Go to the documentation of this file.
   41 #define FLAC_SUBFRAME_CONSTANT  0 
   42 #define FLAC_SUBFRAME_VERBATIM  1 
   43 #define FLAC_SUBFRAME_FIXED     8 
   44 #define FLAC_SUBFRAME_LPC      32 
   46 #define MAX_FIXED_ORDER     4 
   47 #define MAX_PARTITION_ORDER 8 
   48 #define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER) 
   49 #define MAX_LPC_PRECISION  15 
   50 #define MIN_LPC_SHIFT       0 
   51 #define MAX_LPC_SHIFT      15 
  152     put_bits(&pb,  5, 
s->avctx->bits_per_raw_sample - 1);
 
  154     put_bits(&pb, 24, (
s->sample_count & 0xFFFFFF000LL) >> 12);
 
  155     put_bits(&pb, 12,  
s->sample_count & 0x000000FFFLL);
 
  157     memcpy(&
header[18], 
s->md5sum, 16);
 
  173     target    = (samplerate * block_time_ms) / 1000;
 
  174     for (
i = 0; 
i < 16; 
i++) {
 
  199         av_log(avctx, 
AV_LOG_DEBUG, 
" lpc type: Levinson-Durbin recursion with Welch window\n");
 
  275     for (
i = 4; 
i < 12; 
i++) {
 
  285         if (freq % 1000 == 0 && freq < 255000) {
 
  287             s->sr_code[1] = freq / 1000;
 
  288         } 
else if (freq % 10 == 0 && freq < 655350) {
 
  290             s->sr_code[1] = freq / 10;
 
  291         } 
else if (freq < 65535) {
 
  293             s->sr_code[1] = freq;
 
  298         s->samplerate = freq;
 
  303         s->options.compression_level = 5;
 
  307     level = 
s->options.compression_level;
 
  310                s->options.compression_level);
 
  314     s->options.block_time_ms = ((
int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[
level];
 
  323     if (
s->options.min_prediction_order < 0)
 
  324         s->options.min_prediction_order = ((
int[]){  2,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[
level];
 
  325     if (
s->options.max_prediction_order < 0)
 
  326         s->options.max_prediction_order = ((
int[]){  3,  4,  4,  6,  8,  8,  8,  8, 12, 12, 12, 32, 32})[
level];
 
  328     if (
s->options.prediction_order_method < 0)
 
  335     if (
s->options.min_partition_order > 
s->options.max_partition_order) {
 
  337                s->options.min_partition_order, 
s->options.max_partition_order);
 
  340     if (
s->options.min_partition_order < 0)
 
  341         s->options.min_partition_order = ((
int[]){  2,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0})[
level];
 
  342     if (
s->options.max_partition_order < 0)
 
  343         s->options.max_partition_order = ((
int[]){  2,  2,  3,  3,  3,  8,  8,  8,  8,  8,  8,  8,  8})[
level];
 
  346         s->options.min_prediction_order = 0;
 
  347         s->options.max_prediction_order = 0;
 
  351                    "invalid min prediction order %d, clamped to %d\n",
 
  357                    "invalid max prediction order %d, clamped to %d\n",
 
  363     if (
s->options.max_prediction_order < 
s->options.min_prediction_order) {
 
  365                s->options.min_prediction_order, 
s->options.max_prediction_order);
 
  379     s->max_blocksize = 
s->avctx->frame_size;
 
  384                                                   s->avctx->bits_per_raw_sample);
 
  400     s->min_framesize = 
s->max_framesize;
 
  415                                              "output stream will have incorrect " 
  416                                              "channel layout.\n");
 
  419                                                "will use Flac channel layout for " 
  444     for (
i = 0; 
i < 16; 
i++) {
 
  448             frame->bs_code[1] = 0;
 
  453         frame->blocksize = nb_samples;
 
  454         if (
frame->blocksize <= 256) {
 
  455             frame->bs_code[0] = 6;
 
  458             frame->bs_code[0] = 7;
 
  463     for (ch = 0; ch < 
s->channels; ch++) {
 
  467         sub->obits  = 
s->avctx->bits_per_raw_sample;
 
  475     frame->verbatim_only = 0;
 
  487                 s->avctx->bits_per_raw_sample;
 
