Go to the documentation of this file.
21 #define BITSTREAM_READER_LE
88 { 0, -1, -1, -1, -1 },
98 { 0, -1, -1, -1, -1 },
101 { 1, 2, -1, -1, -1 },
128 for (
i = 0;
i < 256;
i++)
131 for (
i = 0;
i < 16;
i++)
138 int i, ps, si,
code, step_i;
144 value = (((ps & 0x7fffff) ^ -si) + si) * (1.0
f / 0x7fffff);
147 if (step_i > step_max) {
154 for (
i = 0;
i < 64;
i++) {
180 step_i =
av_clip(step_i, 0, step_max);
183 s->lfe_data[
i] =
value *
s->lfe_scale;
192 int i, ps, si,
code, step_i;
198 value = (((ps & 0x7fff) ^ -si) + si) * (1.0
f / 0x7fff);
201 if (step_i > step_max) {
208 for (
i = 0;
i < 64;
i++) {
230 step_i =
av_clip(step_i, 0, step_max);
233 s->lfe_data[
i] =
value *
s->lfe_scale;
254 if (chunk->
len >= 52)
256 if (chunk->
len >= 35)
277 int sf, sf_idx, ch, main_ch, freq;
281 for (sf = 0; sf < 1 << group; sf +=
diff ? 8 : 1) {
282 sf_idx = ((
s->framenum << group) + sf) & 31;
283 s->tonal_bounds[group][sf_idx][0] =
s->ntones;
286 for (freq = 1;; freq++) {
303 if (freq >> (5 - group) >
s->nsubbands * 4 - 6) {
312 +
s->limited_range - 2;
313 amp[main_ch] = main_amp <
AMP_MAX ? main_amp : 0;
317 for (ch = 0; ch <
s->nchannels_total; ch++) {
334 t->
x_freq = freq >> (5 - group);
335 t->
f_delt = (freq & ((1 << (5 - group)) - 1)) << group;
341 for (ch = 0; ch <
s->nchannels; ch++) {
343 t->
phs[ch] = 128 - phs[ch] * 32 +
shift;
348 s->tonal_bounds[group][sf_idx][1] =
s->ntones;
372 for (sb = 0; sb < 6; sb++)
378 for (group = 0; group < 5; group++) {
419 int i, sf, prev, next, dist;
428 for (sf = 0; sf < 7; sf += dist) {
448 next = prev + ((next + 1) >> 1);
450 next = prev - ( next >> 1);
456 scf[sf + 1] = prev + ((next - prev) >> 1);
458 scf[sf + 1] = prev - ((prev - next) >> 1);
463 scf[sf + 1] = prev + ( (next - prev) >> 2);
464 scf[sf + 2] = prev + ( (next - prev) >> 1);
465 scf[sf + 3] = prev + (((next - prev) * 3) >> 2);
467 scf[sf + 1] = prev - ( (prev - next) >> 2);
468 scf[sf + 2] = prev - ( (prev - next) >> 1);
469 scf[sf + 3] = prev - (((prev - next) * 3) >> 2);
474 for (
i = 1;
i < dist;
i++)
475 scf[sf +
i] = prev + (next - prev) *
i / dist;
503 int ch, sb, sf, nsubbands,
ret;
514 for (sb = 2; sb < nsubbands; sb++) {
529 for (sb = 0; sb <
s->nsubbands - 4; sb++) {
532 if (sb + 4 <
s->min_mono_subband)
535 s->grid_3_avg[ch2][sb] =
s->grid_3_avg[ch1][sb];
554 nsubbands = (
s->nsubbands -
s->min_mono_subband + 3) / 4;
555 for (sb = 0; sb < nsubbands; sb++)
556 for (ch = ch1; ch <= ch2; ch++)
557 for (sf = 1; sf <= 4; sf++)
561 s->part_stereo_pres |= 1 << ch1;
571 int sb, nsubbands,
ret;
575 for (sb = 2; sb < nsubbands; sb++) {
584 for (sb = 0; sb <
s->nsubbands - 4; sb++) {
585 if (sb + 4 >=
s->min_mono_subband) {
599 for (ch = ch1; ch <= ch2; ch++) {
600 if ((ch != ch1 && sb + 4 >=
