Go to the documentation of this file.
   25 #define LPC_USE_DOUBLE 
   41     c = 2.0 / (
len - 1.0);
 
   72     for(j=0; j<lag; j+=2){
 
   73         double sum0 = 1.0, sum1 = 1.0;
 
   97                                int max_shift, 
int zero_shift)
 
  105     qmax = (1 << (precision - 1)) - 1;
 
  109     for(
i=0; 
i<order; 
i++) {
 
  110         cmax= 
FFMAX(cmax, fabs(lpc_in[
i]));
 
  114     if(cmax * (1 << max_shift) < 1.0) {
 
  116         memset(lpc_out, 0, 
sizeof(
int32_t) * order);
 
  122     while((cmax * (1 << sh) > qmax) && (sh > min_shift)) {
 
  128     if(sh == 0 && cmax > qmax) {
 
  129         double scale = ((double)qmax) / cmax;
 
  130         for(
i=0; 
i<order; 
i++) {
 
  137     for(
i=0; 
i<order; 
i++) {
 
  138         error -= lpc_in[
i] * (1 << sh);
 
  150     for(
i=max_order-1; 
i>=min_order-1; 
i--) {
 
  164     s->lpc_apply_welch_window(
samples, 
s->blocksize, 
s->windowed_samples);
 
  165     s->lpc_compute_autocorr(
s->windowed_samples, 
s->blocksize, order, autoc);
 
  172                                int order, 
double *
ref)
 
  175     double signal = 0.0f, avg_err = 0.0f;
 
  177     const double a = 0.5f, 
b = 1.0f - 
a;
 
  180     for (
i = 0; 
i <= 
len / 2; 
i++) {
 
  186     s->lpc_compute_autocorr(
s->windowed_samples, 
len, order, autoc);
 
  189     for (
i = 0; 
i < order; 
i++)
 
  190         avg_err = (avg_err + 
error[
i])/2.0f;
 
  191     return avg_err ? signal/avg_err : 
NAN;
 
  202                       int max_order, 
int precision,
 
  205                       int omethod, 
int min_shift, 
int max_shift, 
int zero_shift)
 
  218     if (blocksize != 
s->blocksize || max_order != 
s->max_order ||
 
  219         lpc_type  != 
s->lpc_type) {
 
  228         s->lpc_apply_welch_window(
samples, blocksize, 
s->windowed_samples);
 
  230         s->lpc_compute_autocorr(
s->windowed_samples, blocksize, max_order, autoc);
 
  234         for(
i=0; 
i<max_order; 
i++)
 
  246         for(j=0; j<max_order; j++)
 
  247             m[0].
coeff[max_order-1][j] = -lpc[max_order-1][j];
 
  253             for(
i=max_order; 
i<blocksize; 
i++){
 
  254                 for(j=0; j<=max_order; j++)
 
  258                     double eval, inv, rinv;
 
  260                     eval= (512>>
pass) + fabs(eval - var[0]);
 
  263                     for(j=0; j<=max_order; j++)
 
  274         for(
i=0; 
i<max_order; 
i++){
 
  275             for(j=0; j<max_order; j++)
 
  277             ref[
i]= sqrt(m[(
pass-1)&1].variance[
i] / 
weight) * (blocksize - max_order) / 4000;
 
  279         for(
i=max_order-1; 
i>0; 
i--)
 
  283     opt_order = max_order;
 
  289                            min_shift, max_shift, zero_shift);
 
  291         for(
i=min_order-1; 
i<max_order; 
i++) {
 
  293                                min_shift, max_shift, zero_shift);
 
  303     s->blocksize = blocksize;
 
  304     s->max_order = max_order;
 
  305     s->lpc_type  = lpc_type;
 
  308                                     sizeof(*
s->windowed_samples));
 
  309     if (!
s->windowed_buffer)
 
  311     s->windowed_samples = 
s->windowed_buffer + 
FFALIGN(max_order, 4);
 
  
static void error(const char *err)
 
Linear least squares model.
 
FFLPCType
LPC analysis type.
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
@ FF_LPC_TYPE_CHOLESKY
Cholesky factorization.
 
static int AAC_RENAME() compute_lpc_coefs(const LPC_TYPE *autoc, int max_order, LPC_TYPE *lpc, int lpc_stride, int fail, int normalize)
Levinson-Durbin recursion.
 
static int estimate_best_order(double *ref, int min_order, int max_order)
 
static void lpc_apply_welch_window_c(const int32_t *data, int len, double *w_data)
Apply Welch window function to audio block.
 
#define av_assert0(cond)
assert() equivalent, that is always enabled.
 
av_cold void avpriv_init_lls(LLSModel *m, int indep_count)
 
int ff_lpc_calc_coefs(LPCContext *s, const int32_t *samples, int blocksize, int min_order, int max_order, int precision, int32_t coefs[][MAX_LPC_ORDER], int *shift, enum FFLPCType lpc_type, int lpc_passes, int omethod, int min_shift, int max_shift, int zero_shift)
Calculate LPC coefficients for multiple orders.
 
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
 
static int weight(int i, int blen, int offset)
 
double ff_lpc_calc_ref_coefs_f(LPCContext *s, const float *samples, int len, int order, double *ref)
 
void(* update_lls)(struct LLSModel *m, const double *var)
Take the outer-product of var[] with itself, and add to the covariance matrix.
 
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
 
int ff_lpc_calc_ref_coefs(LPCContext *s, const int32_t *samples, int order, double *ref)
 
double(* evaluate_lls)(struct LLSModel *m, const double *var, int order)
Inner product of var[] and the LPC coefs.
 
av_cold void ff_lpc_end(LPCContext *s)
Uninitialize LPCContext.
 
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
 
#define i(width, name, range_min, range_max)
 
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
 
static void compute_ref_coefs(const LPC_TYPE *autoc, int max_order, LPC_TYPE *ref, LPC_TYPE *error)
Schur recursion.
 
static void quantize_lpc_coefs(double *lpc_in, int order, int precision, int32_t *lpc_out, int *shift, int min_shift, int max_shift, int zero_shift)
Quantize LPC coefficients.
 
static void lpc_compute_autocorr_c(const double *data, int len, int lag, double *autoc)
Calculate autocorrelation data from audio samples A Welch window function is applied before calculati...
 
av_cold void ff_lpc_init_x86(LPCContext *c)
 
double coeff[32][MAX_VARS]
 
static int ref[MAX_W *MAX_W]
 
Filter the word “frame” indicates either a video frame or a group of audio samples
 
static int shift(int a, int b)
 
#define LOCAL_ALIGNED(a, t, v,...)
 
static const double coeff[2][5]
 
@ FF_LPC_TYPE_LEVINSON
Levinson-Durbin recursion.
 
void avpriv_solve_lls(LLSModel *m, double threshold, unsigned short min_order)
 
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order, enum FFLPCType lpc_type)
Initialize LPCContext.
 
@ FF_LPC_TYPE_FIXED
fixed LPC coefficients