  489 #define COPY_SAMPLES(bits) do {                                     \ 
  490     const int ## bits ## _t *samples0 = samples;                    \ 
  492     for (i = 0, j = 0; i < frame->blocksize; i++)                   \ 
  493         for (ch = 0; ch < s->channels; ch++, j++)                   \ 
  494             frame->subframes[ch].samples[i] = samples0[j] >> shift; \ 
  509     for (
i = 0; 
i < n; 
i++) {
 
  512         count += (v >> k) + 1 + k;
 
  521     int p, porder, psize;
 
  529         count += 
sub->wasted;
 
  535         count += 
s->frame.blocksize * 
sub->obits;
 
  538         count += pred_order * 
sub->obits;
 
  542             count += 4 + 5 + pred_order * 
s->options.lpc_coeff_precision;
 
  548         porder = 
sub->rc.porder;
 
  549         psize  = 
s->frame.blocksize >> porder;
 
  555         for (p = 0; p < 1 << porder; p++) {
 
  556             int k = 
sub->rc.params[p];
 
  557             count += 
sub->rc.coding_mode;
 
  560             part_end = 
FFMIN(
s->frame.blocksize, part_end + psize);
 
  568 #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k))) 
  580     sum2 = sum - (n >> 1);
 
  582     return FFMIN(k, max_param);
 
  588     int64_t bestbits = INT64_MAX;
 
  591     for (k = 0; k <= max_param; k++) {
 
  592         int64_t 
bits = sums[k][
i];
 
  593         if (
bits < bestbits) {
 
  604                                          int n, 
int pred_order, 
int max_param, 
int exact)
 
  610     part     = (1 << porder);
 
  613     cnt = (n >> porder) - pred_order;
 
  614     for (
i = 0; 
i < part; 
i++) {
 
  617             all_bits += sums[k][
i];
 
  637     const uint32_t *res, *res_end;
 
  642     for (k = 0; k <= kmax; k++) {
 
  643         res     = &
data[pred_order];
 
  644         res_end = &
data[n >> pmax];
 
  645         for (
i = 0; 
i < parts; 
i++) {
 
  647                 uint64_t sum = (1LL + k) * (res_end - res);
 
  648                 while (res < res_end)
 
  649                     sum += *(res++) >> k;
 
  653                 while (res < res_end)
 
  657             res_end += n >> pmax;
 
  665     int parts = (1 << 
level);
 
  666     for (
i = 0; 
i < parts; 
i++) {
 
  667         for (k=0; k<=kmax; k++)
 
  668             sums[k][
i] = sums[k][2*
i] + sums[k][2*
i+1];
 
  676                                  const int32_t *
data, 
int n, 
int pred_order, 
int exact)
 
  690     for (
i = 0; 
i < n; 
i++)
 
  693     calc_sum_top(pmax, exact ? kmax : 0, udata, n, pred_order, sums);
 
  696     bits[pmin] = UINT32_MAX;
 
  699         if (
bits[
i] < 
bits[opt_porder] || pmax == pmin) {
 
  708     return bits[opt_porder];
 
  725                                s->frame.blocksize, pred_order);
 
  727                                s->frame.blocksize, pred_order);
 
  729     uint64_t 
bits = 8 + pred_order * 
sub->obits + 2 + 
sub->rc.coding_mode;
 
  731         bits += 4 + 5 + pred_order * 
s->options.lpc_coeff_precision;
 
  733                              s->frame.blocksize, pred_order, 
s->options.exact_rice_parameters);
 
  743     for (
i = 0; 
i < order; 
i++)
 
  747         for (
i = order; 
i < n; 
i++)
 
  749     } 
else if (order == 1) {
 
  750         for (
i = order; 
i < n; 
i++)
 
  751             res[
i] = smp[
i] - smp[
i-1];
 
  752     } 
else if (order == 2) {
 
  753         int a = smp[order-1] - smp[order-2];
 
  754         for (
i = order; 
i < n; 
i += 2) {
 
  755             int b    = smp[
i  ] - smp[
i-1];
 
  757             a        = smp[
i+1] - smp[
i  ];
 
  760     } 
else if (order == 3) {
 
  761         int a = smp[order-1] -   smp[order-2];
 
  762         int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
 
  763         for (
i = order; 
i < n; 
i += 2) {
 
  764             int b    = smp[
i  ] - smp[
i-1];
 
  767             a        = smp[
i+1] - smp[
i  ];
 
  772         int a = smp[order-1] -   smp[order-2];
 
