FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
softfloat.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #ifndef AVUTIL_SOFTFLOAT_H
22 #define AVUTIL_SOFTFLOAT_H
23 
24 #include <stdint.h>
25 #include "common.h"
26 
27 #include "avassert.h"
28 #include "softfloat_tables.h"
29 
30 #define MIN_EXP -149
31 #define MAX_EXP 126
32 #define ONE_BITS 29
33 
34 typedef struct SoftFloat{
37 }SoftFloat;
38 
39 static const SoftFloat FLOAT_0 = { 0, MIN_EXP}; ///< 0.0
40 static const SoftFloat FLOAT_05 = { 0x20000000, 0}; ///< 0.5
41 static const SoftFloat FLOAT_1 = { 0x20000000, 1}; ///< 1.0
42 static const SoftFloat FLOAT_EPSILON = { 0x29F16B12, -16}; ///< A small value
43 static const SoftFloat FLOAT_1584893192 = { 0x32B771ED, 1}; ///< 1.584893192 (10^.2)
44 static const SoftFloat FLOAT_100000 = { 0x30D40000, 17}; ///< 100000
45 static const SoftFloat FLOAT_0999999 = { 0x3FFFFBCE, 0}; ///< 0.999999
46 static const SoftFloat FLOAT_MIN = { 0x20000000, MIN_EXP};
47 
48 
49 /**
50  * Convert a SoftFloat to a double precision float.
51  */
52 static inline av_const double av_sf2double(SoftFloat v) {
53  v.exp -= ONE_BITS +1;
54  if(v.exp > 0) return (double)v.mant * (double)(1 << v.exp);
55  else return (double)v.mant / (double)(1 << (-v.exp));
56 }
57 
59  if(a.mant){
60 #if 1
61  while((a.mant + 0x1FFFFFFFU)<0x3FFFFFFFU){
62  a.mant += a.mant;
63  a.exp -= 1;
64  }
65 #else
66  int s=ONE_BITS - av_log2(FFABS(a.mant));
67  a.exp -= s;
68  a.mant <<= s;
69 #endif
70  if(a.exp < MIN_EXP){
71  a.exp = MIN_EXP;
72  a.mant= 0;
73  }
74  }else{
75  a.exp= MIN_EXP;
76  }
77  return a;
78 }
79 
81 #if 1
82  if((int32_t)(a.mant + 0x40000000U) <= 0){
83  a.exp++;
84  a.mant>>=1;
85  }
86  av_assert2(a.mant < 0x40000000 && a.mant > -0x40000000);
87  av_assert2(a.exp <= MAX_EXP);
88  return a;
89 #elif 1
90  int t= a.mant + 0x40000000 < 0;
91  return (SoftFloat){ a.mant>>t, a.exp+t};
92 #else
93  int t= (a.mant + 0x3FFFFFFFU)>>31;
94  return (SoftFloat){a.mant>>t, a.exp+t};
95 #endif
96 }
97 
98 /**
99  * @return Will not be more denormalized than a*b. So if either input is
100  * normalized, then the output will not be worse then the other input.
101  * If both are normalized, then the output will be normalized.
102  */
104  a.exp += b.exp;
105  av_assert2((int32_t)((a.mant * (int64_t)b.mant) >> ONE_BITS) == (a.mant * (int64_t)b.mant) >> ONE_BITS);
106  a.mant = (a.mant * (int64_t)b.mant) >> ONE_BITS;
107  a = av_normalize1_sf((SoftFloat){a.mant, a.exp - 1});
108  if (!a.mant || a.exp < MIN_EXP)
109  return FLOAT_0;
110  return a;
111 }
112 
113 /**
114  * b has to be normalized and not zero.
115  * @return Will not be more denormalized than a.
116  */
118  int64_t temp = (int64_t)a.mant * (1<<(ONE_BITS+1));
119  temp /= b.mant;
120  a.exp -= b.exp;
121  a.mant = temp;
122  while (a.mant != temp) {
123  temp /= 2;
124  a.exp--;
125  a.mant = temp;
126  }
127  a = av_normalize1_sf(a);
128  if (!a.mant || a.exp < MIN_EXP)
129  return FLOAT_0;
130  return a;
131 }
132 
133 /**
134  * Compares two SoftFloats.