s->min_mono_subband) !=
flag)
603 if (
s->grid_3_pres[ch] & (1
U << sb))
606 for (
i = 0;
i < 8;
i++) {
613 s->grid_3_pres[ch] |= 1
U << sb;
619 s->lbr_rand = 1103515245
U *
s->lbr_rand + 12345
U;
620 return s->lbr_rand *
s->sb_scf[sb];
628 float *
samples =
s->time_samples[ch][sb];
629 int i, j,
code, nblocks, coding_method;
636 switch (quant_level) {
641 for (j = 0; j < 8; j++)
659 for (j = 0; j < 5; j++)
670 for (j = 0; j < 3; j++)
683 for (
i = 0;
i < nblocks;
i++)
697 s->ch_pres[ch] |= 1
U << sb;
701 int start_sb,
int end_sb,
int flag)
703 int sb, sb_g3, sb_reorder, quant_level;
705 for (sb = start_sb; sb < end_sb; sb++) {
709 }
else if (
flag && sb < s->max_mono_subband) {
710 sb_reorder =
s->sb_indices[sb];
714 sb_reorder =
get_bits(&
s->gb,
s->limited_range + 3);
717 s->sb_indices[sb] = sb_reorder;
719 if (sb_reorder >=
s->nsubbands)
724 for (sb_g3 = 0; sb_g3 <
s->g3_avg_only_start_sb - 4; sb_g3++)
726 }
else if (sb < 12 && sb_reorder >= 4) {
734 if (!
flag || sb_reorder >=
s->max_mono_subband)
735 s->sec_ch_sbms[ch1 / 2][sb_reorder] =
get_bits(&
s->gb, 8);
736 if (
flag && sb_reorder >=
s->min_mono_subband)
737 s->sec_ch_lrms[ch1 / 2][sb_reorder] =
get_bits(&
s->gb, 8);
740 quant_level =
s->quant_levels[ch1 / 2][sb];
745 if (sb < s->max_mono_subband && sb_reorder >=
s->min_mono_subband) {
747 parse_ch(
s, ch1, sb_reorder, quant_level, 0);
749 parse_ch(
s, ch2, sb_reorder, quant_level, 1);
751 parse_ch(
s, ch1, sb_reorder, quant_level, 0);
753 parse_ch(
s, ch2, sb_reorder, quant_level, 0);
767 for (
i = 0;
i < 8;
i++) {
769 for (j = 0; j < (
i + 1) / 2; j++) {
770 float tmp1 =
coeff[ j ];
771 float tmp2 =
coeff[
i - j - 1];
772 coeff[ j ] = tmp1 + rc * tmp2;
773 coeff[
i - j - 1] = tmp2 + rc * tmp1;
781 int f =
s->framenum & 1;
782 int i, sb, ch, codes[16];
785 for (sb = start_sb; sb < end_sb; sb++) {
786 int ncodes = 8 * (1 + (sb < 2));
787 for (ch = ch1; ch <= ch2; ch++) {
790 for (
i = 0;
i < ncodes;
i++)
792 for (
i = 0;
i < ncodes / 8;
i++)
822 for (sb = 0; sb <
s->nsubbands; sb++) {
823 int f = sb *
s->limited_rate /
s->nsubbands;
824 int a = 18000 / (12 *
f / 1000 + 100 + 40 * st) + 20 * ol;
826 quant_levels[sb] = 1;
828 quant_levels[sb] = 2;
830 quant_levels[sb] = 3;
832 quant_levels[sb] = 4;
834 quant_levels[sb] = 5;
838 for (sb = 0; sb < 8; sb++)
840 for (; sb <
s->nsubbands; sb++)
841 s->quant_levels[ch1 / 2][sb] = quant_levels[sb];
854 for (sb = 0; sb < 2; sb++)
855 for (ch = ch1; ch <= ch2; ch++)
863 int start_sb,
int end_sb,
int flag)
865 int i, j, sb, ch, nsubbands;
868 if (end_sb > nsubbands)
871 for (sb = start_sb; sb < end_sb; sb++) {
872 for (ch = ch1; ch <= ch2; ch++) {
873 uint8_t *g2_scf =
s->grid_2_scf[ch][sb];
877 memcpy(g2_scf,
s->grid_2_scf[ch1][sb], 64);
882 for (
i = 0;
i < 8;