  773         int c = smp[order-1] - 2*smp[order-2] +   smp[order-3];
 
  774         int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
 
  775         for (
i = order; 
i < n; 
i += 2) {
 
  776             int b    = smp[
i  ] - smp[
i-1];
 
  780             a        = smp[
i+1] - smp[
i  ];
 
  792     int min_order, max_order, opt_order, omethod;
 
  803     n     = 
frame->blocksize;
 
  806     for (
i = 1; 
i < n; 
i++)
 
  816     if (
frame->verbatim_only || n < 5) {
 
  818         memcpy(res, smp, n * 
sizeof(
int32_t));
 
  822     min_order  = 
s->options.min_prediction_order;
 
  823     max_order  = 
s->options.max_prediction_order;
 
  824     omethod    = 
s->options.prediction_order_method;
 
  834         bits[0]   = UINT32_MAX;
 
  835         for (
i = min_order; 
i <= max_order; 
i++) {
 
  841         sub->order     = opt_order;
 
  843         if (
sub->order != max_order) {
 
  853                                   s->options.lpc_coeff_precision, coefs, 
shift, 
s->options.lpc_type,
 
  854                                   s->options.lpc_passes, omethod,
 
  860         int levels = 1 << omethod;
 
  863         int opt_index   = levels-1;
 
  864         opt_order       = max_order-1;
 
  865         bits[opt_index] = UINT32_MAX;
 
  866         for (
i = levels-1; 
i >= 0; 
i--) {
 
  867             int last_order = order;
 
  868             order = min_order + (((max_order-min_order+1) * (
i+1)) / levels)-1;
 
  869             order = 
av_clip(order, min_order - 1, max_order - 1);
 
  870             if (order == last_order)
 
  872             if (
s->bps_code * 4 + 
s->options.lpc_coeff_precision + 
av_log2(order) <= 32) {
 
  873                 s->flac_dsp.lpc16_encode(res, smp, n, order+1, coefs[order],
 
  876                 s->flac_dsp.lpc32_encode(res, smp, n, order+1, coefs[order],
 
  890         bits[0]   = UINT32_MAX;
 
  891         for (
i = min_order-1; 
i < max_order; 
i++) {
 
  892             if (
s->bps_code * 4 + 
s->options.lpc_coeff_precision + 
av_log2(
i) <= 32) {
 
  893                 s->flac_dsp.lpc16_encode(res, smp, n, 
i+1, coefs[
i], 
shift[
i]);
 
  895                 s->flac_dsp.lpc32_encode(res, smp, n, 
i+1, coefs[
i], 
shift[
i]);
 
  906         opt_order = min_order - 1 + (max_order-min_order)/3;
 
  910             int last = opt_order;
 
  912                 if (i < min_order-1 || i >= max_order || 
bits[
i] < UINT32_MAX)
 
  914                 if (
s->bps_code * 4 + 
s->options.lpc_coeff_precision + 
av_log2(
i) <= 32) {
 
  915                     s->flac_dsp.lpc32_encode(res, smp, n, 
i+1, coefs[
i], 
shift[
i]);
 
  917                     s->flac_dsp.lpc16_encode(res, smp, n, 
i+1, coefs[
i], 
shift[
i]);
 
  927     if (
s->options.multi_dim_quant) {
 
  929         int i, 
step, improved;
 
  930         int64_t best_score = INT64_MAX;
 
  933         qmax = (1 << (
s->options.lpc_coeff_precision - 1)) - 1;
 
  935         for (
i=0; 
i<opt_order; 
i++)
 
  946                 for (
i=0; 
i<opt_order; 
i++) {
 
  947                     int diff = ((
tmp + 1) % 3) - 1;
 
  948                     lpc_try[
i] = 
av_clip(coefs[opt_order - 1][
i] + 
diff, -qmax, qmax);
 
  955                 if (
s->bps_code * 4 + 
s->options.lpc_coeff_precision + 
av_log2(opt_order - 1) <= 32) {
 
  956                     s->flac_dsp.lpc16_encode(res, smp, n, opt_order, lpc_try, 
shift[opt_order-1]);
 
  958                     s->flac_dsp.lpc32_encode(res, smp, n, opt_order, lpc_try, 
shift[opt_order-1]);
 
  961                 if (score < best_score) {
 
  963                     memcpy(coefs[opt_order-1], lpc_try, 
sizeof(*coefs));
 
