *model_out, const int max_iters)
cl_float2 p1
pixel format definitions
void ff_get_matrix(float x_shift, float y_shift, float angle, float scale_x, float scale_y, float *matrix)
Get an affine transformation matrix from given translation, rotation, and zoom factors.
Definition: transform.c:106
#define BREIFN
cl_context context
The OpenCL context which will contain all operations and frames on this device.
static bool points_not_collinear(const cl_float2 **points)
cl_float2 translation
void ff_framequeue_global_init(FFFrameQueueGlobal *fqg)
Init a global structure.
Definition: framequeue.c:30
OpenCLFilterContext ocf
An instance of a filter.
Definition: avfilter.h:338
cl_kernel kernel_match_descriptors
and forward the result(frame or status change) to the corresponding input.If nothing is possible
int height
Definition: frame.h:353
static void run_estimate_kernel(const MotionVector *point_pairs, double *model)
AVFILTER_DEFINE_CLASS(deshake_opencl)
static const AVFilterPad deshake_opencl_inputs[]
#define av_freep(p)
static bool check_subset(const MotionVector *pairs_subset)
#define M_PI
Definition: mathematics.h:52
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:175
void av_fifo_freep(AVFifoBuffer **f)
Free an AVFifoBuffer and reset pointer to NULL.
Definition: fifo.c:63
#define av_malloc_array(a, b)
int ff_opencl_filter_load_program(AVFilterContext *avctx, const char **program_source_array, int nb_strings)
Load a new OpenCL program from strings in memory.
Definition: opencl.c:171
internal API functions
cl_float2 scale
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later.That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another.Frame references ownership and permissions
void ff_framequeue_init(FFFrameQueue *fq, FFFrameQueueGlobal *fqg)
Init a frame queue and attach it to a global structure.
Definition: framequeue.c:47
planar GBRA 4:4:4:4 64bpp, little-endian
Definition: pixfmt.h:217
void av_fifo_drain(AVFifoBuffer *f, int size)
Discard data from the FIFO.
Definition: fifo.c:233
Structure to hold global options and statistics for frame queues.
Definition: framequeue.h:46
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:654
#define FFMAX3(a, b, c)
Definition: common.h:95
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:173
static int find_inliers(MotionVector *point_pairs, const int num_point_pairs, const double *model, float *err, double thresh)
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
unsigned long long read_buf_time