i++, g2_scf += 8) {
884 memset(g2_scf, 0, 64 -
i * 8);
889 for (j = 0; j < 8; j++) {
895 memset(g2_scf, 0, 8);
932 if ((
ret =
parse_ts(
s, ch1, ch2, 6,
s->max_mono_subband, 0)) < 0)
940 if ((
ret =
parse_ts(
s, ch1, ch2,
s->min_mono_subband,
s->nsubbands, 1)) < 0)
947 double scale = (-1.0 / (1 << 17)) * sqrt(1 << (2 -
s->limited_range));
948 int i, br_per_ch =
s->bit_rate_scaled /
s->nchannels_total;
957 for (
i = 0;
i < 32 <<
s->freq_range;
i++)
960 if (br_per_ch < 14000)
962 else if (br_per_ch < 32000)
963 scale = (br_per_ch - 14000) * (1.0 / 120000) + 0.85;
967 scale *= 1.0 / INT_MAX;
969 for (
i = 0;
i <
s->nsubbands;
i++) {
973 s->sb_scf[
i] = (
i - 1) * 0.25 * 0.785 *
scale;
978 s->lfe_scale = (16 <<
s->freq_range) * 0.0000078265894;
987 int nsamples = nchsamples *
s->nchannels *
s->nsubbands;
997 for (ch = 0; ch <
s->nchannels; ch++) {
998 for (sb = 0; sb <
s->nsubbands; sb++) {
999 s->time_samples[ch][sb] = ptr;
1009 int old_rate =
s->sample_rate;
1010 int old_band_limit =
s->band_limit;
1011 int old_nchannels =
s->nchannels;
1013 unsigned int sr_code;
1016 sr_code = bytestream2_get_byte(gb);
1022 if (
s->sample_rate > 48000) {
1028 s->ch_mask = bytestream2_get_le16(gb);
1029 if (!(
s->ch_mask & 0x7)) {
1033 if ((
s->ch_mask & 0xfff0) && !(
s->warned & 1)) {
1039 version = bytestream2_get_le16(gb);
1040 if ((
version & 0xff00) != 0x0800) {
1046 s->flags = bytestream2_get_byte(gb);
1052 if (!(
s->warned & 2)) {
1060 bit_rate_hi = bytestream2_get_byte(gb);
1063 s->bit_rate_orig = bytestream2_get_le16(gb) | ((bit_rate_hi & 0x0F) << 16);
1066 s->bit_rate_scaled = bytestream2_get_le16(gb) | ((bit_rate_hi & 0xF0) << 12);
1092 if (
s->bit_rate_orig >= 44000 * (
s->nchannels_total + 2))
1094 else if (
s->bit_rate_orig >= 25000 * (
s->nchannels_total + 2))
1100 s->limited_rate =
s->sample_rate >>
s->band_limit;
1101 s->limited_range =
s->freq_range -
s->band_limit;
1102 if (
s->limited_range < 0) {
1107 s->nsubbands = 8 <<
s->limited_range;
1110 if (
s->g3_avg_only_start_sb >
s->nsubbands)
1111 s->g3_avg_only_start_sb =
s->nsubbands;
1113 s->min_mono_subband =
s->nsubbands * 2000 / (
s->limited_rate / 2);
1114 if (
s->min_mono_subband >
s->nsubbands)
1115 s->min_mono_subband =
s->nsubbands;
1117 s->max_mono_subband =
s->nsubbands * 14000 / (
s->limited_rate / 2);
1118 if (
s->max_mono_subband >
s->nsubbands)
1119 s->max_mono_subband =
s->nsubbands;
1122 if ((old_rate !=
s->sample_rate || old_band_limit !=
s->band_limit) &&
init_sample_rate(
s) < 0)
1141 s->nchannels_total += 2;
1148 if (old_rate !=
s->sample_rate
1149 || old_band_limit !=
s->band_limit
1150 || old_nchannels !=
s->nchannels) {
1173 int i, ch, sb, sf,
ret, group, chunk_id, chunk_len;
1184 switch (bytestream2_get_byte(&gb)) {
1186 if (!