  970     sub->order     = opt_order;
 
  971     sub->type_code = 
sub->type | (
sub->order-1);
 
  973     for (
i = 0; 
i < 
sub->order; 
i++)
 
  974         sub->coefs[
i] = coefs[
sub->order-1][
i];
 
  976     if (
s->bps_code * 4 + 
s->options.lpc_coeff_precision + 
av_log2(opt_order) <= 32) {
 
  977         s->flac_dsp.lpc16_encode(res, smp, n, 
sub->order, 
sub->coefs, 
sub->shift);
 
  979         s->flac_dsp.lpc32_encode(res, smp, n, 
sub->order, 
sub->coefs, 
sub->shift);
 
 1009     if (
s->frame.bs_code[0] == 6)
 
 1011     else if (
s->frame.bs_code[0] == 7)
 
 1015     count += ((
s->sr_code[0] == 12) + (
s->sr_code[0] > 12) * 2) * 8;
 
 1031     for (ch = 0; ch < 
s->channels; ch++)
 
 1034     count += (8 - (count & 7)) & 7; 
 
 1038     if (count > INT_MAX)
 
 1048     for (ch = 0; ch < 
s->channels; ch++) {
 
 1052         for (
i = 0; 
i < 
s->frame.blocksize; 
i++) {
 
 1053             v |= 
sub->samples[
i];
 
 1058         if (v && !(v & 1)) {
 
 1061             for (
i = 0; 
i < 
s->frame.blocksize; 
i++)
 
 1062                 sub->samples[
i] >>= v;
 
 1069             if (
sub->obits <= 17)
 
 1086     sum[0] = sum[1] = sum[2] = sum[3] = 0;
 
 1087     for (
i = 2; 
i < n; 
i++) {
 
 1088         lt = left_ch[
i]  - 2*left_ch[
i-1]  + left_ch[
i-2];
 
 1089         rt = right_ch[
i] - 2*right_ch[
i-1] + right_ch[
i-2];
 
 1090         sum[2] += 
FFABS((lt + rt) >> 1);
 
 1091         sum[3] += 
FFABS(lt - rt);
 
 1092         sum[0] += 
FFABS(lt);
 
 1093         sum[1] += 
FFABS(rt);
 
 1096     for (
i = 0; 
i < 4; 
i++) {
 
 1102     score[0] = sum[0] + sum[1];
 
 1103     score[1] = sum[0] + sum[3];
 
 1104     score[2] = sum[1] + sum[3];
 
 1105     score[3] = sum[2] + sum[3];
 
 1109     for (
i = 1; 
i < 4; 
i++)
 
 1110         if (score[
i] < score[best])
 
 1127     n     = 
frame->blocksize;
 
 1129     right = 
frame->subframes[1].samples;
 
 1131     if (
s->channels != 2) {
 
 1136     if (
s->options.ch_mode < 0) {
 
 1137         int max_rice_param = (1 << 
frame->subframes[0].rc.coding_mode) - 2;
 
 1140         frame->ch_mode = 
s->options.ch_mode;
 
 1147         for (
i = 0; 
i < n; 
i++) {
 
 1150             right[
i] =  
tmp - right[
i];
 
 1152         frame->subframes[1].obits++;
 
 1154         for (
i = 0; 
i < n; 
i++)
 
 1155             right[
i] = 
left[
i] - right[
i];
 
 1156         frame->subframes[1].obits++;
 
 1158         for (
i = 0; 
i < n; 
i++)
 
 1160         frame->subframes[0].obits++;
 
 1192     if (
frame->bs_code[0] == 6)
 
 1194     else if (
frame->bs_code[0] == 7)
 
 1197     if (
s->sr_code[0] == 12)
 
 1199     else if (
s->sr_code[0] > 12)
 
 1213     for (ch = 0; ch < 
s->channels; ch++) {
 
 1215         int i, p, porder, psize;
 
 1235             for (
i = 0; 
i < 
sub->order; 
i++)
 
 1240                 int cbits = 
s->options.lpc_coeff_precision;
 
 1243                 for (
i = 0; 
i < 
sub->order; 
i++)
 
 1251             porder  = 
sub->rc.porder;
 
 1252             psize   = 
s->frame.blocksize >> porder;
 
 1256             part_end  = &
sub->residual[psize];
 