135  * @returns < 0 if the first is less
136  * > 0 if the first is greater
137  * 0 if they are equal
138  */
139 static inline av_const int av_cmp_sf(SoftFloat a, SoftFloat b){
140  int t= a.exp - b.exp;
141  if (t <-31) return - b.mant ;
142  else if (t < 0) return (a.mant >> (-t)) - b.mant ;
143  else if (t < 32) return a.mant - (b.mant >> t);
144  else return a.mant ;
145 }
146 
147 /**
148  * Compares two SoftFloats.
149  * @returns 1 if a is greater than b, 0 otherwise
150  */
151 static inline av_const int av_gt_sf(SoftFloat a, SoftFloat b)
152 {
153  int t= a.exp - b.exp;
154  if (t <-31) return 0 > b.mant ;
155  else if (t < 0) return (a.mant >> (-t)) > b.mant ;
156  else if (t < 32) return a.mant > (b.mant >> t);
157  else return a.mant > 0 ;
158 }
159 
160 /**
161  * @returns the sum of 2 SoftFloats.
162  */
164  int t= a.exp - b.exp;
165  if (t <-31) return b;
166  else if (t < 0) return av_normalize_sf(av_normalize1_sf((SoftFloat){ b.mant + (a.mant >> (-t)), b.exp}));
167  else if (t < 32) return av_normalize_sf(av_normalize1_sf((SoftFloat){ a.mant + (b.mant >> t ), a.exp}));
168  else return a;
169 }
170 
171 /**
172  * @returns the difference of 2 SoftFloats.
173  */
175  return av_add_sf(a, (SoftFloat){ -b.mant, b.exp});
176 }
177 
178 //FIXME log, exp, pow
179 
180 /**
181  * Converts a mantisse and exponent to a SoftFloat.
182  * This converts a fixed point value v with frac_bits fractional bits to a
183  * SoftFloat.
184  * @returns a SoftFloat with value v * 2^-frac_bits
185  */
186 static inline av_const SoftFloat av_int2sf(int v, int frac_bits){
187  int exp_offset = 0;
188  if(v <= INT_MIN + 1){
189  exp_offset = 1;
190  v>>=1;
191  }
192  return av_normalize_sf(av_normalize1_sf((SoftFloat){v, ONE_BITS + 1 - frac_bits + exp_offset}));
193 }
194 
195 /**
196  * Converts a SoftFloat to an integer.
197  * Rounding is to -inf.
198  */
199 static inline av_const int av_sf2int(SoftFloat v, int frac_bits){
200  v.exp += frac_bits - (ONE_BITS + 1);
201  if(v.exp >= 0) return v.mant << v.exp ;
202  else return v.mant >>(-v.exp);
203 }
204 
205 /**
206  * Rounding-to-nearest used.
207  */
209 {
210  int tabIndex, rem;
211 
212  if (val.mant == 0)
213  val.exp = MIN_EXP;
214  else if (val.mant < 0)
215  abort();
216  else
217  {
218  tabIndex = (val.mant - 0x20000000) >> 20;
219 
220  rem = val.mant & 0xFFFFF;
221  val.mant = (int)(((int64_t)av_sqrttbl_sf[tabIndex] * (0x100000 - rem) +
222  (int64_t)av_sqrttbl_sf[tabIndex + 1] * rem +
223  0x80000) >> 20);
224  val.mant = (int)(((int64_t)av_sqr_exp_multbl_sf[val.exp & 1] * val.mant +
225  0x10000000) >> 29);
226 
227  if (val.mant < 0x40000000)
228  val.exp -= 2;
229  else
230  val.mant >>= 1;
231 
232  val.exp = (val.exp >> 1) + 1;
233  }
234 
235  return val;
236 }
237 
238 /**
239  * Rounding-to-nearest used.