s->sample_rate) {
1203 chunk_id = bytestream2_get_byte(&gb);
1204 chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb);
1215 switch (chunk_id & 0x7f) {
1218 int checksum = bytestream2_get_be16(&gb);
1219 uint16_t res = chunk_id;
1220 res += (chunk_len >> 8) & 0xff;
1221 res += chunk_len & 0xff;
1222 for (
i = 0;
i < chunk_len - 2;
i++)
1224 if (checksum != res) {
1241 memset(
s->quant_levels, 0,
sizeof(
s->quant_levels));
1242 memset(
s->sb_indices, 0xff,
sizeof(
s->sb_indices));
1243 memset(
s->sec_ch_sbms, 0,
sizeof(
s->sec_ch_sbms));
1244 memset(
s->sec_ch_lrms, 0,
sizeof(
s->sec_ch_lrms));
1245 memset(
s->ch_pres, 0,
sizeof(
s->ch_pres));
1246 memset(
s->grid_1_scf, 0,
sizeof(
s->grid_1_scf));
1247 memset(
s->grid_2_scf, 0,
sizeof(
s->grid_2_scf));
1248 memset(
s->grid_3_avg, 0,
sizeof(
s->grid_3_avg));
1249 memset(
s->grid_3_scf, 0,
sizeof(
s->grid_3_scf));
1250 memset(
s->grid_3_pres, 0,
sizeof(
s->grid_3_pres));
1251 memset(
s->tonal_scf, 0,
sizeof(
s->tonal_scf));
1252 memset(
s->lfe_data, 0,
sizeof(
s->lfe_data));
1253 s->part_stereo_pres = 0;
1254 s->framenum = (
s->framenum + 1) & 31;
1256 for (ch = 0; ch <
s->nchannels; ch++) {
1257 for (sb = 0; sb <
s->nsubbands / 4; sb++) {
1258 s->part_stereo[ch][sb][0] =
s->part_stereo[ch][sb][4];
1259 s->part_stereo[ch][sb][4] = 16;
1263 memset(
s->lpc_coeff[
s->framenum & 1], 0,
sizeof(
s->lpc_coeff[0]));
1265 for (group = 0; group < 5; group++) {
1266 for (sf = 0; sf < 1 << group; sf++) {
1267 int sf_idx = ((
s->framenum << group) + sf) & 31;
1268 s->tonal_bounds[group][sf_idx][0] =
1269 s->tonal_bounds[group][sf_idx][1] =
s->ntones;
1275 chunk_id = bytestream2_get_byte(&gb);
1276 chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb);
1288 chunk.lfe.len = chunk_len;
1289 chunk.lfe.data = gb.
buffer;
1295 chunk.tonal.id = chunk_id;
1296 chunk.tonal.len = chunk_len;
1297 chunk.tonal.data = gb.
buffer;
1306 chunk.tonal_grp[
i].id =
i;
1307 chunk.tonal_grp[
i].len = chunk_len;
1308 chunk.tonal_grp[
i].data = gb.
buffer;
1317 chunk.tonal_grp[
i].id =
i;
1318 chunk.tonal_grp[
i].len = chunk_len;
1319 chunk.tonal_grp[
i].data = gb.
buffer;
1326 chunk.grid1[
i].len = chunk_len;
1327 chunk.grid1[
i].data = gb.
buffer;
1334 chunk.hr_grid[
i].len = chunk_len;
1335 chunk.hr_grid[
i].data = gb.
buffer;
1342 chunk.ts1[
i].len = chunk_len;
1343 chunk.ts1[
i].data = gb.
buffer;
1350 chunk.ts2[
i].len = chunk_len;
1351 chunk.ts2[
i].data = gb.