 1257             for (p = 0; p < 1 << porder; p++) {
 
 1258                 int k = 
sub->rc.params[p];
 
 1260                 while (res < part_end)
 
 1293     int buf_size = 
s->frame.blocksize * 
s->channels *
 
 1294                    ((
s->avctx->bits_per_raw_sample + 7) / 8);
 
 1296     if (
s->avctx->bits_per_raw_sample > 16 || HAVE_BIGENDIAN) {
 
 1302     if (
s->avctx->bits_per_raw_sample <= 16) {
 
 1303         buf = (
const uint8_t *)
samples;
 
 1305         s->bdsp.bswap16_buf((uint16_t *) 
s->md5_buffer,
 
 1306                             (
const uint16_t *) 
samples, buf_size / 2);
 
 1307         buf = 
s->md5_buffer;
 
 1312         uint8_t *
tmp            = 
s->md5_buffer;
 
 1314         for (
i = 0; 
i < 
s->frame.blocksize * 
s->channels; 
i++) {
 
 1318         buf = 
s->md5_buffer;
 
 1330     int frame_bytes, out_bytes, 
ret;
 
 1336         s->max_framesize = 
s->max_encoded_framesize;
 
 1347             avpkt->
pts = 
s->next_pts;
 
 1349             *got_packet_ptr = 1;
 
 1357     if (
frame->nb_samples < 
s->frame.blocksize) {
 
 1375     if (frame_bytes < 0 || frame_bytes > 
s->max_framesize) {
 
 1376         s->frame.verbatim_only = 1;
 
 1378         if (frame_bytes < 0) {
 
 1390     s->sample_count += 
frame->nb_samples;
 
 1395     if (out_bytes > 
s->max_encoded_framesize)
 
 1396         s->max_encoded_framesize = out_bytes;
 
 1397     if (out_bytes < s->min_framesize)
 
 1398         s->min_framesize = out_bytes;
 
 1407     *got_packet_ptr = 1;
 
 1422 #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM 
 1425 { 
"lpc_type", 
"LPC algorithm", offsetof(
FlacEncodeContext, 
options.lpc_type), 
AV_OPT_TYPE_INT, {.i64 = 
FF_LPC_TYPE_DEFAULT }, 
FF_LPC_TYPE_DEFAULT, 
FF_LPC_TYPE_NB-1, 
FLAGS, 
"lpc_type" },
 
 1433 { 
"prediction_order_method", 
"Search method for selecting prediction order", offsetof(
FlacEncodeContext, 
options.prediction_order_method), 
AV_OPT_TYPE_INT, {.i64 = -1 }, -1, 
ORDER_METHOD_LOG, 
FLAGS, 
"predm" },
 
 1440 { 
"ch_mode", 
"Stereo decorrelation mode", offsetof(
FlacEncodeContext, 
options.ch_mode), 
AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 
FLAC_CHMODE_MID_SIDE, 
FLAGS, 
"ch_mode" },
 
  
int frame_size
Number of samples per channel in an audio frame.
 
#define AV_LOG_WARNING
Something somehow does not look correct.
 
#define PUT_UTF8(val, tmp, PUT_BYTE)
 
FFLPCType
LPC analysis type.
 
int32_t samples[FLAC_MAX_BLOCKSIZE]
 
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
 
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
 
static av_cold int flac_encode_init(AVCodecContext *avctx)
 
static int put_bytes_output(const PutBitContext *s)
 
int sample_rate
samples per second
 
int exact_rice_parameters
 
#define MAX_PARTITION_ORDER
 
#define AV_CHANNEL_LAYOUT_5POINT1
 
static float sub(float src0, float src1)
 
static void put_sbits(PutBitContext *pb, int n, int32_t value)
 
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
 
static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
 
This structure describes decoded (raw) audio or video data.
 
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
 
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
 
@ FF_LPC_TYPE_CHOLESKY
Cholesky factorization.
 
av_cold void ff_flacdsp_init(FLACDSPContext *c, enum AVSampleFormat fmt, int channels, int bps)
 
int prediction_order_method
 
static int select_blocksize(int samplerate, int block_time_ms)
Set blocksize based on samplerate.
 
int64_t duration
Duration of this packet in AVStream->time_base units, 0 if unknown.
 
enum AVChannelOrder order
Channel order used in this layout.
 
int nb_channels
Number of channels in this layout.
 