240  */
241 static av_unused void av_sincos_sf(int a, int *s, int *c)
242 {
243  int idx, sign;
244  int sv, cv;
245  int st, ct;
246 
247  idx = a >> 26;
248  sign = (int32_t)((unsigned)idx << 27) >> 31;
249  cv = av_costbl_1_sf[idx & 0xf];
250  cv = (cv ^ sign) - sign;
251 
252  idx -= 8;
253  sign = (int32_t)((unsigned)idx << 27) >> 31;
254  sv = av_costbl_1_sf[idx & 0xf];
255  sv = (sv ^ sign) - sign;
256 
257  idx = a >> 21;
258  ct = av_costbl_2_sf[idx & 0x1f];
259  st = av_sintbl_2_sf[idx & 0x1f];
260 
261  idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30);
262 
263  sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
264 
265  cv = idx;
266 
267  idx = a >> 16;
268  ct = av_costbl_3_sf[idx & 0x1f];
269  st = av_sintbl_3_sf[idx & 0x1f];
270 
271  idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30);
272 
273  sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
274  cv = idx;
275 
276  idx = a >> 11;
277 
278  ct = (int)(((int64_t)av_costbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) +
279  (int64_t)av_costbl_4_sf[(idx & 0x1f)+1]*(a & 0x7ff) +
280  0x400) >> 11);
281  st = (int)(((int64_t)av_sintbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) +
282  (int64_t)av_sintbl_4_sf[(idx & 0x1f) + 1] * (a & 0x7ff) +
283  0x400) >> 11);
284 
285  *c = (int)(((int64_t)cv * ct + (int64_t)sv * st + 0x20000000) >> 30);
286 
287  *s = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
288 }
289 
290 #endif /* AVUTIL_SOFTFLOAT_H */
#define av_const
Definition: attributes.h:76
static av_always_inline SoftFloat av_sqrt_sf(SoftFloat val)
Rounding-to-nearest used.
Definition: softfloat.h:208
const char const char void * val
Definition: avisynth_c.h:771
const char * s
Definition: avisynth_c.h:768
#define ONE_BITS
Definition: softfloat.h:32
static const int32_t av_costbl_4_sf[33]
static const SoftFloat FLOAT_05
0.5
Definition: softfloat.h:40
else temp
Definition: vf_mcdeint.c:259
static av_const SoftFloat av_div_sf(SoftFloat a, SoftFloat b)
b has to be normalized and not zero.
Definition: softfloat.h:117
const char * b
Definition: vf_curves.c:113
int av_log2(unsigned v)
Definition: intmath.c:26
static const int32_t av_sintbl_3_sf[32]
static const SoftFloat FLOAT_0
0.0
Definition: softfloat.h:39
static av_const double av_sf2double(SoftFloat v)
Convert a SoftFloat to a double precision float.
Definition: softfloat.h:52
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
int32_t mant
Definition: softfloat.h:35
static const SoftFloat FLOAT_100000
100000
Definition: softfloat.h:44
#define U(x)
Definition: vp56_arith.h:37
static av_const SoftFloat av_normalize_sf(SoftFloat a)
Definition: softfloat.h:58
static const SoftFloat FLOAT_1
1.0
Definition: softfloat.h:41
static const SoftFloat FLOAT_0999999
0.999999
Definition: softfloat.h:45
simple assert() macros that are a bit more flexible than ISO C assert().
static av_unused void av_sincos_sf(int a, int *s, int *c)
Rounding-to-nearest used.
Definition: softfloat.h:241
int32_t
static av_const int av_cmp_sf(SoftFloat a, SoftFloat b)
Compares two SoftFloats.
Definition: softfloat.h:139
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
static av_const int av_gt_sf(SoftFloat a, SoftFloat b)
Compares two SoftFloats.
Definition: softfloat.h:151
static av_const SoftFloat av_normalize1_sf(SoftFloat a)
Definition: softfloat.h:80
static const int32_t av_sqrttbl_sf[512+1]
static av_const int av_sf2int(SoftFloat v, int frac_bits)
Converts a SoftFloat to an integer.
Definition: softfloat.h:199
static const int32_t av_costbl_2_sf[32]
static const int32_t av_costbl_1_sf[16]
#define MIN_EXP
Definition: softfloat.h:30
static const int32_t av_sintbl_2_sf[32]
static av_const SoftFloat av_sub_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:174
static av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:163
static const int32_t av_sqr_exp_multbl_sf[2]
int
common internal and external API header
static const SoftFloat FLOAT_1584893192
1.584893192 (10^.2)
Definition: softfloat.h:43
static av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:103
static double c[64]
int32_t exp
Definition: softfloat.h:36
static const SoftFloat FLOAT_EPSILON
A small value.
Definition: softfloat.h:42
static const int32_t av_sintbl_4_sf[33]
static const SoftFloat FLOAT_MIN
Definition: softfloat.h:46
#define MAX_EXP
Definition: softfloat.h:31
static const int32_t av_costbl_3_sf[32]
static av_const SoftFloat av_int2sf(int v, int frac_bits)
Converts a mantisse and exponent to a SoftFloat.
Definition: softfloat.h:186
#define av_always_inline
Definition: attributes.h:39
#define av_unused
Definition: attributes.h:125