buffer;
1363 for (
i = 0;
i < 5;
i++)
1366 for (
i = 0;
i < (
s->nchannels + 1) / 2;
i++) {
1368 int ch2 =
FFMIN(ch1 + 1,
s->nchannels - 1);
1377 if (!chunk.grid1[
i].len || !chunk.hr_grid[
i].len || !chunk.ts1[
i].len)
1400 for (ch = ch1; ch <= ch2; ch++) {
1401 for (sb = 0; sb <
s->nsubbands; sb++) {
1404 uint8_t *g1_scf_a =
s->grid_1_scf[ch][g1_sb ];
1405 uint8_t *g1_scf_b =
s->grid_1_scf[ch][g1_sb + 1];
1410 uint8_t *hr_scf =
s->high_res_scf[ch][sb];
1413 for (
i = 0;
i < 8;
i++) {
1414 int scf = w1 * g1_scf_a[
i] + w2 * g1_scf_b[
i];
1415 hr_scf[
i] = scf >> 7;
1418 int8_t *g3_scf =
s->grid_3_scf[ch][sb - 4];
1419 int g3_avg =
s->grid_3_avg[ch][sb - 4];
1421 for (
i = 0;
i < 8;
i++) {
1422 int scf = w1 * g1_scf_a[
i] + w2 * g1_scf_b[
i];
1423 hr_scf[
i] = (scf >> 7) - g3_avg - g3_scf[
i];
1435 int i, j, k, ch, sb;
1437 for (ch = ch1; ch <= ch2; ch++) {
1438 for (sb = 0; sb <
s->nsubbands; sb++) {
1439 float *
samples =
s->time_samples[ch][sb];
1441 if (
s->ch_pres[ch] & (1
U << sb))
1447 }
else if (sb < 10) {
1452 float accum[8] = { 0 };
1455 for (k = 2; k < 6; k++) {
1456 float *other = &
s->time_samples[ch][k][
i * 8];
1457 for (j = 0; j < 8; j++)
1458 accum[j] +=
fabs(other[j]);
1461 for (j = 0; j < 8; j++)
1473 for (
i = 0;
i < nsamples;
i++) {
1475 for (j = 0; j < 8; j++)
1483 int f =
s->framenum & 1;
1486 for (ch = ch1; ch <= ch2; ch++) {
1487 float *
samples =
s->time_samples[ch][sb];
1489 if (!(
s->ch_pres[ch] & (1
U << sb)))
1507 for (sb = 0; sb <
s->nsubbands; sb++) {
1509 for (ch = ch1; ch <= ch2; ch++) {
1510 float *
samples =
s->time_samples[ch][sb];
1511 uint8_t *hr_scf =
s->high_res_scf[ch][sb];
1514 unsigned int scf = hr_scf[
i];
1517 for (j = 0; j < 16; j++)
1523 unsigned int scf = hr_scf[
i / 8] - g2_scf[
i];
1534 float *samples_l =
s->time_samples[ch1][sb];
1535 float *samples_r =
s->time_samples[ch2][sb];
1536 int ch2_pres =
s->ch_pres[ch2] & (1
U << sb);
1539 int sbms = (
s->sec_ch_sbms[ch1 / 2][sb] >>
i) & 1;
1540 int lrms = (
s->sec_ch_lrms[ch1 / 2][sb] >>
i) & 1;
1542 if (sb >=
s->min_mono_subband) {
1543 if (lrms && ch2_pres) {
1545 for (j = 0; j < 16; j++) {
1546 float tmp = samples_l[j];
1547 samples_l[j] = samples_r[j];
1548 samples_r[j] = -
tmp;
1551 for (j = 0; j < 16; j++) {
1552 float tmp = samples_l[j];
1553 samples_l[j] = samples_r[j];
1557 }
else if (!ch2_pres) {
1558 if (sbms && (
s->part_stereo_pres & (1 << ch1))) {
1559 for (j = 0; j < 16; j++)
1560 samples_r[j] = -samples_l[j];
1562 for (j = 0; j < 16; j++)
1563 samples_r[j] = samples_l[j];
1566 }
else if (sbms && ch2_pres) {
1567 for (j = 0; j < 16; j++) {
1568 float tmp = samples_l[j];
1569 samples_l[j] = (
tmp + samples_r[j]) * 0.5
f;
1570 samples_r[j] = (
tmp - samples_r[j]) * 0.5
f;
1592 for (ch = ch1; ch <= ch2; ch++) {
1593 for (sb =
s->min_mono_subband; sb < s->nsubbands; sb++) {
1594 uint8_t *pt_st =
s->part_stereo[ch][(sb -
s->min_mono_subband) / 4];
1595 float *
samples =
s->time_samples[ch][sb];
1597 if (
s->ch_pres[ch2] & (1
U << sb))
1600 for (sf = 1; sf <= 4; sf++,
samples += 32) {
1604 for (
i = 0;
i < 32;
i++)
1615 int group,
int group_sf,
int synth_idx)
1617 int i, start, count;
1622 start =
s->tonal_bounds[group][group_sf][0];
1623 count = (
s->tonal_bounds[group][group_sf][1] - start) & (