#define AV_CHANNEL_LAYOUT_5POINT0
 
static uint64_t find_subframe_rice_params(FlacEncodeContext *s, FlacSubframe *sub, int pred_order)
 
#define ORDER_METHOD_4LEVEL
 
AVCodec p
The public AVCodec.
 
AVChannelLayout ch_layout
Audio channel layout.
 
void av_shrink_packet(AVPacket *pkt, int size)
Reduce packet size, correctly zeroing padding.
 
#define AV_CHANNEL_LAYOUT_SURROUND
 
static double val(void *priv, double ch)
 
@ FLAC_CHMODE_INDEPENDENT
 
#define FF_CODEC_ENCODE_CB(func)
 
@ FF_LPC_TYPE_DEFAULT
use the codec default LPC type
 
const int32_t ff_flac_blocksize_table[16]
 
exp golomb vlc writing stuff
 
static av_always_inline int64_t ff_samples_to_time_base(AVCodecContext *avctx, int64_t samples)
Rescale from sample rate to AVCodecContext.time_base.
 
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
 
static void write_subframes(FlacEncodeContext *s)
 
#define AV_CHANNEL_LAYOUT_2_2
 
int ff_flac_get_max_frame_size(int blocksize, int ch, int bps)
Calculate an estimate for the maximum frame size based on verbatim mode.
 
@ AV_CHANNEL_ORDER_UNSPEC
Only the channel count is specified, without any further information about the channel order.
 
#define av_assert0(cond)
assert() equivalent, that is always enabled.
 
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
 
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
 
static void remove_wasted_bits(FlacEncodeContext *s)
 
#define FLAC_SUBFRAME_LPC
 
static void set_sr_golomb_flac(PutBitContext *pb, int i, int k, int limit, int esc_len)
write signed golomb rice code (flac).
 
#define COPY_SAMPLES(bits)
 
static uint64_t calc_optimal_rice_params(RiceContext *rc, int porder, uint64_t sums[32][MAX_PARTITIONS], int n, int pred_order, int max_param, int exact)
 
#define FLAC_SUBFRAME_VERBATIM
 
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
 
#define FLAC_SUBFRAME_CONSTANT
 
const int ff_flac_sample_rate_table[16]
 
#define LIBAVUTIL_VERSION_INT
 
Describe the class of an AVClass context structure.
 
FlacSubframe subframes[FLAC_MAX_CHANNELS]
 
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
 
#define FLAC_SUBFRAME_FIXED
 
const char * av_default_item_name(void *ptr)
Return the context name.
 
int av_channel_layout_compare(const AVChannelLayout *chl, const AVChannelLayout *chl1)
Check whether two channel layouts are semantically the same, i.e.
 
#define FLAC_STREAMINFO_SIZE
 
#define ORDER_METHOD_SEARCH
 
int ff_lpc_calc_coefs(LPCContext *s, const int32_t *samples, int blocksize, int min_order, int max_order, int precision, int32_t coefs[][MAX_LPC_ORDER], int *shift, enum FFLPCType lpc_type, int lpc_passes, int omethod, int min_shift, int max_shift, int zero_shift)
Calculate LPC coefficients for multiple orders.
 
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
 
static uint64_t rice_count_exact(const int32_t *res, int n, int k)
 
int max_encoded_framesize
 
static int encode_residual_ch(FlacEncodeContext *s, int ch)
 
static int get_max_p_order(int max_porder, int n, int order)
 
#define ORDER_METHOD_8LEVEL
 
static int find_optimal_param_exact(uint64_t sums[32][MAX_PARTITIONS], int i, int max_param)
 
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
 
unsigned int md5_buffer_size
 
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
 
An AVChannelLayout holds information about the channel layout of audio data.
 
static void channel_decorrelation(FlacEncodeContext *s)
Perform stereo channel decorrelation.
 
@ FF_LPC_TYPE_NB
Not part of ABI.
 
enum AVSampleFormat sample_fmt
audio sample format
 
static int encode_frame(FlacEncodeContext *s)
 
static void calc_sum_top(int pmax, int kmax, const uint32_t *data, int n, int pred_order, uint64_t sums[32][MAX_PARTITIONS])
 
int32_t residual[FLAC_MAX_BLOCKSIZE+11]
 
CompressionOptions options
 
static const uint8_t header[24]
 
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
 
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
 
static int write_frame(FlacEncodeContext *s, AVPacket *avpkt)
 
static const AVOption options[]
 
int32_t coefs[MAX_LPC_ORDER]
 
av_cold void ff_lpc_end(LPCContext *s)
Uninitialize LPCContext.
 
static void calc_sum_next(int level, uint64_t sums[32][MAX_PARTITIONS], int kmax)
 
void av_md5_init(AVMD5 *ctx)
Initialize MD5 hashing.
 