DCA_LBR_TONES - 1);
1625 for (
i = 0;
i < count;
i++) {
1658 values[x_freq - 5] += cf[ 0] * -
s;
1659 p4:
values[x_freq - 4] += cf[ 1] *
c;
1660 p3:
values[x_freq - 3] += cf[ 2] *
s;
1661 p2:
values[x_freq - 2] += cf[ 3] * -
c;
1662 p1:
values[x_freq - 1] += cf[ 4] * -
s;
1663 p0:
values[x_freq ] += cf[ 5] *
c;
1664 values[x_freq + 1] += cf[ 6] *
s;
1665 values[x_freq + 2] += cf[ 7] * -
c;
1666 values[x_freq + 3] += cf[ 8] * -
s;
1667 values[x_freq + 4] += cf[ 9] *
c;
1668 values[x_freq + 5] += cf[10] *
s;
1683 for (group = 0; group < 5; group++) {
1684 int group_sf = (
s->framenum << group) + ((sf - 22) >> (5 - group));
1685 int synth_idx = ((((sf - 22) & 31) << group) & 31) + (1 << group) - 1;
1696 int sf, sb, nsubbands =
s->nsubbands, noutsubbands = 8 <<
s->freq_range;
1699 if (nsubbands < noutsubbands)
1700 memset(
values[nsubbands], 0, (noutsubbands - nsubbands) *
sizeof(
values[0]));
1704 s->dcadsp->lbr_bank(
values,
s->time_samples[ch],
1713 s->history[ch], noutsubbands * 4);
1714 s->fdsp->vector_fmul_reverse(
s->history[ch],
result[noutsubbands],
1715 s->window, noutsubbands * 4);
1716 output += noutsubbands * 4;
1720 for (sb = 0; sb < nsubbands; sb++) {
1729 int i,
ret, nchannels, ch_conf = (
s->ch_mask & 0x7) - 1;
1730 const int8_t *reorder;
1750 frame->nb_samples = 1024 <<
s->freq_range;
1755 for (
i = 0;
i < (
s->nchannels + 1) / 2;
i++) {
1757 int ch2 =
FFMIN(ch1 + 1,
s->nchannels - 1);
1765 if (ch1 != ch2 && (
s->part_stereo_pres & (1 << ch1)))
1768 if (ch1 < nchannels)
1771 if (ch1 != ch2 && ch2 < nchannels)
1779 s->lfe_history, 16 <<
s->freq_range);
1792 if (!
s->sample_rate)
1796 memset(
s->part_stereo, 16,
sizeof(
s->part_stereo));
1797 memset(
s->lpc_coeff, 0,
sizeof(
s->lpc_coeff));
1798 memset(
s->history, 0,
sizeof(
s->history));
1799 memset(
s->tonal_bounds, 0,
sizeof(
s->tonal_bounds));
1800 memset(
s->lfe_history, 0,
sizeof(
s->lfe_history));
1804 for (ch = 0; ch <
s->nchannels; ch++) {
1805 for (sb = 0; sb <
s->nsubbands; sb++) {
const uint8_t ff_dca_grid_2_to_scf[3]
@ AV_SAMPLE_FMT_FLTP
float, planar
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
#define AV_LOG_WARNING
Something somehow does not look correct.
static int get_bits_left(GetBitContext *gb)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
const uint8_t ff_dca_grid_1_weights[12][32]
const uint8_t ff_dca_sb_reorder[8][8]
int sample_rate
samples per second
const float ff_dca_rsd_level_2b[2]
static void parse_ch(DCALbrDecoder *s, int ch, int sb, int quant_level, int flag)
Parse time samples for one subband, filling truncated samples with randomness.
static int ensure_bits(GetBitContext *s, int n)
Check point to ensure that enough bits are left.
const float ff_dca_lfe_step_size_24[144]
#define AV_CH_LAYOUT_MONO
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce output
static void filter_ts(DCALbrDecoder *s, int ch1, int ch2)
static const uint8_t lfe_index[7]
This structure describes decoded (raw) audio or video data.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
const float ff_dca_quant_amp[57]
@ LBR_CHUNK_RES_TS_2_LAST
static void synth_tones(DCALbrDecoder *s, int ch, float *values, int group, int group_sf, int synth_idx)
Synthesise tones in the given group for the given tonal subframe.
#define DCA_SPEAKER_LAYOUT_STEREO
int request_channel_layout
Converted from avctx.request_channel_layout.
uint8_t phs[DCA_LBR_CHANNELS]
Per-channel phase.
const uint8_t ff_dca_scf_to_grid_1[32]
@ LBR_FLAG_BAND_LIMIT_1_8
uint8_t x_freq
Spectral line offset.
static void decode_grid(DCALbrDecoder *s, int ch1, int ch2)
Reconstruct high-frequency resolution grid from first and third grids.
int ff_dca_lbr_parse(DCALbrDecoder *s, const uint8_t *data, DCAExssAsset *asset)
int lbr_offset
Offset to LBR component from start of substream.
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static void synth_lpc(DCALbrDecoder *s, int ch1, int ch2, int sb)
AVChannelLayout ch_layout
Audio channel layout.
uint8_t amp[DCA_LBR_CHANNELS]
Per-channel amplitude.
const float ff_dca_rsd_level_5[5]
static av_always_inline float scale(float x, float s)
#define AV_CH_LAYOUT_STEREO
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int alloc_sample_buffer(DCALbrDecoder *s)
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static int parse_st_code(GetBitContext *s, int min_v)
#define AV_CH_LOW_FREQUENCY
av_cold void ff_dca_lbr_init_tables(void)
@ LBR_FLAG_BAND_LIMIT_1_2
static int parse_lpc(DCALbrDecoder *s, int ch1, int ch2, int start_sb, int end_sb)
static int parse_ts(DCALbrDecoder *s, int ch1, int ch2, int start_sb, int end_sb, int flag)
const float ff_dca_rsd_level_16[16]
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static int init_sample_rate(DCALbrDecoder *s)
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
static int parse_grid_1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
@ LBR_FLAG_BAND_LIMIT_2_3
@ LBR_CHUNK_FRAME_NO_CSUM
@ LBR_FLAG_BAND_LIMIT_1_3
const int8_t ff_dca_lfe_delta_index_16[8]
static void random_ts(DCALbrDecoder *s, int ch1, int ch2)
Fill unallocated subbands with randomness.
int ff_dca_lbr_filter_frame(DCALbrDecoder *s, AVFrame *frame)
const float ff_dca_synth_env[32]
and forward the result(frame or status change) to the corresponding input. If nothing is possible
static __device__ float fabs(float a)
#define LOCAL_ALIGNED_32(t, v,...)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
int lbr_size
Size of LBR component in extension substream.
static int parse_ts1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
@ LBR_FLAG_BAND_LIMIT_MASK
int64_t bit_rate
the average bitrate
const uint16_t ff_dca_avg_g3_freqs[3]
const float ff_dca_corr_cf[32][11]
static unsigned int get_bits1(GetBitContext *s)
void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size)
Allocate and clear a buffer, reusing the given one if large enough.
const float ff_dca_lfe_iir[5][4]
@ LBR_FLAG_BAND_LIMIT_NONE
static int parse_lfe_chunk(DCALbrDecoder *s, LBRChunk *chunk)
#define AV_CH_FRONT_CENTER
static void transform_channel(DCALbrDecoder *s, int ch, float *output)
#define AV_EF_EXPLODE
abort decoding on minor error detection
#define DCA_LBR_CHANNELS_TOTAL
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
@ LBR_CHUNK_RES_GRID_HR_LAST
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
void av_channel_layout_uninit(AVChannelLayout *channel_layout)
Free any allocated data in the channel layout and reset the channel count to 0.
#define AV_EF_CAREFUL
consider things that violate the spec, are fast to calculate and have not been seen in the wild as er...
const float ff_dca_bank_coeff[10]
@ DCA_LBR_HEADER_SYNC_ONLY
uint8_t ph_rot
Phase rotation.
static int parse_lfe_24(DCALbrDecoder *s)
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
static float lbr_rand(DCALbrDecoder *s, int sb)
@ AV_MATRIX_ENCODING_NONE
enum AVSampleFormat sample_fmt
audio sample format
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static int parse_tonal_group(DCALbrDecoder *s, LBRChunk *chunk)
const float ff_dca_rsd_level_3[3]
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
@ LBR_CHUNK_TONAL_SCF_GRP_3
@ DCA_LBR_HEADER_DECODER_INIT
uint8_t f_delt
Difference between original and center frequency.