#define i(width, name, range_min, range_max)
 
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
 
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
 
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
 
static void write_utf8(PutBitContext *pb, uint32_t val)
 
static int count_frame_header(FlacEncodeContext *s)
 
const FFCodec ff_flac_encoder
 
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
 
AVSampleFormat
Audio sample formats.
 
static void write_frame_header(FlacEncodeContext *s)
 
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
 
static void write_frame_footer(FlacEncodeContext *s)
 
@ AV_SAMPLE_FMT_S16
signed 16 bits
 
const char * name
Name of the codec implementation.
 
static void copy_samples(FlacEncodeContext *s, const void *samples)
Copy channel-interleaved input samples into separate subframes.
 
void av_md5_final(AVMD5 *ctx, uint8_t *dst)
Finish hashing and output digest value.
 
static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n, int max_rice_param)
 
static uint64_t calc_rice_params(RiceContext *rc, uint32_t udata[FLAC_MAX_BLOCKSIZE], uint64_t sums[32][MAX_PARTITIONS], int pmin, int pmax, const int32_t *data, int n, int pred_order, int exact)
 
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
 
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
 
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n, int order)
 
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
 
#define AV_CHANNEL_LAYOUT_5POINT0_BACK
 
#define FLAC_MAX_CHANNELS
 
#define MAX_LPC_PRECISION
 
main external API structure.
 
uint64_t rc_sums[32][MAX_PARTITIONS]
 
uint32_t rc_udata[FLAC_MAX_BLOCKSIZE]
 
uint8_t * av_packet_new_side_data(AVPacket *pkt, enum AVPacketSideDataType type, size_t size)
Allocate new information of a packet.
 
int ff_get_encode_buffer(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int flags)
Get a buffer for a packet.
 
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
 
struct AVMD5 * av_md5_alloc(void)
Allocate an AVMD5 context.
 
@ AV_PKT_DATA_NEW_EXTRADATA
The AV_PKT_DATA_NEW_EXTRADATA is used to notify the codec or the format that the extradata buffer was...
 
static uint64_t subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub, int pred_order)
 
static void frame_end(MpegEncContext *s)
 
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
 
Filter the word “frame” indicates either a video frame or a group of audio samples
 
void av_md5_update(AVMD5 *ctx, const uint8_t *src, size_t len)
Update hash value.
 
static void init_frame(FlacEncodeContext *s, int nb_samples)
 
int params[MAX_PARTITIONS]
 
static int shift(int a, int b)
 
#define FLAC_MAX_BLOCKSIZE
 
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
 
static av_always_inline int diff(const uint32_t a, const uint32_t b)
 
This structure stores compressed data.
 
enum CodingMode coding_mode
 
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
 
static int find_optimal_param(uint64_t sum, int n, int max_param)
Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
 
static av_cold void dprint_compression_options(FlacEncodeContext *s)
 
static int update_md5_sum(FlacEncodeContext *s, const void *samples)
 
static av_cold int flac_encode_close(AVCodecContext *avctx)
 
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
 
static const AVClass flac_encoder_class
 
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
Write streaminfo metadata block to byte array.
 
#define ORDER_METHOD_2LEVEL
 
#define FLAC_MIN_BLOCKSIZE
 
#define AV_CHANNEL_LAYOUT_QUAD
 
#define AV_CHANNEL_LAYOUT_5POINT1_BACK
 
@ FF_LPC_TYPE_NONE
do not use LPC prediction or use all zero coefficients
 
#define AV_CODEC_CAP_SMALL_LAST_FRAME
Codec can be fed a final frame with a smaller size.
 
@ AV_SAMPLE_FMT_S32
signed 32 bits
 
@ FF_LPC_TYPE_LEVINSON
Levinson-Durbin recursion.
 
#define rice_encode_count(sum, n, k)
 
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order, enum FFLPCType lpc_type)
Initialize LPCContext.
 
@ FF_LPC_TYPE_FIXED
fixed LPC coefficients