VLC ff_dca_vlc_tnl_grp[5]
const float ff_dca_rsd_level_8[8]
#define AV_CH_LAYOUT_5POINT0
const float ff_dca_lfe_step_size_16[101]
const uint8_t ff_dca_scf_to_grid_2[32]
const float ff_dca_rsd_level_2a[2]
static int parse_vlc(GetBitContext *s, VLC *vlc, int max_depth)
#define i(width, name, range_min, range_max)
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
const uint8_t ff_dca_rsd_pack_3_in_7[128][3]
static void base_func_synth(DCALbrDecoder *s, int ch, float *values, int sf)
Synthesise all tones in all groups for the given residual subframe.
VLC ff_dca_vlc_fst_rsd_amp
static void decode_part_stereo(DCALbrDecoder *s, int ch1, int ch2)
Modulate by interpolated partial stereo coefficients.
@ LBR_FLAG_BAND_LIMIT_1_4
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf default value
av_cold int ff_dca_lbr_init(DCALbrDecoder *s)
const uint8_t ff_dca_freq_to_sb[32]
@ LBR_CHUNK_RES_GRID_LR_LAST
static int parse_scale_factors(DCALbrDecoder *s, uint8_t *scf)
static const int8_t channel_reorder_nolfe[7][5]
static void predict(float *samples, const float *coeff, int nsamples)
static int parse_high_res_grid(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
FF_ENABLE_DEPRECATION_WARNINGS int av_channel_layout_from_mask(AVChannelLayout *channel_layout, uint64_t mask)
Initialize a native channel layout from a bitmask indicating which channels are present.
av_cold void ff_dca_lbr_flush(DCALbrDecoder *s)
av_cold void ff_dca_lbr_close(DCALbrDecoder *s)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int parse_ts2_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
#define AV_CH_LAYOUT_SURROUND
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data,...
static int parse_decoder_init(DCALbrDecoder *s, GetByteContext *gb)
static const int8_t channel_reorder_lfe[7][5]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
static void parse_grid_3(DCALbrDecoder *s, int ch1, int ch2, int sb, int flag)
main external API structure.
static int parse_grid_1_sec_ch(DCALbrDecoder *s, int ch2)
const uint32_t ff_dca_sampling_freqs[16]
static int parse_tonal_chunk(DCALbrDecoder *s, LBRChunk *chunk)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
Filter the word “frame” indicates either a video frame or a group of audio samples
const uint8_t ff_dca_grid_1_to_scf[11]
@ LBR_CHUNK_TONAL_SCF_GRP_2
static int shift(int a, int b)
const float ff_dca_long_window[128]
int ff_side_data_update_matrix_encoding(AVFrame *frame, enum AVMatrixEncoding matrix_encoding)
Add or update AV_FRAME_DATA_MATRIXENCODING side data.
static void convert_lpc(float *coeff, const int *codes)
Convert from reflection coefficients to direct form coefficients.
const uint8_t ff_dca_freq_ranges[16]
static av_always_inline int get_bitsz(GetBitContext *s, int n)
Read 0-25 bits.
const uint16_t ff_dca_fst_amp[44]
static av_always_inline int diff(const uint32_t a, const uint32_t b)
static int parse_tonal(DCALbrDecoder *s, int group)
static const uint16_t channel_layouts[7]
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
@ LBR_CHUNK_RES_TS_1_LAST
static const double coeff[2][5]
const int8_t ff_dca_ph0_shift[8]
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define DCA_LBR_TIME_HISTORY
static float cos_tab[256]
@ LBR_CHUNK_TONAL_SCF_GRP_5
#define DCA_LBR_TIME_SAMPLES
@ LBR_CHUNK_TONAL_SCF_GRP_1
static int ff_dca_count_chs_for_mask(unsigned int mask)
Return number of individual channels in DCASpeakerPair mask.
@ LBR_CHUNK_TONAL_SCF_GRP_4
const uint16_t ff_dca_rsd_pack_5_in_8[256]
#define FF_PROFILE_DTS_EXPRESS
static int parse_lfe_16(DCALbrDecoder *s)
static int parse_grid_2(DCALbrDecoder *s, int ch1, int ch2, int start_sb, int end_sb, int flag)
const float ff_dca_st_coeff[34]
const int8_t ff_dca_lfe_delta_index_24[32]